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Static and dynamic scattering from fractals
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A scaling form for the pair correlation function of random fractals is combined with the scaling form of
the percolation distribution of cluster sizes to obtain expressions for the static structure factor S(q) and
first cumulant K1 of the dynamic structure factor S(q, t) at the gel point. We find S(q) —q & and
K1 —q with p, =D(3 —~), where D is the fractal dimension and v. is the exponent for the distribution of
cluster sizes. .Special forms are suggested for the scaling functions to obtain results for the nonscaling re-
gime.

Three relations serve as equivalent definitions of the frac-
tal dimension of the mass D

M —RD, g(r) —I/rd, r « R

S~(q) —1/q, q

M= Jl d"rg(r)

R = (I/2M) Jr d r r g (r)

SM(q) = (1/M) Jr d r e'~ '"g (r)

(3)

(4)

(5)

Here R is the radius of gyration, M is the mass, g (r) is the
pair correlation function, d is the dimensionality of space,
SM(q) is the static structure factor, and q is the momentum
transfer. The intensity of scattering I(q) from a single frac-
tal is related to S~(q) through I(q) = BM SM(q), where 8
is a constant which depends on instrument geometry,
solvent-fractal contrast factors, and the nature of the in-
cident radiation. This relation for 1(q) is appealing because
it provides a simple and direct method of measuring the
fractal dimension of monodisperse systems. Indeed, recent
x-ray and light scattering intensity measurements by
Schaefer and Keefer' for silica gels and by Schaefer, Martin,
Cannell, and Wiltzius for colloidal aggregates have demon-
strated such a scaling regime where I(q) —q " with
p. —2.0. While it is tempting to identify p, with the fractal
dimension of the particles in these systems, fractals pro-
duced by gelation processes are especially polydisperse and
the effect of the distribution of cluster sizes must be taken
into account.

In this Brief Report we propose a simple scaling form for
the pair correlation function of a random volume fractal and
use the scaling form of the percolation distribution of clus-
ter sizes to obtain a theory of static and dynamic scattering
from gelling solutions. In all that follows it is assumed that
the scattering measurements are made on quenched and di-
luted samples so that interparticle contributions to the
scattering functions can be neglected.

While g (r) for an infinite fractal may be represented by a
simple power law, a finite fractal has a natural length scale A.

which can be introduced into g(r) through a crossover
function f'(x)

g (r) =f (r/Z)/r (2)

For x « 1, f(x) —1, whereas for x )) 1, f(x) must de-
cay faster than a power law. The normalization, radius of
gyration, and structure factor are defined in terms of g (r)

It may be readily shown that M = fD qA. and
R = P, f2+ 0 q/2fD d, where f = ff (s)s d"s, which gives
the necessary fractal relation M —R . From (5), it is ap-
parent that SM(q) is a function of the variable qA. alone,
that SM(q) is normalized in the usual way [S~(0)= I],
and that the general small q expansion, SM (q)
=1—q2R /d+, can be obtained from (5) using (3)
and (4).

The dynamic structure factor, S~(q, t), is proportional to
the autocorrelation function of the scattered field,
(E(q, 0)E(q, t)). For a monodisperse collection of rigid,
spherical particles, SM(q, r) is just the exponential time de-

—q2Djcay e ~ 'S~(q), where D, the translational diffusion con-
stant, is inversely proportional to R. If the particles are
nonspherical, rotational effects will contribute to the scatter-
ing, causing S~(q, t) to become quite complex. Still, explicit
calculations for optically isotropic rods are of the form

SM(q, r) =e ' D'H(qR;er) (6)

where 0, the rotational diffusion constant, is inversely pro-
portional to R . This R dependence of 0 is quite general,
and has been explicitly demonstrated for oblate and prolate
spheres, and flexible macromolecules. The dynamic struc-
ture factor of flexible fractals (linear and branched poly-
mers) is complicated by shape changing modes, known as
"configurational" diffusion. Again explicit calculations in-
dicate

S~(q, )=re ' 'H(qR;yt)

In the Kirkwood approximation to the hydrodynamics'
@=kT/rl, R3, where q, is the solvent viscosity. The initial
decay of (6) and (7) is conveniently expressed by the first
cumulant, 3 %1M

d InS~(q, t)
+1M = Dq +3n(qR) 0dE, 0
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N (M) = M 'h (eM ) (9)

where e =p —p„p is the conversion (fraction of filled
sites), and p, is the conversion at the gel point. The ex-
ponents 7 and a- are related to critical exponents through

where 0=8, @. The amplitude function Ao(qR) vanishes
like q for qR « 1 (in this regime, translational diffusion
dominates and Kt —q ) and is a monotonically increasing
function of qR. Scaling arguments show that for qR » 1,
A@(x) —x3, so for flexible polymers at large q, Kt —q'.
No such scaling behavior is observed for rotational ampli-
tude A, (x).

A polydisperse sample may be characterized by the distri-
bution function N(M) = V(M)/cv, where V(M) is the
number of particles of molecular ~eight M in the scattering
volume v, and c is the mass concentration per unit volume.
The distribution is normalized such that X MN (M) = 1.
The scaling theory of percolation clusters gives

the following relations:

gN(M) . (10)

(12)

p

gMN(M) —'

()
t

gM'N (M)

where the subscript sing denotes the nonanalytic part of the
sum. Substitution of (9) into these relations gives 2 —a
= (r —1)/o. , P = (r —2)/a. , and —y = (r —3)/a-. Elimina-
tion of ~ and o- gives the well-known relation of critical
theory, 2 —n = y + 2P. Equation (11) requires that the non-
analytic part of g MN(M) vanishes beneath the gel point.
Physically this means that the gel fraction is zero beneath
the gel point; mathematically it amounts to the constraint

f z eh'( —z)dz = 0 on the scaling function h (z).
The total scattered intensity from a polydisperse fractal

sample is expressed as an integration of the static structure
factor (5) over the distribution of sizes (9). Using (2) for
g (r) gives

1(q) =BcuM„S(q) =Bee J ddr(e" "/r~ ) J dM'f (r/M'/D)M' 'h (eM ) (13)

where

S (q) = M'N (M) SM (q) dM/M„

and M„=fM N(M)dM. At the gel point e = 0 and

1(q) —
q (14)

where /2, = D (3 —r ) . For percolation clusters, accepted
values of v and D are 2.2 and 2.5, respectively, so the in-
tensity is seen to vary as q near the gel point, giving an
exponent quite different from the fractal dimension. In two
dimensions the effect is much smaller; here ~ —2.05,
D —1.89, and p, —1.80.

In a similar fashion the polydisperity-smeared dynamic in-
tensity factor I(q, t) may be written

I(q, t) =Bee M N2(M)S~( tq)dM

with first cumulant

Kt = I(q, 0) '
J M2N(M)SM(q)

x [Dq + A n (qR ) fl ]dM (16)

Using D —R ' (Stokes-Einstein diffusion) and 0 —R
(valid for rotational and configurational diffusion) gives the
highly universal gel point scaling results

and

I(q, t) —q "j'(q2t)

Ki —q

(17)

(18)

It is interesting to note that translational, rotational, and
configurational degrees of freedom all contribute a term of
order q to K~ at the gel point. Further, while the function

f (q2t ) will be highly nonexponential, the first cumulant ex-
hibits the same q dependence as the fully exponential time
decay of S(q, t) in fluids at thermodynamic critical or conso-

I

lute points. Physically this q' dependence is due to large,
slow-moving fractals contributing re1atively more to the
scattering at small q. Thus a power-law distribution of clus-
ter sizes modifies the scaling exponent of S(q) from the
single fractal value and gives a first cumulant which has a
universal q dependence similar to that found in critical
phenomena experiments on fluids.

These gel point results are valid beneath the gel point if
attention is restricted to the "Porod" regime, where
qR, » 1. Here R, is the z-averaged radius, defined by

R 2 M —1

J M2N (M)R2dM —2y/P (19)

In the "Guinier" regime, where qR, (( 1, the structure
factor and the first cumulant becomes insensitive to the
fractal nature of the solutions. In this small q limit, the in-

tensity depends on R, alone through

I (q) = BcvM„(l —q2R, /d + )

f (x) =e (20)

The results of Monte Carlo simulations led Leath" to
propose b (z) = exp[ —b (z —z,„)2]. We simplify this
somewhat by using the asymptotic form of this function

h (z) =e (21)

and the first cumulant becomes q dependent, so
K~/q = D„where D, is the z-averaged diffusion coefficient.

In the "crossover" regime, where qR, —1, the structure
factor and first cumulant become sensitive to the details of
the nonuniversal functions f(r/A)and h (z). The scalin. g
function f (r/X) may be given by a detailed model, as in the
case of linear polymers, ' or may be chosen for mathematical
convenience. An example of the latter is f(x) =e " for
d = 3 and D = 2, which gives the Ornstein-Zernike form, '

SM(q) = (1 —q R /3) '. To simplify calculations, we as-
sume the following special form for f (x):
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This gives the scaling singularity correctly and corrections for nonzero z,„may be calculated systematically. Furthermore,
we limit the present calculation to d = 3 and assume a- —1/D, which is approximately true for three dimensions, where
v=0.84 and o.v=1/D. Substituting (20) and (21) into (13) then gives

I (q) = mBc uD I (D/2) G (0)(1+2q R,2/p D )

where

(22)

G (x) = (8R, /pD )" "I (p/2 —x)F (p/2 —x, 3/2 —D/2;3/2;(2q R, /pD )/(1+ 2q R, /pD ) )

I' is the hypergeometric function, I is the gamma function,
and p, =D(3 —7). By construction, for small q this func-
tion reduces to the proper Guinier expansion. In the Porod
regime, where qR, » 1, the hypergeometric function be-
cotnes a simple q-independent constant, F (p, /2, 3/2 —D/
2;3/2;1) and (22) reduces to the scaling result l(q) —q

It is interesting to note that for D = 3, the particles are not
fractal (g(r) = f(r/A. )) yet the power-law distribution of
sizes gives power law behavior for the intensity. In fact,
this nonfractal particle calculation can be shown to be
equivalent to an earlier droplet model calculation which
gives the Fisher-modified Ornstein-Zernike form" for 1(q).

For rigid particles which are roughly spherically sym-
metric, the first cumulant may be calculated in a similar
fashion to find

Kt=DpG(l/2)q (1+q R, /pD)' /G(0) . (23)

Here Do is the M„ independent prefactor for the z-averaged
diffusion coefficient (observed in the q = 0 limit). Equation
(23) exhibits the K~ —q3 dependence in the Porod regime,
and the expected KI —q dependence in the Guinier re-
gime. Again, this behavior is quite similar to that found for
the first cumulant of correlation functions near thermo-
dynamic critical or consolute points. In fact, in the limit
that p, =2, D = 3, and d =3, KI is identical to the Perl and
Ferrel result for the time decay rate of correlation functions
near the critical point, and gives a good fit to experimental
data. 9 However, this choice of parameters in the "dynamic
droplet" model does not satisfy the scaling conditions on
the distribution of sizes and thus the present calculation
represents an improved version of this droplet model.

In the beginning of this article, the fractal dimension of a
single particle was introduced through relations involving
the radius, mass, pair correlation function, and structure
factor. For a polydisperse system the exponent p, may be
considered a fractal dimension if the mass and radius are
defined as M„and R„respectively. Then

M„—R,", g(r) —1/r ", r « R,
S(q) —I/q~, q-' «R, .

I

It is the polydispersity-smeared fractal dimension which is of
practical interest to the experimentalist. To extract D from
the measured exponent p, will require a separate determina-
tion of the exponent ~—an experimentally difficult pros-
pect.

For percolation clusters near the critical point, D is
thought (as we have assumed) to be I/o. v —2.5, where the
correlation length, R„scales like e ". Using 3 —~ =a&-
gives p, = y/v = 2 —q This. polydispersity-smeared fractal
dimension is in agreement with the effective dimensionality
proposed by Stanley, ' and Stanley, Birgneau, Reynolds, and
Nicoll, ' and later by Daoud, Family, and Jannink, ' and
demonstrates the relevance of this effective dimensionality
to experimental work. Stanley has pointed out that in
1 & d & 6, y/v is very nearly 2, and for d ~ 6, y/v is identi-
cally 2.

In conclusion, the principal results of this paper are the
scaling forms for the structure factor and first cumulant of
power-law polydisperse fractal systems. These are directly
obtained from (13) and (16). We see that the structure fac-
tor is a function of the product qR, alone, S(q) = Ft(qR, ),
and the first cumulant is of the form Kt= q'D, F2(qR, ),
where I'I and F2 are functions which scale like q" and q',
respectively, for qR, » 1. This q dependence of the first
cumulant could be valuable iri the interpretation of experi-
mental data; if the first cumulant does not scale like q on
length scales smaller than the correlation range then the
system must not be power-law polydisperse, and any growth
mechanism which predicts a power law for the polydispersity
must be ruled out.
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