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This paper is an essential addendum to a previous paper [L. Ingber, Phys. Rev. A 29, 3346
(1984)]. Calculations are presented here to support the claim made in the previous paper
that there exists an approximate one-dimensional solution to the two-dimensional neocorti-
cal Fokker-Planck equation. This solution is extremely useful, not only for obtaining a
closed algebraic expression for the time of first passage, but also for establishing that
minima of the associated path-integral stationary Lagrangian are indeed stable points of the
transient dynamic system. Also, a relatively nontechnical summary is given of the basic

theory.

The purpose of this paper is twofold: First, and
most important, calculations and plots are presented
to support statements made in Ref. 1 that an approxi-
mate one-dimensional solution exists to the two-
dimensional neocortical Fokker-Planck equation
developed in a series of papers.!—5 Second, and
perhaps most useful to physicists in other specialties
who are interested in this system, a relatively non-
technical summary is given of the basic theory.

This theory is geared to explaining macroscopic
neocortical activity, retaining as much correct descrip-
tion of underlying microscopic synaptic activity as can
be carried by modern mathematical physics, which
turns out to be sufficient for several important cir-
cumstances. In fact, as calculated here, the retained
nonlinearities and statistics are essential to understand
limitations to short-term-memory (STM) capacity.
(The mechanisms limiting STM capacity are not
necessarily equivalent to the various electrical-
chemical processes that are candidates for specific
mechanisms of STM.)

Microscopic neurons. Granted, for purposes of
detailing anatomical or physiological properties of
neurons, it is simply incorrect to postulate an ‘‘aver-
age” neuron. However, for the purpose of macro-
scopic brain function, when considering millions of
neurons, it is reasonable to at least respect the incred-
ibly similar modular structure present in all regions of
neocortex 6—11 still allowing for the differentiation
among the laminar structure of individual modules
and among neurons active at different time scales.
Although laminar structure and tonic versus phasic
neurons can and will be included in future investiga-
tions, in preliminary studies the only differentiation
was among E and [ activities. For each of the four
resulting interactions (E—E, [—I, E—I, [—E),
neuronal interactions were calculated using distribu-
tions ranging from Poisson to Gaussian for interneu-
ronal chemical-electrical synaptic interactions, in
terms of quantal transfers of chemical transmitters.
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Note that some investigators have shown a Bernoulli
distribution to be more accurate in some cases.3.12 A
Gaussian distribution was used for intraneuronal
activity, in terms of average effective voltages contri-
buted from synaptic interactions to axonal polariza-
tions. The mathematics3:4 is similar to other stud-
ies,13 but with different physical interpretations. By
extending the wvalidity of an approximationl4 to the
“erf”” function,3 the firing of an individual neuron is
well defined as a sigmoid distribution of synaptic
interactions with other neurons. The derived ‘‘thres-
hold factor’® of synaptic interactions, being the argu-
ment of the conditional probability distribution which
determines the rate at which the distribution changes
from concave to convex, contains a mild nonlinearity
induced by the above folding of interneuronal and
intraneuronal distributions. However, the following
development is capable of accepting any differentiable
nonlinear function for the threshold factor, including
laminar circuitries and more complex synaptic interac-
tions.4 No linear rate-equation approximations to
these distributed interactions or artificial assumptions
of quadratic distributions are necessary, nor will these
yield results consistent with empirical STM capacity.
Mesoscopic domains. As is found for most none-
quilibrium systems, a mesoscopic scale is required to
formulate the statistical mechanics of the microscopic
system, from which the macroscopic scale can be
developed. Neocortex is particularly interesting in
this context in that a clear scale for the mesoscopic
system exists, both anatomically (structurally) and
physiologically (functionally). ‘‘Minicolumns’ of
about N==100 neurons (about 200 in visual cortex)
of extent p~ 102 xm comprise modular units verti-
cally oriented relative to the warped and convoluted
neocortical surface throughout most, if not all,
regions of neocortex.6—11 Clusters of about 100 neu-
rons have been deduced to be reasonable from other
considerations as well, which process information
more as a neural ‘‘throng’ similar to social interac-
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tions, than as hard-wired circuitry.15 In this context, it
is noted that the methods used here also have been
applied to financial markets.16 Since the short-ranged
interactions between neurons take place within —1
mm, which is the extent of a ‘‘macrocolumn”
comprising ~10° minicolumns of N*=10° neurons,
and since macrocolumns also exhibit rather specific
information-processing features, this theory has
retained the divergence (convergence) of macro-
column (minicolumn) efferent (afferent) interactions
by considering domains of minicolumns as having
similar synaptic interactions within the extent of a
macrocolumn. This macrocolumnar-averaged min-
icolumn is designated in this theory as a ‘‘meso-
column.”

This being the empirical situation, it is gratifying to
find that N=10? is just the right order of magnitude
to permit a formal analysis using methods of
mathematical physics recently developed for statistical
systems.!7.18 N is small enough to permit nearest-
neighbor (NN) interactions to be formulated, such
that interactions between mesocolumns are small
enough to be considered gradient perturbations on
otherwise independent mesocolumnar firing states.
This is consistent with rather continuous spatial gra-
dient interactions observed among columns,!® and
with the basic hypothesis that nonrandom
differentiation of properties among broadly tuned
individual neurons coexists with functional columnar
averages representing superpositions of patterned
information.20 This is a definite mathematical con-
venience, or else a macrocolumn of minicolumns
would have to be described by a system of min-
icolumns with up to 16th-order next-nearest neigh-
bors. Also, N is large enough to permit the derived
binomial distribution of afferent minicolumnar firing
states to be well approximated by a Gaussian distribu-
tion, a luxury not afforded to an ‘‘average’ neuron
even in this otherwise similar physical context.
Finally, mesocolumnar interactions are observed to
take place via one to several relays of neuronal
interactions, so that their time scales are similarly
7=5—10 msec.

Macroscopic regions. Inclusion of all the above
microscopic and mesoscopic features of neocortex
permits a true nonphenomenological Gaussian-
Markovian formal development for ~ 10? macroscopic
regions, each encompassing ~ 5x 10° minicolumns of
spatial extent ()~ 5% 10° um?, albeit one that is still
highly nonlinear and nonequilibrium. The develop-
ment of mesocolumnar domains presents conditional
probability distributions for mesocolumnar firings
MC | G = E or I, with spatially coupled NN interac-
tions. The macroscopic spatial folding of these
mesoscopic domains and their macroscopic temporal
folding of tens to hundreds of 7 yields a true path-
integral formulation, in terms of a Lagrangian pos-
sessing a bona fide variational principle for most-
probable firing states. Much of this algebra is greatly
facilitated by, but does not require, the use of
Riemannian geometry to develop the nonlinear
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means, variances, and ‘‘potential’’ contributions to
the Lagrangian.!8 In the context of representing firing
patterns by eigenfunctions of a Lagrangian, it is noted
that these methods also have been used to study
nucleon-nucleon velocity-dependent2! potential con-
tributions to nuclear-matter binding energy.22.23

The prepoint-discretized Lagrangian L, associated
with the midpoint-discretized Feynman Lagrangian
Lp ! defines the path-integral solution for the condi-
tional probability P of mesocolumnar firings M© :
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where G represents contributions from E and / neu-
rons, L=Lf+L! | and minicolumnar-averaged synap-
tic parameters (4G ,BG V& &} and NN interactions
V'O are detailed in Ref. 1. The (excitatory) long-
ranged fibers, represented by J; constraints on M |
most likely sustain activity over widely separated
regions,24 to coordinate information processing rang-
ing between local and global scales.s

A Hamiltonian formulation can be obtained, one
which does not permit simple ‘‘energy’’-type conser-
vation approximations, but one which does permit the
usual time-evolution picture.l8 The time-dependent
gifferential macroscopic  probability  distribution
P=H,P , or ‘“‘propagator,”” is found to satisfy a true
Fokker-Planck equation, but one with nonlinear drifts
and diffusion in the space of E and [ firings. The
Fokker-Planck equation for the region Q correspond-
ing to Eq. (1) is

0P Lo ) )
S0 [ @15 6%P) go— @) G+NV'PY.
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STM capacity. The most detailed and dramatic
application of this theory has been to predict a sto-
chastic mechanism underlying the phenomena of
human STM capacity,! transpiring on the order of
tenths of a second to seconds, limited to the retention
of 7+2 items.25 This is true even for apparently
exceptional memory performers who, while they may
be capable of more efficient encoding and retrieval of
LTM, and while they may be more efficient in
““chunking’’ larger patterns of information into single
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items, nevertheless they also are limited to a STM
capacity of 7+2 items.26 This STM capacity-limited
chunking phenomenon also has been noted with
items requiring varying depths and breadths of pro-
cessing.27-31 _
Contour plots of the stationary Lagrangian L for
model BC',! wherein typical synaptic parameters are
balanced between predominately inhibitory and
predominately excitatory firing states, are examined at
many scales when the background synaptic noise is

only modestly shifted to cause both efferent and -

afferent mesocolumnar firing states to have a com-
mon most-probable firing centered at M¢=0, where
G = E or I, —-N°<MOPLNC | and N=NE+N! 1
Within the range of synaptic parameters considered,
for values of L~ 1072, this ‘‘centering’> mechanism
causes the appearance of from 5 to 10—11 extrema
for values of 7L on the order of ~1072. (See Fig.
1.) The appearance of these extrema due to the
centering mechanism is clearly dependent on the non-
linearities present in the derived Lagrangian, stressing
competition and cooperation among excitatory and
inhibitory interactions at columnar as well as at neu-
ronal scales.

Since the extrema appear to lie fairly well along a
line in the two-dimensional MY space, and since
coefficients of slowly varying dM¢/dt terms in the
nonstationary L are noted to be small perturbations
on L # a solution to the stationary probability distri-
bution is hypothesized to be proportional to
exp(—®/D), where ®=CN>L, the diffusion D=N/r,
and C a constant. Along the line of the extrema, for
C=1, this is determined to be an accurate solution to
the full two-dimensional Fokker-Planck equation.
(See Fig. 2.) This is extremely useful, as a linear sta-
bility analysis shows that stability with respect to
mesocolumnar fluctuations induced by several neu-
rons changing their firings is determined by the
second derivatives of —®,32 but here this just meas-
ures the parabolic curvature of L at the extrema.
Thus, all the extrema of the stationary Lagrangian are
determined to be stable minima of the transient
time-dependent dynamic system.

More precisely, an estimate of a stationary solution
P, to the Fokker-Planck differential equation for the
probability distribution P of MY firings for an uncou-
pled mesocolumn, i.e., ¥'=0, is given by the station-
ary limit of the short-time propagator,

Pga=N g %exp(— CNTL—_) ,
3)
g=det(g99) '=det(g5e)=2ger &

where Ny, and C are constant factors. An estimate
of the approximation made in Eq. (3) is made by
seeking values of constants C, such that the station-
ary Fokker-Planck equation is satisfied exactly. Con-
tour plots in Fig. 2 of C versus demonstrate that

there exist real positive C which may only range from"

~10"! to ~1, for which there exists unbroken con-
tours of C which pass through or at least border the
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FIG. 1. From Ref. 1. Contours of rLgc over the
(A_ZE,A—ZI) plane for values less than' 0.04 are drawn,
invoking the ‘‘centering’” mechanism for model BC’, where
—80< M* <80 and —30< M <30. Reference 1 calculates
that the results are similar for the Feynman Lagrangian.

line of minima. At each point MC | Eq. (3) leaves a
quadratic equation for C to be solved. Dropping the
g¥? factor in Eq. (3) results in C not being real
throughout the domain of M© .

Thus Eq. (3) defines a solution with potential
N’L= [ 4 dM, diift 4, and diffusion N/r. Stability
of transient solutions, defined for §MC about a sta-
tionary state by

SMC=—A G8MCS=—N2L ;6 MC , 4

is therefore equivalent to being minima of L_ .
This stationary solution is also useful for calculating
the time of first passage, ¢, , to fluctuate out of a val-
ley in one minima over a peak to another minima. It
turns out that the values of 7L~10"2 for which the
minima exist are just right to give ¢,, on the order of
tenths a second for about 9 of the minima when the
maximum of 10—11 are present. The other minima
give f,, on the order of many seconds, which is large

-enough to cause hysteresis to dominate single jumps

between other minima.! Thus, 742 is the capacity of
STM, for memories or new patterns which can be
accessed in any order during tenths of a second, all as
observed empirically.26

This is a very sensitive_calculation. If N were a
factor of 10 larger, or if 7L <0.1 at the minima, then
t, is on the order of hours instead of seconds,
becoming unrealistic for STM durations. Oppositely,
if t,, were much smaller, i.e., less. than ~57, this
would be inconsistent with empirical time scales
necessary for formation of any memory trace33 In
this context, it is noted that the threshold factor of
the probability distribution scales as (N*N)VY2,
demanding that both macrocolumnar divergence and
minicolumnar convergence of mesocolumnar firings
be tested by these calculations. :

The statistical nature of this storage and processing
also explains the primacy versus recency effect in
STM serial processing, wherein first-learned items are
recalled most error-free, with last-learned items still
more error-free than those in the middle.34 The
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FIG. 2. Using the ansatz that a solution to the two-dimensional M -space Fokker-Planck equation for the stationary
probability distribution of M is proportional to exp(—CN*rZ ), contours of positive C are plotted over M° for which this
ansatz does indeed satisfy this equation. Plots are presented for model BC’ of Fig. 1. (a) C contours at 7 equally spaced
values between the minimum value of 0, and the maximum value of 600, give rise to a peak close to the origin and a soli-
tary contour of 100 at M°=(* ,M')=(-80~30). (b) C contours cut off at 10 give rise to contours of disconnected
regions from 0 to 10 along the line of minima of Fig. 1. (c) C contours cut off at 1.0 give rise to contours ranging from
1.0 at M*=—80 towards 0.2 on the left-hand side, from 0.2 to 1.0 on the right-hand side at A_f=80, and from 0.2 on the
outer contours along the line of minima of Fig. 1 to 1.0 on the inner contours. Note that the contours at 1.0 are closest to
the center of the minima. (d) C contours cut off at 0.1 give rise to a valley at 0 at (M° , M’ )= (—80,—30), and contours at
0.1. Note that no new contours appear in addition to those already found in Fig. (c).

deepest minima are more likely accessed than the
others of this probability distribution, and these val-
leys are sharper than the others, i.e., they are more
readily accessed and sustain their patterns against

fluctuations more accurately than the others. The
more recent memories or newer patterns may be
presumed to be those having synaptic parameters
more recently tuned and/or more actively rehearsed.

IL. Ingber, Phys. Rev. A 29, 3346 (1984).

2. Ingber, J. Social Biol. Struct. 4, 211 (1981).

3L. Ingber, Physica D5, 83 (1982).

‘L. Ingber, Phys. Rev. A 28, 395 (1983).

SL. Ingber, IEEE Trans. Biomed. Eng. (in press).

®C.D. Gilbert and T.N. Wiesel, Prog. Brain Res. 58, 209
(1983).

'PS. Goldman and W.J.H. Nauta, Brain Res. 122, 393
1977).

8D.H. Hubel and T.N. Wiesel, J. Physiol. (London) 160,
106 (1962).

°T.J. Imig and R.A. Reale, J. Comp. Neurol. 192, 293
(1980).

°E.G. Jones, J.D. Coulter, and S.H.C. Hendry, J. Comp.
Neurol. 181, 291 (1978).

yB. Mountcastle, in The Mindful Brain, edited by G.M.
Edelman and V.B. Mountcastle (Massachusetts Institute
of Technology, Cambridge, 1978), p. 7.

2D H. Perkel and M.W. Feldman, J. Math. Biol. 7, 31
(1979).

BG.L. Shaw and R. Vasudevan, Math. Biosci. 21, 207
(1974).

“W.A. Little and G.L. Shaw, Math. Biosci. 39, 281
(1978). '

ST H. Bullock, in Information Processing in the Nervous Sys-
tem, edited by H.M. Pinsker and W.D. Willis, Jr.
(Raven, New York, 1980).

161, Ingber, Math. Modelling 5, 343 (1984).

R. Graham, Z. Phys. B 26, 397 (1977).

BR Langouche, D. Roekaerts, and E. Tirapegui, Functional
Integration and Semiclassical Expansions (Reidel, Dor-
drecht, 1982).

19R.W. Dykes, Brain Res. Rev. 6, 47 (1983).

2R .P Erickson, Sensory Physiol. 6, 79 (1982).

2L, Ingber, Phys. Rev. 174, 1250 (1968).

221, Ingber, Phys. Rev. C 28, 2536 (1983).

31 Ingber, Phys. Rev. D29, 1171 (1984).

#pL. Nunez, Electric Fields of the Brain: The Neurophysics
of EEG (Oxford University Press, New York, 1981).

5G.A. Miller, Psychol. Rev. 63, 81 (1956).

%K_.A. Ericsson and W.G. Chase, Am. Sci. 70, 607 (1982).

7L, Ingber, Explore 7, 5 (1972).

BL. Ingber, J. Social Biol. Struct. 4, 225 (1981).

BL. Ingber, The Karate Instructor’s Handbook (PSI, Solana
Beach, California, 1976).

391, Ingber, Karate: Kinematics and Dynamics (Unique,
Hollywood, 1981).

3y, Ingber, Elements of Advanced Karate (Ohara, Burbank,
California, 1985).

32G.S. Agarwal and S.R. Shenoy, Phys. Rev. A 23, 2719
(1981).

33B. Libet, Human Neurobiol. 1, 235 (1982).

%B.B. Murdock, Jr., Psychol. Rev. 90, 316 (1983).



