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Rotational-level mixing and intracollisional interference in the
pure rotational spectrum of HD gas
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Rotational-level mixing by anisotropic intermolecular forces is found to be important to the mechanism
which produces intracollisional interference effects in the pure rotational spectrum of HD and HD-inert-
gas mixtures. The major contribution involves the anisotropic repulsive term in the potential and the an-

isotropic overlap-induced dipole moment. Improved agreement between calculation and experiment results
when the mixing is included in the analysis.

I. INTRODUCTION

The term "intracollisional interference" denotes the in-
terference between spectral transitions involving permanent
and collision-induced dipole moments. The theory of the
effect has been developed by Poll, Tipping, and Herman. '

It transpires that the infrared spectrum of HD is ideal for
observation of the phenomenon. HD has a very small per-
manent dipole moment and, like the symmetric molecules
H2 and D2, has a collision-induced infrared spectrum pro-
duced by transient dipoles induced in clusters of interacting
molecules. Intracollisional interference has been identified
in the pure rotational ' and vibrational-rotational spec-
tra'. of gaseous HD and HD —inert-gas mixtures.

For interference to occur, both the allowed (p") and in-
duced (p') moments must follow the same selection rules.
That this is possible is not immediately apparent as the rule
on the angular momentum quantum number J of one of the
interacting molecules is 4J = + 1 for the allowed transitions
and, in the case of homonuclear diatomic molecules,
5J = 0, + 2 for the induced transitions. In HD, however,
the centers of mass and of charge are not coincident and ad-
ditional components in the induced dipole arise" which
permit the transitions 4J = + 1, + 3, . . . . The present au-
thors ' have made a comparison of the density behavior of
the integrated intensity of the pure rotational spectrum of
HD with the theory. ' In the density range studied (6—60
amagats), the intensity decreases with increasing density
consistent with a destructive interference effect (see Fig. 1

of Ref. 6). The magnitude of the interference is described
by a parameter a which is twice the ratio of the average in-
duced moment to the allowed moment. General agreement
between experiment and calculation is evident but differ-
ences of the order of 30'/0 in the value of a are found. A
missing but presumed important ingredient to the theory as
developed to date is rotational-level mixing by anisotropic
intermolecular forces. '' The present report is an attempt

l

to assess the importance of the mixing effect for the pure
rotational spectrum.

II. GENERAL APPROACH

The theory developed by Poll, Tipping, and Herman' is
summarized in this section. If pure1y collision-induced con-
tributions are neglected, the absorption coefficient a(cu) in-
tegrated over all frequencies ~ is, for a homogeneous gas,

when p is the density and n is the absorption coefficient of
the allowed spectrum.

The integrated intensity of the intracollisional interference
term is

JI
" d~ = $&;&11m". If)(ilp! If&' . (2)

mt 4J~

N is the number of pairs in volume V; P; is the Boltzmann
factor normalized so that g(2J+ l)Pi=1. The sum is
over all initial states i, final states f; and components of the
dipole moment p. The interference parameter a is defined
by

I 8~N,

where No is Loschmidt's number, g (R) the pair correlation
function, R the intermolecular distance, and (v, J) and
(v', J') the lower and upper energy states involved in the
transition.

Poll and Van Kranendonk" have given a general expres-
sion for the induced dipole moment in a pair of interacting
molecules l and 2 in terms of spherical harmonics and
Clebsch-Gordon coefficients.
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TABLE I. Magnitude of the interference parameters a(10
amagat ) and b (10 9 cm amagat ) .

HD-HD
a a + Aa Expt.

HD-He
b+b, b Expt.

R (0) 5.4 7.37

R (1) 5 4 7.53

R (2) 5.4 6.49

R (3) 5 4 7.59

7.7 + 1.2

6.3 + 1.2

7.2 + 1.1

7.3

5.6

10.2 19+0.8

5.9 5.7 + 0.7

3.0 2.8 + 0.9

(5)

The anisotropic overlap moment Aq(201) is the leading
term in (4) which both contributes to the H2-H2 (and HD-
HD) induced rotational spectrum and has a component
from (5) capable of interfering with p" as described by (2).
It is usual to write overlap terms as exponentials; thus,

A2(2, 0, 1;rt, r2, R) = X exp[ —(R —o.)/Ro] (6)

where o- is the molecular diameter, R0 the range of the in-
teraction, and A. the strength of the dipole at 8 = o-. Equa-
tion (5) yields

A )(I, 0, 0;r), r2, R ) = Z ——r, exp-E2 1 2

0

(7)

where r, is the equilibrium internuclear distance. Substitu-
tion of (7) in (3) gives a. Numerical values can be obtained
for the magnitude of a with the parameters P and R0 de-
duced from the H2-H2 rotational spectrum by Poll and
Hunt" assuming a Lennard-Jones potential (see Table III of
Ref. 6); p" is taken from ab initio calculations. '3 The mag-
nitude of a is found to be S.4&10 amagat ' and is com-
pared with experimental determinations from Ref. 6 in
Table I. The calculated value is of the correct order but is
low for all R (J ) lines studied.

III. ROTATIONAL-LEVEL MIXING

In Ref. 1 the total wave function used to evaluate (2) is
the product of rotational, vibrational, and translational wave
functions and is an eigenfunction of the Hamiltonian

~ = ~moiec+ Vi,

The angles co~, ~2, and 0 describe the orientations of 1 and
2 and of the intermolecular axis relative to a laboratory
fixed reference frame; r~ and r2 are the internuclear separa-
tions in 1 and 2. A number of terms in (4) have been
quantitatively evaluated from experimental spectra: isotro-
pic overlap [Ao(0, 0, 1)], anisotropic overlap [A2, (2, 0, 1)],
quadrupole-induction and anisotropic overlap [A~(2, 0, 3) ],
etc. For HD the additional components due to the noncoin-
cidence of the centers of mass and charge are generated by

pHD (rI r2 R) [1++(rl r2) ' +R + ' ' ' ]pn (ry, r2, R)

where H,&„ is the Hamiltonian of the isolated molecules
and V; the isotropic intermolecular potential. If the aniso-
tropic potential V, is included in the Hamiltonian, then rnix-
ing of rotational energy levels ensues and p" may interfere
directly with the principal components of p as given by (4)
and not just minor ones arising through (5). To estimate
the effect of this mixing, we report here a first-order pertur-
bation theory calculation performed in the spirit of the work
of Herman' on the redistribution of the intensity in the in-
frared spectrum of HCl-inert-gas mixtures by anisotropic
molecular interactions. The mixing is expected primarily to
give additional contributions to the intracollisional interfer-
ence effect and not significantly affect the allowed transition
elements. '

The anisotropic potential is taken as the sum of the
quadrupole-quadrupole interacton Vg g, an anisotropic

dispersion term and an anisotropic repulsion term; the latter
two depend on cosH where H is the angle between the inter-
nuclear axis in HD and the intermolecular axis.

6

V~ = Vg 0 —24»
12

F13 d cosO= Vo &, + V,'cos8 . (8)

d is the separation between the center of mass and the
center of charge. These particular forms for the anisotropic
dispersion (R 7) and repulsion (R '3) terms have been
devised by Herman' and used with success' '' for treat-
ment of collision effects in HCl-inert-gas spectra.

An adiabatic approximation is made to treat the rotational
and translational motion. The mixing is calculated for a
fixed intermolecular separation and an average over A is
then performed. The rotations are, thus, assumed to occur
much more rapidly than the translational motion. While
certainly not good, the approximation is perhaps not outra-
geous for HD, for which the characteristic time of rotation
( —1/2c8, where 8 is the rotational constant) is 3.8X 10
sec and is of the order of the duration of an intermolecular
collision —10 ' sec.

The rotational wave function is written as

, (J"M"
l V. IJM)

4JM 4JM +
rl II Jtf J

and substituted along with (5) in (2). The calculation of
[J[o (~)/m]dm));„, proceeds as in Ref. 1. One molecule of
the pair is considered to be the active absorber and an aver-

age over coordinates of the other molecule is made. The
possibility of double transitions arising from the mixing is,
therefore, excluded. The quantum -numbers of the transla-
tional states do not change in the mixing process. This
would be an unacceptable approximation in the calculation
of the line shape but is adequate for the total intensity con-
sidered herc.

The additional. contributions to the intensity of the in-
terference term involve the cosH term in V, and the isotro-
pic [Ao(001)] and anisotropic [A2(201)] overlap com-
ponents in p~D. The quadrupole-quadrupole term in the-po-
tential participates with the A ~(100) component of peto ob-
tained through (5) and, thus, gives essentialy a second-
order contribution.

Equations (1)-(3) yield for the revised interference
parameter, which is the ratio
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, int

"( )„
1

a +kg = „J/Ai(1, 0, 0;R )g(R )R'dR + J Ao(0, 0, 1;R) V,'(R )g (R )R dR

1

1 ~" —J(2J+1) + (J+2)(2J+3) 3 (2, 0, 1;R ) V,'(R )g(R)R dR
642B " (J+1)(2J+3) (J+1)(2J+1)

+ f — A2(2, 0, 1;R ) V,'(R )g (R )R dR
2 2B " 2J+3 2J+1 (10)

The first integral gives a in the absence of anisotropic in-
teractions. The two terms in the second and third integrals
arise, respectively, from the mixing of the state J"= J into
the upper state J+1 of the transition and from mixingJ"=J + 1 into the lower state J; here, the isotropic and an-
isotropic overlap-induced moments associated with the
selection rule AJ =0 interfere with the allowed transition
moment. The terms in the fourth integral come from mix-
ing J"=J+2 into the upper state J+1 and from mixingJ"=J —1 into the lower state J; the latter term does not
contribute when J = 0. The anisotropic overlap-induced
moment (5J = + 2) participates in the interference describ-
ed by this integral. In all cases the contribution of the mix-
ing terms vary as (1/J) at large J.

In the evaluation of the last three integrals in (10), the
interaction cannot be taken to small R where the perturba-
tion becomes large; it must be cut off so that the first-order
wave function (9) remains accurate. Again, following Her-
man, ' an intensity conservation criterion is adopted which
has the effect of normalizing the perturbed wave function.
It is assumed that the maximum amount of intensity that
can be borrowed from a transition starting at level J is equal
to the intensity in the transition in the absence of anisotro-
pic interactions. The total spectral intensity available must
remain unchanged. As a result, for example, in the fourth
integral of (10), the intensity lost to the transition J J+ 2
decreasing the intensity of the R (J) line appears at the fre-
quency of R (2J+2) line; similarly, intensity lost to the
J—1 J + 1 transition appears at the frequency of the
R (2J) line. The second and third integrals in (10) make
no contribution to Aa in this approximation as they borrow
and return intensity at the same frequency. Therefore, the
only contribution to 4a comes from the term involving cos0
in V, and the anisotropic overlap-induced moment. It must
be emphasized that in the present treatment, it is intensity
which is conserved; Aa, which varies as the intensity bor-
rowed or gained at a given frequency divided by the intensi-
ty of the allowed R (J) line at that frequency, is not con-
served.

The condition that the maximum amount of intensity bor-
rowed is equal to the intensity in the absence of anisotropic
interactions reduces from (2) to the statement that

A i(1, 0, 0;R ) ~ V,'(R )A2(2, 0, 1;R )
f(J)
2 2b

where f (J) is the quantity in large brackets in the fourth
integral of (10). The equal sign applies at R =R, . At
values of R less than R, where the inequality no longer
holds, the right-hand side (RHS) of (11) and, thus, the bor-
rowed intensity is kept at its value at R =R, .

Equation (10) is evaluated at 295 K with g (R )
= exp[ —V~(R )/kT] and a Lennard-Jones potential 6 '2 d
is taken'5 as 0.12 A. The first integral gives a as in Sec. II.
The cutoff distance R, applied to the fourth integral is for
the various R (J ) lines: R (0), 1.042o-; R (1), 1.021o",
R (2), 1.012o", and R (3), 1.006o-. These R, correspond to
values of the perturbation parameter V,'(R )/B of 0.24,
0.38, 0.58, and 0.78 for the respective R (J) lines. In the
average over R, the anisotropic repulsion term in the poten-
tial dominates the dispersion term and provides the larger
contribution to 4a. Results for a +ha are shown in Table

It is evident that accord between calculation and experi-
ment is greatly improved by inclusion of rotational-level
mixing in the intracollisional interference mechanism.

IV. HD-Hc MIXTURES

Enhancement spectra are available for HD-He and HD-Ar
mixtures. The enhancement intensity, that due to HD-X
encounters, is given by '

en

de = bpp
QJ

(12)

where

b = 87rNOICp" p (R )g (R )R2dR

IC = (87r Xo /3hcZ ) [ exp( —EJ /kT )

—exp( EJ+'[/kT) ](J+I) . (14)

pp is the perturber density, Z the state sum, and Eg the en-
ergy of state J. In a like manner to a, the interference
parameter b is altered when rotational-level mixing is taken
into account and, to first order, the contribution to 4b
comes again from the anisotropic overlap-induced moment
and the cos0 term in the potential.

/Jb = [f(J)/242B] Jf V,'(R )A2(2, 0, 1;R )g (R )R dR

(15)

Equation (15) is evaluated with a Lennard-Jones poten-
tial '2 for V; and Eq. (8) for V, . Wormer and Van Dijk'6
have calculated the dipole moment p' for H2-He in an ab in-
itio manner. It is the isotropic' [3~(001)], rather than an-
isotropic, moment of HD-He that gives the component
from (5) which interferes with p" in the absence of aniso-
tropic interactions. Results for b +Ah are compared with
experiment in Table I. Agreement for R (2) and R (3) is
found but the value for R (1), while increased, remains
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lower than experiment. It must be admitted that to achieve
this result, the sign of the A2(201) anisotropic component
is assumed to be the same as the isotropic 3 q(001) com-
ponent, although Wormer and Van Dijk find these signs op-
posite in the range of 8 probed by the experiment. It is not
clear whether the difficulty lies with the experimental results
(only three densities studied), the ab initio calculation, or
the proposed mixing mechanism.

To our knowledge, information on the anisotropic
overlap-induced moment for HD-Ar is unavailable. Of
course, the data could be used to deduce X and Ro for this
interaction.

V. CONCLUSIONS

The addition of rotational-level mixing to the mechanism'
of intracollisional interference makes significant and

measurable changes to the interference parameters a and b.
The promise is that study of the interference will lead to in-
formation on anisotropic molecular interactions in hydro-
gen, which will supplement that obtained through other ex-
perimental techniques such as the measurement of scatter-
ing cross sections' and the spectroscopy of the solid' and
of Van der Waals complexes. '
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