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Propagation of nonlinear surface polaritons
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The propagation of nonlinear p-polarized electromagnetic surface waves in a model previously studied by
Yu is studied here without restrictions on the field amplitudes. s-polarized waves are also studied, Results
for the dispersion relations and field profiles are reported.

There have been theoretical' as well as experimental in-
terests in the past few years on thc propagation of nonlinear
surface polaritons (NLSP) along the interfaces of materials
whose dielectric functions depend on the strength of the
electric field. '

.Despite the complexity of the problem exact
theoretical results have been obtained under a variety of cir-
cumstances.

Some of the problems associated with the propagation of
p- and s-polarized NLSP will be studied here. For p-
polarized eaves the model previously employed by Yu will

be used. His results will be extended to all strengths of the
nonlinearties. For s-polarized waves general results will be
derived and then applied to two specific examples. Informa-
tion regarding the dispersion relations and wave profiles will

be obtained.
We consider two media whose dielectric functions" have

the form co=i)J(e '+e;"'(~$'~')), where 8' is the electric
field in the medium. Medium I occupies the region z (0,
and medium II occupies the region z & 0. For a mono-
chromatic plane wave propagating along x we write the fields
in the form

87(r, t) = E(z)e

gt(r, t) = B(z)e

Solutions to Maxwell's equation can be separated into a p-
polarized and an s-polarized wave. The p-polarized wave
has Ey =B„=B,=O and the nonzcro components obey the
set of equations

By' = I ~xEx,

g' 'By ———e,Ey,1/2

E„'=i/' E, +iBy

where the prime denotes differentiation with respect to the
dimensionless variable g=zo)/c, and q= (k„c/cu) . The s-
polarized wave has E„=E, =By =0 and obeys the set of
equations

Ey' = —iBx

i/2E

Bx i g Bg i ey Ey
~ lj2

p-polarized ~ave. Following Yu we assume that e„and e,
depend on E„only. A first integral can be obtained for E„

in the form

—,(E')'+ V(E ) =0, (4)

where

V (E„)= —f (E„')/2W'(E„'),
2

f(E„')= J du e„(u)A (u)

W (E„')=., (E„')/f~ e, (E„')] . —
(6)

—~ e„""+(g —e,"")—ln 1—
y, y.

E2
(o)ii

z

The dispersion relation can now be expressed explicitly in
the form

(4'"]+pl /P))E'(0)+ E'(0)
1

+ ~ e„+—(v) —e, ) ln 1 —
(o)

(o) ~ to)
x

p
z (o) (10)

Our result is valid for all strength of Ez(0). The result of
Yu~ " can be recovered by taking the limit yE„(0)/

&( 1. The dispersion relation obtained by Agranovich,
Babichenko, and Chernyak is also a special case of (10).

With E„ interpreted as the "coordinate" and g as the
"time, " Eq. (4) formally describes the "classical motion"
of a unit mass moving in a one-dimensional "potential" V
with zero total energy. ' A qualitative picture of the motion

The integration constant has been determined by the re-
quirement that E„=E„'=0 at ~(~=~. As pointed out by
Yu8 the boundary condition'z [8~]=0 can be imposed im-
mediately without having to solve (4) for the electric field
profile. The result gives a kind of dispersion relation

f.y(E.'(0) )1=0

connecting the frequency of the wave to the wave vector k„
for a given value of the electric field at the interface E„(0).

As in Ref. 8 we assume that ~„=aE„and e, = yE, ;
(2)ii 2 (2)iI 2.

however, yE, needs not be small compared with e, " here.
The integral in (6) can in fact be evaluated analytically with
thc result

t

f (E„)= —e„+q E„— E-„—(O)l ~ 2 ~ 4

y I 2
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Z) —e'i' for 0( —g(& g',

E„'—e ~~~ for 0 ~ g (& g"
(12)

where ("=(e, "/e„")'i /(q —e, ")'i, with A. = I or II, are
the decay widths of the p-polarized NLSP along z in the two
media.

To know more about the form of the wave profile we
need to find the specific form of V from Eqs. (5), (7), and
(9). Owing to the large number of physical parameters in-
volved there are a number of separate cases that require
consideration. For simplicity we assume that medium I is
linear with e,j =S,ie, and 6 6 A p and q —e, all(o)II (o)II (o)II

are positive quantities. If we further have

I 4 2 (o) (o)

then there can only be two types of wave forms. For
e'/(q —e') & 0 the p-polarized NLSP has a single peak lo-
cated in region II. Otherwise it has a single peak in the
form of a cusp at the interface.

s-polarized ~ave. In this case a first integral for Ey can be
written as

(which describes the x component of the electric field pro-
file as a function of $) can be obtained simply by analyzing
the form of V without having to solve (4) explicitly.

For small E„, V has the form

(o)
(o)

(,) (q —e, )E
2&z

Thus, in order for the existence of nonperturbative large-
amplitude solutions we must require that e„(q—e, )/) 0. The asymptotic form of V also implies that'

The situation for ~»" & K» (or equivalently e»
' & e» ") and

n»" & 0 (self-focusing) is depicted in Fig. 1(a). Since
E»=E»'=0 at (= +~, we imagine a particle starting at
g= —~ from rest at the origin, rolling down the potential
well V', and eventually rolling back up V" to reach the ori-
gin again at (= +~. The boundary conditions force the
particle to cross from V' to V" at the point ~here V' and V"
intersect. The position where this happens is just E»(0).
The "velocity" of the particle entering and leaving this
point must remain unchanged. It is easy to see that these
conditions give precisely the dispersion relation as in Eq.
(19), which in the present case takes the form

(O) I (O) II I II 2 (21)

This relation has been obtained before by Maradudin. 3 '

The only classically allowed motion is that shown by the ar-
rows in Fig. 1(b). The NLSP must have a single peak locat-
ed in medium II of height E» = (2/n»")'i K»n, which is
determined by the condition V" (E» ) =0, or E»' =0. The
energy flux per unit length in the y direction can be ob-
tained by integrating the x component of the Poynting vec-
tor over z.

p + oo p+oo
S„= Re Jl dz g»9t;= q'i J dzE» . (22)

where medium I is linear with 6 j = 5'jE'' ', and medium II
has e; "(iS'i ) =n;"E». Then Eq. (14) gives

V'(E, ) = ,' —( K—„')'E,',
(20)

2 (E»') + V (E» ) = 0 (13) Ij V

2

V(E») ~v»E» J du e» (u )

(0) ))i2

(14)

Vhas the form

V (E») = —~K»E»

near the origin; thus, we must require q ) ~y in both
media in order to find large amplitude solutions to (13).'
The asymptotic wave profiles are given by

ii E„(z)

K -K "gE' —e y E"—e-
y y »

with Ky
' the decay width of the NLSF.

From the boundary conditions'

[E,] = [E„']= 0

(17)

(18)

we obtain a general dispersion relation of the form

E 2(0)
[E,"']E,'(0)- Jl, d [E,"'( )]=0 . (19)

Note that regardless of the form of e» (E» ), Eq. (19) when
expressed in terms of the field at the interface, E»(0), is al-
ways independent of g as long as q ) ey

To illustrate our method further we first consider the case

0 z
FIG, l. (a) The form of V in regions I and II for the case where

~y" & K' and n" & 0. The classically allo~ed motion" is shown by
the arrows. (b) The corresponding wave profile for the s-polarized
NLSP.
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FIG. 2. (a) Schematic plot of the dispersion relation in terms of
the averaged energy flux along x as a function of g= (k„c/cu)2.
The y axis has been expressed in a dimensionless form. (b)
Schematic plot of the dispersion relations for mode (1) and (2) in
terms of the averaged energy flux along x as a function of
g= (k„c/~) . A. is defined as

E„(z) &b)

Parameter values correspond to 6y & 6y & 0 and, ny & 0/y & 0.(0)II (0)I II

The result is shown in Fig. 2(a). The dotted line denotes
part of the curve where n»tcuS„ /c2 decreases with increasing

V (Ey ) = —~ (Ky E»2 —-fny Ey ) (23)

There are two subcases of interest here. Subcase (i) has

Ky & Ky & Ay & Ay & 0& and Ey ~ & Ey ]+ ~ V is plotted In Flg„
3(a). It is clear that two different NLSP modes can exist.
Mode (1) has a peak located in medium II. It corresponds
to the motion of a particle rolling down V' from the origin,
crossing over to V" on the first passage at Ey(0), bouncing
off the wall at Ey"~ and then staying on V" until finally rol-
ling back to the origin. Mode (2) has a peak which is rela-
tively narrower and lower compared with mode (1), and is
located in medium I. It corresponds to the motion where
the particle rolls down from the origin on V', continues on
V' after passing through Ey(0), bounces off from the wall at
E»' until it reaches Ey(0) again, where it now crosses over
to V" and rolls back to the origin [see Fig. 3(b)j.

The dispersion relations in terms of the energy flux can
also be calculated for these two modes. The results are
shown in Fig. 2(b). For mode (2) a portion of the curve
(denoted by the dots) has ny"AS„/c' decreasing with in-
creasing q. Note that by virtue of the nonlinearity these
two modes cannot be excited simultaneously.

No s-Polarized NLSP solution can be allowed for Ky ( Ky

with o.y" & 0, or for Ky" & Ky with ny' & 0, since V' and V" do
not intersect at all except at Ey = 0. For Ky ( Ky and oy & 0
the available solutions represent propagating modes with an
infinite flux of electromagnetic energy, and must be ig-
nored. ' Thus the only allowed modes are of the type
shown in Fig. 1.

Next consider the case where both media have a dielectric
function of the form e;, =5&&(e '+n;~g~'). In both regions
v is gIven by

FIG. 3. (a) The form of V in regions I and II for the case where

ny & ny & 0, and (~y ) /ny' & (gy') /ay. (b) Schematic
picture of the wave profiles for mode (1) and (2).

From Figs. 2(a) and 2(b) one can see that S„has a
threshold characteristic, which means that these modes can
have no counterpart whatsoever in ihe corresponding linear
regime.

Subcase (ii) has try ( try", n» ( 0, and n»" ) 0. The situa-
tion here is very similar to that discussed before where
medium I is linear and medium II is self-focusing. There is
only one allowed s-polarized NLSP mode. Ey has a single
peak in medium II similar to that shown in Fig. 1(b).

Clearly there are two more subcases which can be ob-
tained from subcases (i) and (ii) by interchanging K» with
Kyn, cxy with n»n, and g with —g. Besides those discussed
above there are no other s-polarized NLSP that can exist in
this model.

A natural question to ask now is whether these NLSP are
stable. In order to answer this question one needs to find
the modes propagating along z in addition to the surface lo-
calized modes discussed here. These interesting and impor-
tant problems will be left for future studies.
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