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The weak-noise limit of Fokker-Planck models is studied for the case where the steady-state prob-
ability density in that limit cannot be represented by a continuously differentiable nonequilibrium
potential. In a previous paper [J.Stat. Phys. 35, 729 (1984)], we have shown that this corresponds to
the general case in systems outside thermodynamic equilibrium. By using an extremum principle,
the nondifferentiable potential is constructed, which generalizes the differentiable case. The relation
of approximate differentiable potentials to the exact nondifferentiable potential is considered and
discussed for two examples with attracting limit cycles, a periodically forced nonlinear oscillator,
end two phase-coupled nonlinear oscillators. The relevance of nondifferentiable potentials for non-

equilibrium thermodynamics is pointed out.

I. INTRODUCTION

Dissipative dynamical systems under the influence of
noise can often be successfully modeled by Fokker-Planck
equations. In many physically interesting cases the noise,
represented by the diffusion term of the Fokker-Planck
equation, can be considered as a small perturbation, and
an asymptotic expansion of the solution of the Fokker-
Planck equation in this perturbation is desirable.

In a previous paper, ' henceforth referred to as I, we
have examined the conditions under which the time-
independent solution P(q, ri) of the Fokker-Planck equa-
tion, assumed to be unique, has the asymptotic form

P (q, ri) —exp( —P(q)/ri)

with a continuously differentiable potential P(q). Here

q = [qi, . . . , q„j are the macroscopic variables of the dis-
sipative system, the noise intensity g is a small parameter
which multiplies the diffusion term of the Fokker-Planck
equation. P(q) in Eq. (1.1) is defined by the weak-noise
hmit

P(q)= lim [—glnP(q, ri)] .
g-+0

(1.2)

This function is of considerable interest because, in many
respects, it plays the role of a thermodynamic potential
for the fluctuating dissipative dynamical system. P(q) is
nonincreasing along trajectories of the dissipative dynami-
cal system for vanishing noise, and it is stationary in the
limit sets of the dynamical system for vanishing noise; it
can, therefore, play the role of a Lyapunov function in the
vicinity of attractors; in addition it contains information
on the asymptotic form of the probability density and oth-
er quantities of statistical relevance, such as mean first-
passage times.

It was shown in I (see also Ref. 2) that a continuously

differentiable P(q) in Eq. (1.1) does not exist, unless a cer-
tain Hamiltonian dynamical system, which is obtained
from the Fokker-Planck equation in the weak-noise limit,
has a smooth separatrix p =r)P/Bq", a case which is
structurally unstable against small changes of the dissipa-
tive dynamical system. This result naturally leads to the
following question: What are the properties of the poten-
tial P(q), defined by Eq. (1.2), in the general structurally
stable case, where the Hamiltonian system, related to the
Fokker-Planck model in the weak-noise limit, has a "wild
separatrix"?

In the present paper we answer this question by invok-
ing an extremum principle satisfied by the potential P(q).
We show that P(q) reinains a continuous function but
loses its continuous differentiability on certain complicat-
ed hypersurfaces in q space, owing to the infinitely rapid
oscillations of the wild separatrix in the nonintegrable
Hamiltonian system. As shown in Ref. 2, thermodynamic
equilibrium ensures the smoothness of the separatrix.
Therefore, the loss of differentiability of the potential is a
nonequilibrium effect.

In Sec. II we present briefly two illustrative physica1 ex-
amples: the periodically forced nonlinear oscillator which
was already analyzed in I in some detail and which serves
as- our main working example, and two phase-coupled
nonlinear oscillators. In Sec. III we formulate the ex-
tremum principle satisfied by the potential. The ex-
tremum principle is used in Sec. IV to provide a construc-
tion of the nondifferentiable potential. We consider this
construction for the periodically forced nonlinear oscilla-
tor in Sec. V and make a comparison with continuously
differentiable approximations. In Sec. VI we apply our
results and present a continuously differentiable approxi-
mation for the example of two phase-coupled nonlinear
oscillators. Mathematical details concerning this example
are given in Appendixes A—C. In Sec. VII and the relat-
ed Appendix 0 we consider the probability distribution in
the steady state for the case of a nondifferentiable poten-
tial. Finally, we present our conclusions in Sec. VIII.
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II. EXAMPLES B. Tv' phase-coupled nonlinear oscillators

x =x —x +ax cosy +Mgg(t), y =co (2.1)

with the parameters a, co and the Gaussian white noise
g(t) characterized by

(g(t)) =0, (g(t)g(0)) =5(t) . (2.2)

The weak-noise limit of this model has been analyzed in
some detail in I to which we refer for details. Inserting
the ansatz P(x,y)- exp[ —P(x,y)/g] for the steady-state
distribution in the Fokker-Planck equation of (2.1), (2.2)
leads to the Hamilton-Jacobi equation

1 Bh B+ (x —x +ax cosy)+co =0, (2.3)
B

2 Bx Bx By

which defines the Hamiltonian dynamical system associ-
ated with the Fokker-Planck model in the weak-noise lim-
it Ac.cording to I, if the potential P(x,y) exists as a con-
tinuously differentiable function, it is related to the
smooth separatrix of this Hamiltonian system

A. Periodically forced nonlinear oscillator

The model is defined by the stochastic differential
equation

x i =(a i
—

Ecoi )x i

—(
I
xi I'+ki lx2 I

)xi k2xix2+2~941

xp ——(a2 icoz—)x2

—(
I
x2

I
+ki

I xi I
z)x2 —k2x ix2+2v i1g, ,

(2.7)

As a second, somewhat more complicated but also more
realistic example, we consider two phase-coupled non-
linear oscillators. This problem is, e.g., of relevance for
the nonlinear interaction of two laser modes of sufficient-
ly close frequencies whose phases may interact. The
weak-noise limit of this problem has been studied previ-
ously by Hellwig using the ideas of Refs. 4 and 5. Oscil-
lations of P(q), which were found in Ref. 3 but could not
be interpreted there, are easily understood in the present
context as arising from the nonintegrability of the under-
lying Hamilton-Jacobi equation. Therefore, the results of
I and of the following sections also shed new light on this
mode1.

The model is defined by the following stochastic dif-
ferential equations for the complex amplitudes xi,x2.

p„=p„(x,y), p~ =pz(x, y) (2.4)
where the Gaussian white-noise terms g'i, g'2 are character-
ized by

by p„=BQ/Bx, p~ =BPIBy. This smooth separatrix con-
nects the limit sets {x=O, 0&y &2+I and {x=+f(y),
0&y &2~I of the deterministic system Eq. (2.1) with
g=O. Here f(y) is a function which must be determined
from Eq. (2.1) with g=0. However, this smooth separa-
trix exists only for a=O where the Hamiltonian system
(2.3) is integrable.

The actual nonintegrability of the Hamiltonian system
has been exhibited in I by plotting the rapid oscillations of
the wild separatrix emanating from the limit set

{x =+f(y), 0 (y & 2~ I . These oscillations were found
numerically and also in approximate analytical solutions
of (2.3) obtained by an expansion to first order in a. The
latter expansion, therefore, serves as a useful practical test
for a smooth separatrix. To first order in a and requiring
the absence of oscillations near the limit set Ix =f(y),
0 (y & 2n. I, the result of I reads

P(x,y) = —x2+ —,x —2ax (1—x )

BP
Bt,

8
[ai r i —kir2 k2rz cos—(2y)]r—i+ P2 2 2 7l

Br) r&

r

2 2 2
[a2 r2 kir, k2r i

—cos(2y—)]r2+ —PYl

Br2 r2

(gt(t) ) =0, (g, (t)g~(0) ) =0,
(g&(t)g (0))=6, 5(t), l, m =1,2.

It is convenient to introduce the modulus and phase of the
complex amplitudes by xt=rt exp(ipt) and to derive the
Fokker-Planck equation for the new variables. This can
be most easily done by using Ito's formula. Since the sta-
tionary probability distribution will not depend on the
phase (tpi+y2), we average over q&i, yz for fixed relative
phase tp=pi y2 and ob—tain for the probability density
P(r„rz,y),

~yE(1 2 2 ico/2 1 x )~Re e
le) —2

(2.5)
[co+k2 ( r i + r 2 ) sin(2y) ]P

Bg

where E is the hypergeometric function. The infinitely
rapid oscillations of

+" +a + +
8 ~
'

9r& r2 r& r2
(2.8)

p„= ——sin(co lnx —5+y)S 1

BXy X
(2.6)

near {x=O, 0&y &2n] obtained from the approximation
(2.5) have been discussed in detail in I [cf. Eq. (4.15) of I].
As a result of this numerical and analytical work we con-
clude that P does not exist as a continuously differentiable
function for this simple model.

The model has six real parameters: the positive pump
parameters a ~,a2, the intensity-coupling parameter

& 1), the phase-coupling parameter kz(
I
kz I

& 1), the frequency difference of the two oscillators
co =67[—672, and the noise intensity rf.

The Hamilton-Jacobi equation for P obtained from the
stochastic model (2.7) in the weak-noise limit reads
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2 2 2
r&+ "i 2 2 2 a(t+ 22 +[airi (—r i+k, ri)ri k—2r, r2 cos(2lp)]

1'~r2 Bl' )

+[a2r2 (r2+klr I )r2 —k211r2 cos(2+)] +[co+k2(r 1+r2) sin(2y)] =0 . (2 9)2 2 2 B(t z

Bg

The nonintegrability of the Hamiltonian system (2.9) may be put into evidence (but not proven) by calculating P to
first order in ki and kq and exhibiting the infinitely rapid oscillations of its derivatives. In Appendix A we calculate the
solution of Eq. (2.9) to first order in k

~
and k2 in the form

P= —,[ a—ir i aqr—2+ ~ (ri+ri)+kirir2+k2rir2 cos(2q )]2 2 1 4 4 2 2 2 2

r2
2QP r& 67

+ k2 I(ri rzy)+G 2y+ ln 2,2y+ ln z
&2l

(2.10)

where

00

I(ri, r2, y)= ——aq
]. a)

2
I

id)/a ) —~

e '+z

1z 1+ a2 a&/a
&—1 z

r2

(2.11)

and G(x,y) is 2m-periodic in x and otherwise arbitrary.
The function I(ri, r2, q) is analytic in its three variables
except for an essential singularity for r, ~a, , rz~ai
The asymptotic behavior of I for ri ——ai and ri~a& is
investigated as described in Appendix 8 and we find that

a 2&co MI- cos 2++ ln
2 sinh(mo/a i ) a i

a&
2a( —r]

CO 2[1—sgn(a i —r i )]-
a~ 4

This oscillatory behavior of I can be compensated by in-
cluding a corresponding term with the opposite sign in the
function G in Eq. (2.10). However, owing to the particu-
lar form of G, this could only be achieved at the cost of
introducing an infinitely rapid oscillation of the solution
for r, ~0 We conclu.de by analogy with the first exam-
ple that the Hamiltonian system described by Eq. (2.9) is
nonintegrable, and a continuously differentiable potential
does not exist.

2r)P(%9&t) ~ I v( ) ~ ~ gvp P(
Bt Q

" 2 (j "Q &

(3.1)

For simplicity, we first assume that Q"" is a nonsingular
matrix and generalize our results later. The conditional
probability density P(q

~ qo, t), which is the solution of
Eq. (3.1) for the initial condition P(q ) qo, 0)=5'"'(q —qo),
may be written as a functional integral ' which, in the
case where Q""(q) is nonsingular, takes the general form

P(q
~ qo t)

q(0) =q= f Dp[q] exp —I, drL(q(r), q(r))

(3.2)

An appropriate definition"' of the measure Dp[q] en-

sures that the function L(q, q) acts as a Lagrangian for
the most probable path"' between two given points

q ( t) =qo, q (0—) =q. L then takes the form"

L = Q '„„[q"—h "(q)][q" h"(q)]—
27/

III. EXTREMUM PRINCIPLE
FOR THE POTENTIAL

+ —,'~g + R,
Qq" Q 12

(3.3)

In this section we formulate the extremum principle
which is satisfied by the potential defined by Eq. (1.2).
We only give a heuristic and forrnal presentation. A
rigorous mathematical foundation is given in the book by
Freidlin and Wentzell. The role of the extremum princi-
ple for solutions of the initial value problem of the
Fokker-Planck equation has been discussed by Kitahara.
Here we are interested only in the very different problem
of the solution of the time-independent Fokker-Planck
equation. The basic Fokker-Planck equation on a space
M with coordinates q is

where
VP

Q = detg"", h"=K" vg—
2 Bq" Q

and R is the Riemannian curvature scalar constructed
from the contravariant metric tensor Q""(q).

In the following we need L =1.0/g+I. &+qI-2 only to
order 1/rl. Therefore,

Lo =Q '„„[q K"(q)][q" K"(q)]/2 . — (3.4)—
We assume that there is a unique steady-state probability
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= lim lim [—ginP(q
~ qp, t)] .

g —+0 taco
(3.5)

The conditional probability density for small q is evaluat-
ed from Eq. (3.2) in saddle-point approximation as

q(0) =q
P(q

~ qp, t)- exp ——min f Lp(q(1), q(r))dv.

(3.6)

Here and in the following, min indicates the absolute
minimum. According to our assumption of a unique
steady-state probability density, Eq. (3.6) must become in-
dependent of qp for t~ oo.

If the dynamical system q"=K"(q) has only a single
finite attractor W, and the initial points q( —oo ) =qp for
arbitrary qp all lie in its basin of attraction, all trajectories
which end at q (0)=q after an infinitely long time interval
starting at q( —00)=qp must first visit W, where they
spend an infinite amount of time, before going on to q in
an infinitely long time interval. In order to achieve the
minimum in Eq. (3.6), the initial decay from qp 'to d3f

must occur by satisfying the equations q"=K"(q), i.e.,
'

I.o—=0, and, therefore, this initial decay does not contri-
bute in the time integral in Eq. (3.6). As a result we ob-
tain from Eqs. (3.5) and (3.6)

q{0)=q
P(q) =min f Lp(q, q)dr+const . (3.7)

For later reference it is useful to note that the potential
(3.7) not only governs the asymptotics of the probability
density in the steady state but also the asymptotics of the
exit rate of the stochastic process (3.1) from the basin of
attraction of the attractor W in the steady state, if such
an exit is possible. If B(W) is the boundary of the
domain of attraction of W, we may express the exit rate
R(M, ri) as an integral over B(M) of the probability
current density obtained from (3.1) with P (q, rj, t)
—exp[ —P(q)/r)]. We find for small rt

density P (q, rI) to which the conditional probability densi-

ty tends for t~ao for any given initial distribution.
Then, we define

P(q)= lim [—rilnP(q, ri)]
g~0

P(q) = lim P;(q) . (3.9)

Finally, we turn to the case where the matrix Q""(q) in
the Fokker-Planck equation is singular. In this case, the
Lagrangian functional integral (3.2) does not exist and has
to be replaced by its Hamiltonian version. ' Asymptoti-
cally for rI~O it takes the form

P(q
~ qp, t}

= f D D[q]
r

q(0) =q
+exp —— ~ ~q

—H(p(~), q (r) )]

(3.10)

with

piece of P(q), for q in a sufficiently small vicinity of the
attractor M;, is of the form (3.7)

q(0) =q
P;(q) =min, , Lp(q, q)dr+C(M; ) . (3.8)

t

The constants C(M;) are still arbitrary. In order to join
the local pieces P;(q) into a globally defined function P(q),
the constants C(M;) must be fixed relative to each other,
apart from a single additive constant C, which is still con-
tained in P(q) [and which may be fixed at the end by re-
quiring that the absolute minimum of P(q) vanishes,
thereby satisfying the normalization condition for P (q, rI)
in Eq. (1.1)]. The principle by which the C(M;) are relat-
ed is the balance of the probability current between the
various attractors. For the purpose of the present paper a
detailed discussion of this point is not necessary. There-
fore, we defer this discussion to a later work where an ex-
plicit example will also be considered. An abstract algo-
rithm for determining the constants C(W;) is derived in
Ref. 7. After the constants C(W;) have been determined,
the global potential is obtained from the local pieces by

H (p, q) = —,
' Q""(q)p„p„+K"(q)p„. (3.11)

Equation (3.10) is again evaluated in saddle-point approxi-
mation. When looking for the stationary points of the ex-
ponent in (3.10) we consider variations with respect to
only real valued functions q"(r), similarly as in the La-
grangian version, but allow for variations with respect to
complex valued functions p„(r)—=u (r)+iu„(r) as the
measure of integration in p is no longer real. It follows
from the canonical equations that for stationarity the
imaginary part u of p„must satisfy

The surface integral can be evaluated for rI~O by using
the saddle-point approximation and we find

min P(q) = —lim [r}lnR (A, g)] .
q GB(M) q~0

It is clear that in order to have a steady state either
R (W, r)) must vanish (i.e., no exit from the domain of at-
traction of M is possible) or there must be an entrance
rate into the basin of W which balances R (W, r) }.

In the general case, where the dynamical system
q =K (q) has several attractors W;, the global potential
p(q) consists of several local pieces, which are joined to-
gether by the condition that P(q) is minimal. Locally, in
the limit of small fluctuations, the system behaves as if
there were only a single attractor. Therefore, the local

Q""u„=O;

.which, apart from exceptional cases, requires U&
——0.

Then, the exponent in Eq. (3.10) is real in its stationary
points, and the dominant contribution comes from. the ab-
solute maximum of the exponent. We obtain

R (M, g) —f df„K"+—,
' Q"" exp( P/r)) . —

iraq"
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and hence
q(0) =q

P;(q)=min I, dz[p, q
' H—(p,q)]+C(~;) .

(3.13)

The method of fixing the constants C(W;) remains un-
changed, and the global potential P(q) is still given by Eq.
(3.9).

IV. NONDIFFERENTIABILITY OF POTENTIALS

Nondifferentiability of the potential P(q) given by Eq.
(3.9) may occur for two different reasons:

(i) The different local pieces P;(q) are joined in (3.9) in
an obviously continuous but not necessarily differentiable
way. Therefore, nondifferentiability may occur when the
minimum in (3.9) is transferred from one piece to another
piece. This problem is not analyzed here further, but will
be taken up in a subsequent paper, ' where an example of
physical interest will also be considered.

(ii) Even within a single local piece P;(q), given by Eq.
(3.8), nondifferentiability may occur as a result of taking
the minimum on the right-hand side of Eq. (3.8). Here,
we analyze this phenomenon and we apply our results in
Secs. V and VI to the two examples introduced in Sec. II.

In the following we consider, therefore, the stochastic
process (3.1) in the domain of attraction of a single attrac-
tor W;. The index i will be dropped for convenience.

Equation (3.8) is a solution of the Hamilton-Jacobi
equation

where

H(p q)= 2Q""(q)p p +&"(q)p

with the boundary conditions

P(q) =C, =0 for qEW, (4.2)

and the condition

P(q) & C for q gW . (4.3)

Equations (4.1) and (4.2) have always the trivial solution
P—=C. If there is more than one solution also satisfying
Eq. (4.3), Eq. (3.8) singles out the minimum among them.
The possibility of more than one solution exists, since the
boundary conditions (4.2) are prescribed in a singular set
of the Hamiltonian system defined by (4.1). We assume
now that at least one differentiable solution of (4.1)—(4.3)
exists, at least locally in a sufficiently small neighborhood
of W. This local solution P(q) then defines via
P„=BQ/Bq, v=1, . . . , n a,local piece of a separatrix
which forms locally an n-dimensional manifold A„ in the

P(q
~ qo, t)

q(0) =q—exp ——min d~[p, q "—H (p,q)]
vl q( —t) =qo

(3.12)

We assume for simplicity that A„ is simply connected.
Then a global function P is defined on A„by the path-
independent integral on A„,

(q, p)
P(q,p) =C(M)+ I p, dq" .

In all, regions of phase space where the projection of A„
on q space is one-to-one, p =p,{q), the function of q de-
fined by this projection via

(4.4)

P(q) =P(q,p(q) )

is a smooth, differentiable solution of the Hamilton-Jacobi
equation with the required boundary condition.

We now examine the regions of phase space where a
one-to-one projection of A„on q space does not exist. In
such regions the projection of A„on q space gives rise to
I ~ 1 different branches p, =p'„'(q), k = 1, . . . , l,

P =P'"'(q) =P(q,p'"'(q) ), (4.6)

and Eq. (3.8) singles out the one with the smallest value of
4r

P(q)= min P(q,p'"'(q)) . (4.7)

P(q) may become nondifferentiable for those values of q
where the minimum on the right-hand side of Eq. (4.7) is
transferred between two different branches, say ki and
k2. These values of q are, therefore, determined by the
condition

P(qp '(q))=P(q, p '(q)) (4.8)

which, generally, form ( n —1)-dimensional hypersurfaces
(k)) (kp)in q space. Since (q, p =p ' (q) ) and (q, p =p ' (q) )

describe points on two different parts of the same La-
grangian manifold A„, they may be connected by an oth-
erwise arbitrary contour of integration on A„, for which
Eqs. (4.4) and (4.8) imply

(kz)

(4.9)
(q, p ~ (q))

Equation (4.9) is well known'in equilibrium thermo-
dynamics under the name of Maxwe11's rule. Equation
(4.9) thus seems to generalize that rule for the nonequili-
brium potential P(q). However, while true superficially,
this statement is a little too simple and on a deeper level
there appear basic differences, which may be worth men-
tioning here. In equilibrium thermodynamics Maxwell's
rule appears as a rule for thermodynamic averages (q")
and their associated thermodynamic potentials, which are
again defined by averages over P(q, g) —exp( —P(q)/g).

2n-dimensional phase space, spanned by p, q. On the
manifold A„ the integral Jp„dq" is locally path indepen-
dent, and A„ is, therefore, called Lagrangian. ' The
theory of Lagrangian manifolds, cf. Ref. 16, guarantees,
that A„exists even globally and is uniquely generated
from the local piece by transporting the local piece
through phase space with the Hamiltonian Aow

BH
g = p
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Maxwell's rule is not yet needed for the fluctuating vari-
ables q and P(q) itself, the latter being, in thermodynamic
terms, still a coarse-grained potential. Therefore, the ap-
pearance of Maxwell's rule (4.9) for the coarse-grained po-
tential P(q) is more than a generalization from equilibri-
um thermodynamics and must really be considered as a
typical feature of a nonequilibrium system. Indeed, in
thermodynamic equilibrium the property of detailed
balancing against microscopically defined time reversal
ensures that a differentiable potential P(q) exists (cf. I),
and Maxwell's rule can appear only for the true thermo-
dynamic potential, defined via the partition function ob-
tained by averaging over P(q, g).

Now, we can combine Eq. (4.9) with the results of I. In
I it was shown that the Lagrangian manifold A„, in gen-
eral, undergoes wild oscillations as q approaches the vicin-
ity of the deterministic separatrix, which forms the boun-
dary of the basin of attraction of M. These wild oscilla-
tions of A„ imply that a one-to-one projection of A„on q
space is not possible everywhere in the domain of attrac-
tion of W and a smooth differentiable potential P(q) does
not exist everywhere in that domain. On the other hand,
a nondifferentiable but continuous potential P(q) still ex-
ists and is given by Eq. (4.7). According to Eq. (1.2) this
nondifferentiable potential determines the logarithmic
asymptotics of the steady-state probability density in the
limit of weak noise.

V. PERIODICALLY FORCED NONLINEAR
OSCILLATOR

The results of Sec. IV are now applied to the example
introduced in Sec. IIA. The phase space of that example
is four dimensional with coordinates x,y,p„,pz. The
phase space is compact in the phase variable y, O&y & 2m

and the potential P(x,y) must be 2m-periodic in y. The at-
tractors M; of the deterministic system are two limit cy-
cles, which for small a are located close to x =+1,
y =cot. The deterministic separatrix between W~, W2 is
the curve x=O, y =cot. Owing to the symmetry of the
model it is sufficient to consider the attractor M& near
x =+1. The two-dimensional Lagrangian manifold A2
emanating from W~ (a wild separatrix of the Hamiltonian
system) has been computed numerically in I and its one-
dimensional intersection with the two-dimensional Poin-
care surface H(x,yp„,p~)=0, y=O with coordinates x,p„
has been plotted there. This intersection exhibits the wild
oscillations of A„as the deterministic separatrix at x=O
is approached. Owing to these oscillations a differentiable
potential does not exist. However, the results of Sec. IV
may now be used to construct the nondifferentiable poten-
tial, which governs the logarithmic asymptotics of the
steady-state probability density. This is easily done by us-
ing Maxwell's rule (4.9) to cut through the oscillating
parts of A2. A part of the one-dimensional intersection of
the resulting discontinuous manifold near x=O is shown
in Fig. 1. The following point is noteworthy: On the way
from the attractor W~ near x= 1 to the deterministic
separatrix at x=O the function p„(x) first has positive
slope, i.e., P(x) is upwards concave in x; then p„(x) passes
through a point with horizontal slope where P(x) has an

2xlO~ 4xlO ~

8xlO ~-

FIG. 1. Reduced unstable manifold of the attractor at x=1
in the example of Sec. HA after the oscillating parts (dashed
lines) have been cut off by applying Maxwell's rule. (The Poin-
care cross section is taken at y=0, the parameters are a=1,
co = 10.)

inflection point, and then p„(x) has negative slope, i.e.,
P(x) is downwards concave in x. Geometrically, it is
clear, in this special case, that the oscillations of
p„=p (x) can only appear after the slope of p„(x) has be-
come negative, i.e., where P(x) is downwards concave in
x. The reason is that we have chosen the separatrix which
is smooth near the attractor near x= 1. Hence, P{x) is
differentiable in regions where it is upwards concave and
may lose its differentiability only in regions where it is
downwards concave.

Now we investigate the behavior of P(x,y) in the vicini-
ty of the deterministic separatrix x=O. For simplicity,
we only consider the intersection of the two-dimensional
Lagrangian manifold A2 with the two-dimensional Poin-
care surface y=O, XI=0 with coordinates x,p„. The
two-dimensional Lagrangian manifold emanating from
x=O intersects the Poincare surface in a line which is
smooth near x=O (but oscillates wildly near xHM~) and
satisfies the equation. p„=—o.x near x=O. The constant
a~0 can be calculated by linearizing the model near
x=O. The intersection of Az with the Poincare surface
oscillates wildly for x ~0 around the curve p„=—ax and
intersects that curve approximately horizontally in an in-
finite number of heteroclinic points. The coordinates of
these heteroclinic points close to x=O can be related to
each other again by linearizing the model around x=O.
The linearization allows us to determine the two eigen-
values A, &, A,2 of the Poincari map near the origin, one of
which is repelling, A, ~ ~ 1, with its eigenvector along the x
direction, while the other is attracting, A,2 ——1/A, ~ & 1, with
its eigenvector along the curve p„=—ax. Therefore, if
( xQ ax Q ) is a heteroclinic point near x =0, p„=0, then
its images (x„=k.2xQ, —ax„), for n &0 integer, are other
heteroclinic points in the interval 0&x &x0. We note
that only next-nearest neighbors of the heteroclinic points
are related in this way, being image and preimage of each
other.

The areas enclosed by the loops formed by p„=—ax
and the intersection of Aq with the Poincare surface (cf.
Fig. 2) are all equal. For neighboring loops this follows
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the potential P(x,o) is given by

ay(x, O) = —cxx~x
(5.2)

In the endpoints of this interval, P(x,o) is not differenti-
able with respect to x. Equation (5.2) can be integrated in
the interval x„*&x &x„'

~ and we obtain

P( x,o)=P(x„',0)—ax„(x —x„' ), x„*& x &x„' (5.3)

Using Eqs. (5.1)—(5.3) we can relate P(x„'+&,0) to P(x„',0)
by

FIG. 2. Magnified part of Fig. 1 illustrating how the coordi-
nate x„of the jump is to be chosen in order to satisfy Maxwell's
rule. The straight line is the stable manifold of the hyperbolic
point at the origin. x„and x„+I specify two next-nearest neigh-
boring heteroclinic points.

a(1 —A,z) zP(x„' ),0) =P(x„*,o) — x„,
2 2

and hence

y(x„',o)-y(o, o)= g [y(xt', 0) y(xf —„0)]
I=n

(5.4)

CX
A,tx (5.5)

x~+x~+) 1+Ay
xe =

2 2
xn ~ (5.1)

In the interval x„&x &x„& around x„, the derivative of

from the fact that the two manifolds enclosing the loops
are both Lagrangian and have the line of intersection in
common. To see this, consider the integral f (p„dx
+p„dy) along that line of intersection around a complete
round trip 0&y & 2m between two next-nearest neighbor-
ing heteroclinic points on the Poincare surface. This in-
tegral may be considered to be carried out on either of the
two Lagrangian manifolds. As a result, the contour of in-
tegration (with fixed endpoints) may be deformed arbi-
trarily on either of the two Lagrangian manifolds. This
freedom is used to deform the contour of integration in
two different ways such that it lies in its first part in the
Poincare surface (see Fig. 2) connecting next-nearest
neighboring heteroclinic points along either of the two La-
grangian manifolds, and that in its second part, it makes a
complete round trip 0&y &2m. on only one of the La-
grangian manifolds starting and ending in the same x
coordinate. The two different ways to carry out the in-
tegral along the first part of the contour of integration
must give the same result, since the second part of the in-
tegration contour is, in both cases, in common and cannot
introduce a difference. It then follows in an elementary
way that the area enclosed by two neighboring loops must
be equal. Next-nearest neighboring loops are related as
image and preimage by the Poincare map, which is area
conserving; therefore the area of next-nearest loops must
also be equal. Consequently, we may find a general condi-
tion for the location of the values x =x„' (cf. Fig. 2)
where the Maxwell rule is satisfied between two next-
nearest neighboring heteroclinic points given by x„and
x„+t. The condition to be fulfilled by x„* is the relation
& i =~z+ ~3 between the areas 2

& ~2 ~ 3 show o
Fig. 2.

Now we are in a position to determine asymptotically
for x —+0 the potential. The near parallelity of the
branches intersecting p„=—ux then implies

As a result, the potential P(x,o) in the interval around x„
is given by

P(x,o) =$(0,0)——x„—ax„(x —x„),
1+F2 1+F2

x„&x & x„. (5.6)
22

1xIO ~ 2xlO ~
I

5

1xlO ~ 2xIO ~

--5xlO ~

FIG. 3. Continuation of the reduced manifold of Fig. 1 to a
close vicinity of the origin (bottom) and the corresponding po-
tential (top). The dashed curve represents the smooth approxi-
mate potential P.
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Thus P(x) for x —+0 is piecewise linear; its linear pieces
touch from above the smooth curve P= —ax /2. The
approximation of the piecewise linear potential P(x, O) by
the smooth function P = —ax /2 becomes exact as x ~0.
Figure 3 shows the derivative p„of the potential obtained
after applying Maxwell's rule in a small neighborhood of
x=O. It also shows the nondifferentiable potential (5.6)
itself along with the smooth lower covering curve P.

In I we have constructed a smooth approximate poten-
tial for the present model by expanding in the parameter
@=1/co [cf. Eq. (2.1)]. We note that these smooth ap-
proximations are most accurate near the attractor, where
the exact potential is upwards concave and, hence,
smooth, and near the separatrix at x=0, where the exact
nondifferentiable potential closely follows a differentiable
curve. The approximation is worst in the regime, some-
where between x=O and the attractor, where the first
multivaluedness of the Lagrangian manifold A2 as a func-
tion of x occurs.

VI. PHASE-COUPLED NONLINEAR OSCILLATORS

As our next example we take up the phase-coupled non-
linear oscillators defined by Eqs. (2.7). The only deter-
ministic attractor in this model is a limit cycle, which, for
small coupling, is close to r& ——a~, rz ——a2, y=cot. In ad-
dition there is an unstable limit point at rj =r2 ——0. We
now apply the results of I and Secs. III—V in order to
determine P(ri, r2, p) for this model at least to a reason-
able approximation. The details of the calculations are
relegated to Appendixes A—C. Here we only summarize
the basic procedure and results.

The first step consists in finding the potential in the vi-

cinity of the attractor. This can be done by solving the
Hamilton-Jacobi equation (2.9) with the conditions (4.2)
and (4.3). In Appendix A the general solution of the
Hamilton-Jacobi equation (2.9) to first order in the cou-
pling parameters ki, kz is obtained. The conditions (4.2)
and (4.3), following from the extremum principle, now
single out a unique particular solution, which is found in
Appendix 8 and given by Eq. (A2) with (84) or (85).

The next step is to consider the analytical behavior of
this solution near the unstable limit point r& ——r2 ——0,
which is also done in Appendix B. The solution oscillates
infinitely rapidly in the vicinity of r

& r2 ——0 ac——cording to
Eq. (86), indicating that the potential becomes nondif-
ferentiable there.

The nondifferentiable potential near r, =rz ——0 may
then be constructed in a similar way as described in Sec.
V. As shown in I, the first few heteroclinic intersections
of the Lagrangian manifolds emanating from the limit set
points, calculated in first-order perturbation theory, al-
ready offer a quite accurate estimate of the location of the
exact intersection points (which can be found numerical-
ly). Thus, a rough estimate of the nondifferentiable po-
tential in a region not too close to r~ ——r2 ——0 could be
based on these approximately calculated intersections.
Close to r& ——rq ——0 the potential becomes piecewise linear
and is well approximated from below by the special solu-
tion of the Hamilton-Jacobi equation which is smooth
near ri —rz ——0. This special solution is given by Eq. (A2)

VII. PROBABILITY DISTRIBUTION
FOR FINITE VALUES OF g

It may seem peculiar that the potential describing the
logarithmic asymptotics of the probability distribution
[see (1.1)] can be nondifferentiable because the probability
density itself should satisfy the Fokker-Planck equation
and, therefore, is expected to be differentiable. This pecu-
larity arises from the fact that P is a singular function of
g and that according to (1.2) the limit q —+0 must be tak-
en. Simple one-dimensional examples are known illus-
trating that in this limit nondifferentiable potentials may
arise. It is interesting, however, to consider in more detail
the case of infinitesimally small but finite values of g.
%'e shall see that under this condition the probability dis-
tribution is always differentiable although it can be arbi-
trarily close to a nondifferentiable function.

First, we discuss how the g-independent part of the
probability density can be specified. In Appendix D we
show that up to the next-to-leading terms in g the distri-
bution is of the form

P (q, g ) -z (q) exp( —P(q) /g ) . (7.1)

The equation for the prefactor z can then immediately be
derived by inserting (7.1) into the Fokker-Planck equation
(3.1). Assuming for a moment that P(q) is smooth, this
reads

„„aP az M" aQ"" aP
aqua' aq" aq" aq" aq"

a2
+ —,

'
Q i' z =0. (7.2)

aq"aq~

It is convenient to start by solving (7.2) on the attractors
of the deterministic system. As the first derivatives of P
vanish there, we obtain

azo(q) az', „a'
IC"(q) + + ,' P"" zo(q) =—0,

aq' aq" aq aq"
(7.3)

where zp(q) is the prefactor on the attractor W;. Since
the attractors are invariant under the drift X", Eq. (7.3)

with (A7), taking the arbitrary function 6 in (A7) equal to
0.

Finally, we look for an approximate potential which is
everywhere differentiable. This is possible in the present
example, as well as in the preceding one, because a param-
eter can be identified in which the wild oscillations be-
come exponentially small. This parameter is I/co in the
present example. An expansion in I/co, therefore, does
not include the oscillations in any order. This is an ad-
vantage: It is very reasonable to leave out the oscillations,
because the exact nondifferentiable potential does also not
include them. The first steps of the I/co expansion are
carried out in Appendix C. As in the preceding example,
the approximation provided by the I/co expansion for
large co is expected to be best near the limit sets and to be
worst in a region in between, where the first heteroclinic
intersections appear.
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can be solved separately there. In solution of (7.3) con-
tains an unspecified multiplicative constant, whose value
is specified by normalizing the complete distribution. In
the following we assume, for simplicity, that the system
under consideration possesses only a single attractor
which is nonchaotic, e.g., a limit cycle.

One can now proceed to solve the partial differential
equation (7.2). For our purposes it is convenient to give
its solution in a parametric representation (cf. Ref. 17).
We recall that the canonical equation of q in the Hamil-
tonian dynamics restricted to the Lagrangian manifold
through the attractor reads Bq

(7.8)

q =q . If, however, g is a fixed small number, one can
find values of q sufficiently close to q* such that bath
terms must be kept. Thus, P(q, g) is continuous and dif-
ferentiable at q*.

It is easy to find an estimate for the size b,q ",
v=1,2, . . . , n of the region around q' where both terms
of (7.7) are of comparable importance. By expanding the
exponents and introducing the jump in the momentum
through

q "=K"+Q "I'p„=K +Q""BP/Bq" . (7.4) one finds

By means of this relation we may write the first term of
(7.2) as a total time derivative of z(q(t)) where q(t)
denotes a trajectory of (7.4). This trajectory is just the
most probable path starting in the attractor and ending in
point q. As we have shown in Sec. III the time interval
along this path is infinitely long. Thus the parametric
solution of (7.2} reads

0
z(q)=zp(qp)exp f A „(t)dt

with

(7.5)

For q =q, Pi and Pz are, af course, equal. For any fixed
q in the neighborhood of q' one finds sufficiently small
values of g such that one af the two terms is negligible.
Therefore, P(q) as defined by (1.2) is not differentiable for

BK BQ BP 1 Q~P B

Bq" Bq" Bq" Bq"Bq" q(, )

(7.6)

where the trajectory qft) has been chosen in such a way
that it starts at q ( —ao ) =qp on the attractor and ends at

q (0)=q. One ean show that the appearance of qp in (7.5)
is only formal, i.e., z(q) does not change if qp is shifted
along the attractor. In Appendix D we derive (7.5) and
(7.6) from the path-integral solution (3.2) of the Fokker-
Planck equation.

Let us now concentrate on a small neighborhood of a
point q where the global potential (3.9} is not differenti-
able. We recall that in a nondifferentiability point q'
there are two different trajectories which simultaneously
minimalize the action globally. In the vicinity of such a
point there must then be two different trajectories yielding
approximately the same lacal minimum value of the ac-
tion. If rl is finite, in a certain region around q*, both
contributions must be kept. I.et us denote the actions be-
longmg to the two trajectories by Pi and Pz. Thc corre-
sponding solutions of (7.5) and (7.6) are denoted by z, and
zz. Note that the function zp appearing in (7.5) is the
same for both trajectories as they start fram the same at-
tractor. According to the pat¹integral solution, the prob-
ability distribution in the vicinity of the point q' is the
sum of both solutions and reads

P (q, g) -z, (q) exp[ —Pi(q)/q]+zz(q) exp[ —Pi(q)/q] .

(7.7)

~

bp„hq"
~
&cq, (7.9}

where c is of order unity. It may happen that within the
region of size hq" another nondifferentiability' point ap-
pears which then means that in a certain region, P (q, g) is
the sum of several terms of the form
z;(q)exp[ —P;(q)/g]. Outside the regions of size Aq"
around nondifferentiability points, the probability density
P (q, g) is accurately approximated by (7.1) for small g.

VIII. CONCLUSIONS

In this paper we have considered the possibility of
describing autonomous dissipative dynamical systems in
their steady state by a macroscopic potential which is an
analog or a generalization of a thermodynamic potential.
It may be worth stressing here that the analysis presented
applies regardless of whether the systems are in thermo-
dynamic equilibrium or far from it.

In order to put our results into perspective let us give
special attention to thermodynamic equilibrium for a mo-
ment. There the potential P(q) which we have considered
has the meaning of a differentiable coarse-grained ther-
modynamic potential. {It should be clear that P(q) does
not reduce to a true thermodynamic potentials, since P(q)
still governs fluctuations via the formula af Boltzmann
and Einstein, P (q) —exp[ —P(q)/g], while the corre-
sponding true thermodynamic potential would be given by
the average

S(u) = —rI ln f dq exp{ [P(q)+A,~']/—rtI —A~",

where A,„and u" are related by

g =—g ln g exp
Bk

4(q)+~+"

Thus, S(u) is the L'egendre transform of the characteristic
function of P(q), with the property minS(u)=S((q)),
where (q) is the mean value of q. The true thermo-
dynamic potential S is strictly upwards concave; the
coarse-grained thermodynamic potential is not, because it
is not yet averaged over the fluctuations of q. ] In ther-
modynamic equilibrium the general praperties of P(q} are
well known, such as the Boltzmann-Einstein fluctuation
formula, the Arrhenius factor for the average jump rate
over a potential barrier, the minimum property of P(q) for
a "coarse-grained" ar "most-probable" ar "mean-field"
equilibrium state, the II theorem, according to which P(q)
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only decreases deterministically and requires a fluctuation
in order to increase, or the definition of conjugate thermo-
dynamic variables p„,q" by dP = g„p„dq" and their rela-
tion by the "equations of state" p„(q)=BQ(q)/Bq". In
thermodynamic equilibrium it is also well known how to
determine P(q), either from a basic microscopic descrip-
tion or from a phenomenological set of equations of state.

Outside thermodynamic equilibrium the description of
steady states by generalized thermodynamic potentials is
far less popular, and the existence of such a description,
which carries over all of the above-mentioned properties
to nonequilibrium steady states, seems not to be generally
appreciated. From a physical point of view such a
description has been advocated, e.g., in Refs. 9, 10,
18—20. Important mathematical work on this problem
has been done in the last decade by Freidlin and Wentzell
(Ref. 7 and references given therein). It seems clear that
these potentials really should be considered as the central
objects of nonequilibrium thermodynamics, and therefore
the general properties and methods to construct them are
of high interest.

In the present paper we have focused our attention on
the particular property of nondifferentiability of the po-
tential P(q) which may appear in nonequilibrium steady
states. We have also discussed how the nondifferentiabili-
ty of the potential is reconciled with the differentiability
of the probability density in the steady state for small but
fixed noise intensity. Nondifferentiability of P(q) has
been shown here to arise from two different causes: (i) the
crossing of different branches of P(q) arising from two
different attractors; this cause was not analyzed here fur-
ther, but will be considered in detail in a subsequent pa-
per, ' where its origin in the nonequilibrium situation will
also become clear; (ii) the crossing of different branches of
P(q) emerging from the same attractor; here and in I, this
case was shown to be typical for nonequilibrium steady
states.

We have presented two examples of driven systems with
attracting limit cycles which show this phenomenon. We
have also elucidated the central role of the minimum prin-
ciple satisfied by P(q) in defining a unique global poten-
tial, by joining the various differentiable pieces together
via Maxwell s rule. The minimum principle (3.7) is again
well known for the case of equilibrium thermodynamics
(including relaxation towards thermodynamic equilibri-
um) as the principle of minimum entropy production or
maximum energy dissipation (cf. Ref. 20). The einergence
of Maxwell's rule from the minimum principle leads to
the result that nondifferentiability in a certain variable
typically occurs near maxima of P(q) in that variable. In
thermodynamic equilibrium, as was shown in Ref. 2, de-
tailed balancing ensures that the Hamiltonian has a
smooth separatrix, the coarse-grained potential P(q) is,
therefore, differentiable, and Maxwell's rule is not needed
for P(q).

We have also presented explicit results for the potential
P(q) in the two examples of nonequilibrium systems with
attracting limit cycles. The application of Maxwell's rule
was considered in detail for the simpler of the two exam-
ples, but the results can easily be generalized to the more
complicated one. In particular, the approximation of the

exact nondifferentiable potential by analytical differenti-
able functions obtained by expanding in a suitably deter-
mined parameter has been considered for both examples.
The most important problem left open here is the nondif-
ferentiability of the potential P(q) due to the coexistence
of several attractors. This problem will be analyzed in a
subsequent paper. '

APPENDIX A

$0————,(a ir i +a2r 2)+ —,(r, +r z )
2 2 1 4 4 (Al)

as this is a solution of (2.9) whose first derivatives vanish
in all limit sets of the deterministic system (i.e., for
Ir, =0 or ai, r2 ——0 or a2, 0(g&2vrI ). When looking
for how the potential is modified in the presence of cou-
plings, we write to first order in kI, k2

y=lyo+[ki+k2 cos(2lp)]rir2/2+k2W'(ri, r2, qr) . (A2)

The linear equation obtained for W is then particularly
simple:

BW 2 BW BWri(ri —ai) +r2(r2 —a2) +co
Br) Br2 By

=car ir~z sin(2y) . (A3)

The characteristics of (A3) are given by

2y+ -- ln
ag

r2
(A4)

Therefore, the solution of the homogeneous equation is an
arbitrary function of the combinations ci and cz, and the
particular solution of the inhomogeneous equation ob-
tained by integrating (A3) along the characteristics, is of
the form

I(r„r2,g) = R i(x)R2(x) sin(2x)dx,

where

(AS)

R;(x)=a; 1+ a; 2as
z

—1 exp (x —y)
r; Q)

i =1,2.

(A6)

It is convenient to choose pro
——0O in (A5) since then the

integral is well defined and manifestly 2ir-periodic in y.
Thus, after introducing new variables, we may write the
general solution of (A3) as

In this appendix we derive the solution of the
Hamilton-Jacobi equation (2.9) which after taking into ac-
count the boundary conditions yields the potential for the
system of coupled oscillators to first order in the parame-
ters ki, k2. The method is essentially the same as that
used by Hellwig. '

In the case of uncoupled oscillators the potential is
given by
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CO 00O'=I +6 = ——a2
1

+6 2y+ ln
Q1

Q1 —1 z
r1

r1
2 ~2++ ln

al —r1 a2

Q2 a&/a I—1 z2

r2
2

Q2 —r2

Im(e '+z ' )dz

(A7)

where G must be an arbitrary function 2m-periodic in y as it follows from the requirement of periodicity of the potential.
(Al), (A2), and (A5) taken together yield the solution given in (2.10).

In order to find an explicit expression for the integral term I, we consider the case ai ——az —=a. By decomposing the
integrand into partial fractions, one obtains

2 2
co r1r 2 2i 2 2 2 2I=—

z z Im e '~ . [F(1,1 ice—/a;2 iso—/a;r &/(r, —a)) —F(1,1 ice—/a;2 iso/—a;rz/(rz —a))]
2 r21 —r2 Q —iCO

(A8)

where F stands for hypergeometric functions.

APPENDIX 8

We now investigate the influence of the boundary con-
ditions on the behavior of the solution. The existence of a
differentiable potential requires a smooth solution of (2.9)
with vanishing first derivatives in the limit sets of the
deterministic system. ' In other words, there must exist a
single smooth separatrix in the associated Hamiltonian
system, given by p;=dP/Br;, i =1,2, p~=BJ/Bqr which
joins the limit sets.

It follows immediately from (A5)—(A7) that such a
smooth potential does not exist in the presence of phase
coupling, kz&0. The reason is that the function
I(ri, rz, y) exhibits an essential singularity for ri~a, ,
rz~a2 and although it may be compensated by an ap-
propriate choice of G, the same choice generates nonana-
lytic behavior at the origin (ri rz =0) o——wing to the spe-
cial form of G.

In order to be more explicit, we turn to the case
ai ——az —=a. I as given by (AS) is analytic for ri, rz &a.
By applying the transformation formulas of the hyper-
geometric function, ' (A8) may be rewritten as

2 2r1r 2I=—— Re e '~-
2 22 r1 —r2 sinh (neo/a )

1 —iso/a
a —r1

r1

1 —icosa "

a —r2

Ea [F( l, ice/a —1;iso/a;(r i a)/r, )——F(l,ice/a —1;ice/a;(rz —a)/rz)] .2 2 ~ . ~ . 2 2

Q —le
(81)

The term proportional to m /sinh(mo/a) exhibit here non-
analytic oscillations for ri, rz +a. At rz ——a—, for example,
the asymptotic behavior of I is given for r i~a(ri &a)
by

G(ui, uz)=—
2 sinh(neo/a)

cosu, —exp[a (ui —uz)/co] cosuz
X —1+ exp[a (u i —uz)/co]

(83)

1 &boa MI-— cos 2y ——ln
2 sinh(mo/a) Q

2a —r1
(82)

The investigation above shows that with an identically
vanishing G in (A7) one would find a potential which is
smooth at r1 ——r2 ——0 but no longer analytic at the other
limit sets. One might hope that by an appropriately
chosen 6 it is possible to eliminate the oscillations. In
fact, by taking, for example,

I
I

for r i, r z & a in (A7), the oscillating part of W at
r1 ——r2 ——a disappears; at the origin, however, a new one
will be created. Thus, no solution can be found which is
smooth everywhere.

Therefore, we may demand the smoothness of the po-
tential in one of the limit sets only. According to the ex-
tremum principle formulated in Sec. III this particular
limit set is naturally chosen to be the only attractor of our
system, which is at r1 ——r2 ——Q in leading order in k2,
where the probability distribution has its absolute max-
imum. So we find that the potential of the coupled oscil-
lator system is given by (A2) with

(B4)
2 2

2i 2 2 2 2W= ——
z z Im e '+ . [F(1,ice/a —1;iso/a;(r i —a)/r i ) —F(l,ice/a —1;iso/a;(rz a)/rz)]—

2 r1 —r2 a —iso

By means of identities among hypergeometric functions we rewrite W as
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2 2

8"=—
2 2 Im e'~

2 y, —P2

l7T

sinh(mo/a )

1 —ice/a
a —e1

r2

1 —i cola
a —r2

T2

[E(1,1 i c—o/a;2 i—to/a; r, /(r 1
—a) )

a ~ . ~ . 2 2

a —ice

F(—1, 1 ic—o/a;2 i—to/a;rz/(rz —a))] .2 2 (85)

One sees from this form that the potential at any fixed
value of rz (r1) oscillates for r, ~O (rz~O) as

ma Q) f 18'- —— cos 2y+ —ln . (86)
2 sinh(mo/a) a a

APPENDIX C

4'(rl r2 q ) y ~o 0 (rl r2 q )
n=0

(Cl)

where P is assumed to differ from a solution of (2.9) only
by terms exponentially small in 1/co. By substituting (Cl)
into (2.9) one finds only one term proportional to co, con-
sequently a/0/ay =0. From the co-independent part,

ay0
'

a411+
ar1 arz

Finally, we turn to a short discussion of how an approx-
imate smooth potential can be constructed. The method
is based on the observation that the oscillating part of the
potential obtained in a perturbative calculation in a cer-
tain parameter of the system is generally a nonanalytic
function of another parameter (cf. I). In the present ex-
ample this parameter is I/to [see (81), (82), and (85),
(86)]. Therefore, in a 1/to expansion the oscillations are
entirely suppressed and one obtains just the nonoscillating
part of the separatrices and the corresponding smooth ap-
proximate potential. Especially for large values of co,
where the prefactor of the oscillating part is extremely
small [see (82) and (86)], the method provides a very ac-
curate approximation.

We look for a potential in the form

where g1 is an unspecified function at this stage. In first
order of 1/co one obtains an equation for g1 from the re-
quirement of periodicity. This equation allows for the
trivial solution besides a nontrivial one. However, as the
nontrivial solution of this equation is not everywhere
bounded, g1-=—0 is chosen.

The approximate potential provides a smooth function
whose derivatives vanish in all limit sets. One may easily
see that the expression (Cl) with (C3) and (C4) is con-
sistent with that found in Appendix 8 because up to terms
proportional to 1/co the expansion of (84) agrees with the
present result to leading order in k, ,kz after a, =az—=a
has been set.

APPENDIX D

Our aim here is to calculate the stationary probability
distribution of a Fokker-Planck model up to next-to-
leading terms in the noise intensity, starting from its rep-
resentation as a functional integral. This representation is
provided by the path integral (3.2) for t = ap with the La-
grangian L =L0/ri+L „where L0 is given by (3.4) and

L1 ——— + —,Q „p ~ (q E") — lnQ— —
2 aq

' "" aq' 4«

follows from (3.3). When performing the functional in-
tegral it is sufficient, for the desired accuracy, to use the
most probable path (7.4) in J L1 dr, while in L0 one has
to go beyond the saddle-point approximation by consider-
ing also Gaussian fluctuations around the most probable
path. Therefore, it is convenient to rewrite L0 as

Lo= +Lo
dv

+ Ia1 r1 r2[kl +k2 os(c2q )]I 1r
ar1

a40 z z
Iaz rz —r, [k, +kz cos(2p—)]Irz ———

822
(C2)

+ 1Q —1 ' v Itv Qvz.

q
14 +P QI42

aq
(D2)

follows. The sum of p-independent terms must vanish,
otherwise $1 could not be periodic in y. This determines

$0 to be

which is an identity by virtue of the Hamilton-Jacobi
equation

40 2 «1r1+a2r2)+ 4 (rl +r2)+ Yklrlr22 2 & 4 4 & 2 2

The integration of (C2) then yields

y1
———,

' kzr 1rz[(r1+rz)(1+k1)—a1 —az] sin(2lp)

+g1(r1 rz)

(C3)
„„ay ay, ay (D3)

aq" aq" aq"

satisfied by P(q). In the path integral we choose y "(r),
the derivation between the actual arid the most probable
trajectory, as the variable of integration. Since L0 van-
ishes along the most probable path, which we denote by
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q =q(1 ), Lo up to quadratic terms in y is given by

(D4)

g v( )
~ (}Q 5P Qvy
Bq" Bq" Bq Bq"Bq" -(,)

(D5)
Q""(~)=Q""(q)

~ ~ ~(,)
.

In the following considerations we restrict ourselves to the

case of a single attractor of the dynamical system
q'=I(:"(q) and consider only points in its domain of at-
traction. In Sec. III we have seen that the most probable
trajectory which starts at an arbitrary point q' ' and ends
at a given point q (0)=q after an infinitely long time must
visit the attractor where it spends an infinite amount of
time. Therefore, we split the most probable trajectory
into an initial part between q' ' and q0, where q0 belongs
to the attractor, and into a final part between qo and q.
The time interval on both parts of the path is infinitely
long. The path integral yielding, the stationary probability
distribution P (q, g) up to the desired accuracy can then be
written as

0
P(q ))=exPI [0'(q) —4(qo)]/')) j exp —f «L)(~)

y(O)=0
X f Dp[p]dp( —oo)exp ——,

' f drLo(p, y) P(qo+g( —00) 7f} . (D6)

X
&(2n.eg)"Q (q}

(D7)

(cf. Ref. 22), where n is the dimensionality of the stochas-
tic system.

For the sake of clarity we evaluate here the path in-

Here P(qo+y( —0() ),g} is the result of the path integral
over the fluctuations from the initial part of the most
probable path. The measure appearing in (D6} is given on
a time lattice of size e through

—1 d"y(~, )
D)M [y]= lim

~ j= N+1 V (2—7TEt/) Q[q('7J)]
u(~) =y(~) —& (~)y (~), (DS)

where A(~} is given by (D5) specialized for the one-
dimensional case. The Jacobian of the transformation
(DS), whose integrate(YI form is a Volterra equation, is
J= ~5y/5u

~

= exp f d~A(r)/2. Equation (D6) now
appears in the form

I

tegral (D6) and (D7) for a general process of one variable
only. The extension to several variables is then straight-
forward. It is useful to introduce an extra integration
over y(0) by introducing 5[y(0}] in the integrand and to
replace 5[y(0)] by its Fourier integral. Next, we intro-
duce the new variable of integration u (r) by

0
P(q, g) =exp[ —[(I}(q)—P(qo)]/7J j exp f dr[A (r)/2 —L((w)]

X f Dp[u]dy( —~) exp — f d~Q '(~)u (~)+iayo[is]2' 2n

XP(qo+y ( —~ ),g), (D9)

where, according to (DS)
0 0 0

po[u]=y( —00) exp f dc' (r)+ f dzexp f dz'Z(z') i((&) . (D10}

After doing the Gaussian path integral over u and properly taking into account the explicit time dependence of the pre-
factor of u (~) in the discretized form of the path integral (cf. Ref 22) one finds

1/4
0 Q(qo)

P(q, g)=expI —[P(q) P(q )]/og—jexp f dr[A (~)/2 —L)(~)]
(X) Q(q)

cEcx 0
X f dp( —00) exp i'( —oo)exp f dv A(v)

2m' 00

0 0—~a f drQ(q) exp2 f dv'A(v')

(D11)
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(D12)

Within the desired accuracy in ri we may now neglect the term proportional to ri in the exponent of Eq. (Dl 1). The in-
tegration over a then yields a 5 function which selects the point y ( —ao ) =0 in the integration over y ( —ao ). We obtain

P(q, ri) = exp[ —P(q)lg) exp — dr + — + —,
'

Q z zo(qo),
aI~. ag ay, a'y
Bg Bg Bg ()g, -( )

where

ZQ(qo ) = lim& & [P(q&, ri ) exp/(qo )/ri]

is a function on the attractor.
In the case of several variables the argument of the r in-

tegral in (D12) is to be replaced by the trace of the corre-
sponding matrix, and zo(qp) again denotes the prefactor
on the attracting set. Thus, the path-integral solution re-
covers the result (7.5) if there is a single trajectory mini-

mizing the action. But the method also enables us to con-
sider cases where two or more different trajectories start-
ing on the attractor and ending at the same point q ap-
proximately yield the same minimum value of the action.
Then, P(q, rl) is given by a sum of terms each like in
(D12) with P and q(r) belonging, respectively, to the dif-
ferent trajectories in question. For the case of two such
most-probable trajectories the expression for the probabili-
ty distribution is given by (7.7).
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for Theoretical Physics, Eotvos University, Budapest, Hun-
gary.
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