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The effect of inertia on droplet growth in a d-dimensional (simple) fluid mixture is investigated.
Four typical growth laws of average droplet radius are obtained: two conventional ones (¢!/4 and ?)
and two new ones (¢2/“*+? and t2/3). The regions of the applicabilities of these growth laws are in-
vestigated. Far away from the critical point, or for earlier or later stages of phase separation, new
growth laws (129 +2) and t>/?) are dominant. These new laws represent droplet growth in the case
of high Reynolds numbers where the inertia of the fluid is important and the system may be tur-

bulent.

I. INTRODUCTION

It is believed that a many-body system exhibits a cer-
tain universality when a relevant length scale, say L, of
the system becomes of macroscopic order. For the phase
separation of systems with conserved order parameters or
of certain systems with nonconserved order parameters,
the scaling law exists. An average quantity G as a func-
tion of wave number k and time ¢ has a scaling form
(homogeneous form) ‘

Gi(t)=[L(t)P G(kL(?)) , (1.1)

where y is a constant. The most used quantity for G is
the structure function S (z)={ng(t)n_x(2)), where ny is
the Fourier component of the local number-density differ-
ence (of one species) (see Fig. 1). From (1.1) and a dimen-
sional consideration the structure function is assumed to
be scaled as

Si(t)=n?L?S(Lk) , (1.2)

where n is the density difference of one species between
coexisting phases (in the small region with volume L¢)
and d is the dimensionality. Since the structure function
(structure factor) S is related to the susceptibility or the
compressibility, X, by the relation X =kp TSy, the scal-
ing assumption (1.1) leads to a well-known scaling relation
in the static case. This gives a relation among three scal-
ing exponents. Two of them remain unknown. In the
case of phase separation n is assumed to be fixed constant
independent of the length scale L. Therefore, one may
determine only one exponent, say a:

L(t)xt?®. (1.3)

In the case of the static scaling, the time ¢ in (1.3) is re-
placed by the temperature measured from the critical tem-
perature T, or more suitably by its inverse. Lifshitz and
Slyozov! were the first to show such a power-law behavior
of the length scale. Binder and Stauffer? were the first to
put forward the above scaling idea and to show the
variety of the exponent a. The present author3 then gave
a formulation based on the scaling assumption (1.1) and
also arrived at the power law as (1.3). Siggia* discussed
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the cluster growth in a phase-separating viscous fluid
mixture from a phenomenological but a quantitative
viewpoint. Kawasaki and Ohta considered the basic equa-
tion suitable to the dynamics of phase separation to be
that for the interface of droplets.’ Since Marro et al.® as-
certained the scaling assumption of structure function
through numerical simulation, many studies were devoted
to this from theoretical and experimental viewpoints.’
The exponent @ may be given in a more general form as®

a=1/(d+6+&—h), (1.4)

where 0 is zero if the order parameter is not conserved,
while it is 2 if the order parameter is conserved, and § and
h are the scaling exponents associated with the mobility
M, (¢) and the energy H(2):

M (t)=[L(t)]"*M(Lk),
Hi(t)={(8F /8n_)n_;)=[L(t)* H(Lk) ,

(1.5)
(1.6)

and where F is the free-energy functional. For the kinetic
Ising system {=1—06/2 and for fluid mixtures {= —2. If
the surface tension plays a role then h=d—1. On the
other hand, if it does not play a role then =0 at high

n(r)=n1(r)—n2(r), no:n1

(r)+n2(r),
ne=loy=np e = Ing = Iny s
L s In-nydy L

FIG. 1. Quantities used in the text. Two species are assumed
to be symmetric. n;(r) (i=1,2) are densities of ith species,
no=ny(r)+n,(r) is the total number density, and
n(r)=n,(r)—n,(r), which may be an order parameter. A sim-
plified expression n denotes a density difference of one species,

- say i=1, on the coexistence curve. The appearance of n in (1.2)

is due to the estimate (n; —n; ) -1, ~L9*n.
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temperatures and & = — o at low temperatures near 7 =0
(see, for instance, the first reference of Ref. 8).

Recent numerical simulations® for model systems with
highly degenerated ground states exhibit “nonuniversal
behaviors” of the droplet growth or the existence of the
multiple “fixed-point values” of a. Very recently the
same nonuniversal behavior was reported also for binary
fluid mixture.”® Such a nonuniversal behavior in the
highly degenerate system may be explained as occurring
due to the fact that the surface tension becomes ineffec-
tive!! or becomes “intermittently” ineffective!? for such
systems for a geometrical reason.

So far all these growth laws are derived using the as-

sumption that the droplet growth is described by a relaxa- -

tional equation of motion for order parameters. In the
fluid system this restricts the applicability of the above
growth law to a narrow region near the critical point.
The purpose of this paper is therefore to present a growth
law for the binary fluid mixture in the whole region inside
the coexistence curve. The key point of our theory is to
add the contribution from the inertia term of the Navier-
Stokes equation to the equation previously used. We then
classify the situations into two cases where the inertia
term is effective and where the dissipation term is effec-
tive. Each case is further classified into two cases where
the surface tension is effective and where it is not effec-
tive. For the late stage of the droplet growth, the inertia
term becomes effective. In such a case the exponent a can
be given by a relation different from (1.4). Also, the fluid
may be turbulent in such a case.

In Sec. II the basic equation is given. In Sec. III this
equation is examined on the basis of the scaling assump-
tion. In Sec. IV four growth laws for length scale L are
obtained. Section V is devoted to the discussion and re-
marks.

II. BASIC EQUATION

Let us consider a two-phase coexistence. The phase
separation proceeds by accompanying large scale flows of
each phase. The average density n, of the fluid may be
regarded as a constant independent of time. Therefore, it
is sufficient for us to consider only the motion of one of
coexisting phases. Let us start with the Navier-Stokes
equation for the velocity U of one of coexisting phases:

Du(f,t)

1 = 2y —> 2
—— t .
B 20 Vp(T,t)+vVAd(T,e)+ £ (T,¢), (2.1)

where D /Dt (=d /dt+7-V) denotes the time derivative
along the fluid motion, g, the mass density of the fluid, p
the local pressure in the fluid, and v the kinetic viscosity.
go and v may be assumed to be temperature and concen-
tration independent. f * is the fluctuating force, which
is related to the kinetic viscosity through the fluctuation-
dissipation theorem (see Appendix A). Let us assume that
the phase separation proceeds isothermally. Then we can
set dp =n du, where p is the chemical potential:

(2.2)

Equation (2.1) can be rewritten as

Di(T,t)
Dt

where m =g, /n=mqgny /n with mg and n, being a mass
unit and an average density of the fluid, respectively. m,
and n are insensitive to the temperature while m is sensi-
tive to the temperature. We now assume that the fluid
collectively flows in the form of droplets or clusters.
Therefore, the second term on the right-hand side of (2.3)
may be replaced by

V2>1/(c,L? ,

— . —(u)
=—;11—Vu(f',t)+vV2ﬁ'(f’,t)+ F%n, 3

(2.4)

where c; is a constant of the order unity. We obtain here
the equation of motion for the order parameter n(T,t).
The velocity of the order parameter is also equal to U [no-
tice that n(T,t)=2n(T,t)—ny]. Substituting (2.4) into
(2.3) and solving for U, we have

T@ED=nB(E =M —V’m?,t)—mg%(f—"l
—(u)
+mf (7)), (2.5)
where
M=cnL*/(mv) (2.6)

is the mobility. Y is the current density of the order pa-
rameter. Substituting (2.5) into the continuity equation
for the order parameter,

d"—gﬂ+ﬁ-7<at)=o, @7
we obtain an equation for the order parameter:
i”‘f—’”=M V(T t)+m 6’-2%?—” +f(T,1),
(2.8
where
FED=—Mm VT (5,0) 2.9)

is the fluctuating force of the order-parameter equation
which is related to the mobility M through the
fluctuation-dissipation relation (Appendix A)

(fp()f _p(t") =2kp TMK?8(t —1') . (2.10)
Neglecting the second term, the inertia term, in large
parentheses of (2.8) we obtain the equation previously
used.® Another equation'® can be obtained by rewriting
the continuity equation (2.7) in the form

dn(%,t)  Dn(F,t)
dt = Dt

and replacing the first term on the right-hand side of
(2.7") by a “nonhydrodynamic” term. We need several
complicated procedures for the reduction of the second
equation. Therefore, we do not use the second equation.
Equation (2.8), along with (2.10), are our basic equations
in the following discussion. Here we note that the left-

—u(T,t) Vn(T,t)

2.7
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hand side of (2.8) corresponds to the second term on the
right-hand side of (2.3) and represents the energy dissipa-
tion. The second term on the right-hand side of (2.8) cor-
responds to the left-hand side of (2.3) and represents the
inertia of the fluid motion. The remaining terms of both
equations represent the driving force due to the inhomo-
geneity of the system.

It is convenient for us to transform (2.8) into the equa-
tion of motion for the structure function. A similar
method as given in Appendixes A and B of Ref. 8 pro-
vides us with

dS;(t) 2 )
ar +2I () =2MKk*[kg T —H;(t)], (2.11)
where /
., D)
I (t)=mM Re lk‘T n_i»(t) . (2.12)

H,(t) in Ref. 8 is divided by kpT, however. The first
term and the second term on the left-hand side of (2.11)
correspond to the dissipation term and the inertia term of
the Navier-Stokes equation, respectively. The right-hand
side of (2.11) represents the force terms, and corresponds
to the fluctuating force and the pressure term of the
Navier-Stokes equation. This equation will be used to ob-
tain the growth law of the length scale L.

III. SCALING

If we set I, =0, then (2.11) reduces to the equation pre-
viously used.® This equation leads to the relation (1.4) for
a conserved order parameter n. We here discuss the scal-
ing property of the term I;(¢). Let us consider the
Navier-Stokes equation (2.1). The left-hand side of this
equation has a dimensionality Lz 2. This term cannot be
set as d’L /dt?; which may give a negative acceleration
and therefore is unphysical. The reason for the inapplica-
bility of the latter expression is as follows. The accelera-
tion of a droplet continues for a time interval of the order
of ¢ for which the droplet moves a distance of the order of
L. Then the droplet coalesces into larger ones. After
that, the coalescing droplet is accelerated until it further
coalesces into a larger one, and so on. Such accelerations
should always be positive. Thus, those should be of the
form Lt~ owing to the scaling assumption. The ac-
celeration d’L /dt* represents the acceleration of a rigid
body, and it is therefore negative if the velocity L/t is a
decreasing function of ¢. Let us show here how we can
connect a positive acceleration to a decreasing “velocity”
of droplets. The kinetic energy per a unit mass at time ¢
is of the order (dL /dt)*~(L /t)*. Let us estimate the to-
tal kinetic energy K; which has been supplied to the

fluid. Let AL be the increment of the average droplet ra-

dius in a time interval -Atz. Then, due to the scaling as-
sumption one may find that

AL /At=dL /dt=aL /t .

Thus, it takes a time interval of the order t (=L /%) for a
droplet radius to be increased by the amount of order L.
This means that the time rate of the birth of a droplet

with a radius L(=t?) is proportional to 1/¢. Thus, we
find that
2

‘| 4L '~ ldr .

(3.1

Therefore, the acceleration of the fluid at time ¢ is given
by

—laK,
dt

dL
dt

dL

—1_ 142
a7 t~'=Lt (>0). (3.2)

~

The inertia term may be divided into two parts. One is
the part which is directly coupled with the pressure term.
The acceleration (3.2) is for such a part of the inertia
term. The other is a part which is indirectly coupled with
the pressure term through the nonlinear term of the
Navier-Stokes equation. The energy integral (3.1) con-
tains all these parts of the inertia term. In the present pa-
per attention is paid only to the large scale motion (a
growing or a frontier motion). . The stationary or the re-
sidual motion may be important to the discussion of the
energy cascade in a case of turbulence. This is not, how-
ever, the case which we are interested in in the present pa-
per. Let us put ‘

Si(t) ], _ —1=cn*L?, (3.3)

Du -
7—>a2Lt 2 , ’ (3.4)

where ¢, is a constant coming from an integration for the
Fourier transformation. a, and ¢, are of the order unity.
From (3.3) and (3.4), (2.11) can be evaluated as

cn*L% ' 2a,c,mMnL% 2 =2ML Xk T—H}) ,
(3.5)

or by multiplying both sides by L ~?*!/(2Mg,) we obtain
cv/(2¢,Lt)+aye, Lt ~2=(kgT—H;)/(goL?*Y) . (3.6)

The transformation from (3.5) into (3.6) is done so that
(3.6) may have the same dimensionality as that of the
Navier-Stokes equation.

IV. GROWTH LAWS

There are two main contributions to the energy H.
The one is from a configurational entropy of droplets,
H'®), The other is from the surface tension, H*). These
are scaled respectively as (see Ref. 8)

H9=(1—ag)kyT, H®=—a,0L%"!, 4.1)

where o is the surface tension. Here the superscripts (e)
and (s) respectively mean the entropy and the surface ten-
sion. Then the right-hand side of (3.6) is written as

P®©=aokgT/(goL%+"), P®¥=a,0/(goL?), 4.2)

corresponding to H'® and H'), respectively. Let us
denote the first term (i.e., the dissipation term) and the
second term (i.e., the inertia term) on the left-hand side of
(3.6) respectively by D and I:

D=c,v/(2¢,Lt), I=a,c,Lt2. 4.3)
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Let us define two quantities:
Q=P /P¥) R=I/D. (4.4)

Here R is the Reynolds number. Equation (3.6) is now
rewritten as

D+I=P(e)+P(s) .

Then four regions are considered, i.e., region I, Q << 1 and
R << 1; region II, Q >> and R << 1; region III, Q << 1 and
R >>1; and region IV, Q >>1 and R >>1. In each of four
regions the value of the exponent a is given. For example,
in the region I the exponent a is given by the equation
D =P, This leads to a=1 because of the first part of
(4.3) and the second part of (4.2). Values of a in other re-
gions are given in the same way. Let us introduce dimen-
sionless quantities L and ¢ defined by

L=L/E t=(8/Dr)"t,
where £ is the thermal correlation length and Dy the
thermal diffusion constant on the coexistence curve at the

same temperature. The diffusion constant Dy is given in
the present notation by (Appendix B)

DT =c1kB T/(Cz’\/gogd —2) .

Then the two quantities defined by (4.4) are respectively
written as

(3.6

4.5)

(4.6)

Q=C,L'"% R=C,ZzL% !, 4.7
where Cy=a, /a,e;, C;=2a,c;, and
Z=DT /‘V ) (4.8)

and we have put 0£% ~!=e kp T with e, of the order uni-
ty. Let us introduce four quantities:

Y,=D/P¥=C;Lt ' [R,=(C,/C;)ZL], (4.92)
Y,=D/P®=C,L% ! [Ry=(C, /C,)ZL?* %], (4.9b)

Y;=1/P®=C,C3ZL % ? [R;=V'R,], (4.9¢)
Yy=I/P®=C,C,ZL** %% [Ry=V'R;], (4.9d)

where C3=1/(2a,e;) and C4=1/(2a,) are of the order
unity, and we note that C;=C,C4. R; (i=1,2,3,4) are
the Reynolds numbers in the case of Y;=1. The ex-
ponents a’s in regions I, II, III, and IV are given by set-
ting Yy=1, Y,=1, Y;=1, and Y,=1, respectively.

It is considered that the surface tension becomes effec-
tive for producing internal flows among droplets when
droplets are percolated * 1t is therefore considered that
the surface tension is effectual for volume fractions larger
than the percolation threshold u,. However, even for
volume fractions smaller than the percolatlon threshold
Up, a droplet always has other ones in its neighborhood
with a certain probability. Thus, the effect of the surface
tension cannot be neglected for off-critical concentration
also. This may shift the exponent 4 in (1.6) and therefore
the actual observed exponent a to larger ones (or to small-
er ones). Such a shift in the exponent @ may be explained
as an anomalous elongation of the time-dependent cross-
over regime (“anomalous” also including “infinite”).1
Very recently Ohyama et al.!® have reported the shift in

the exponent a for a binary polymer mixture. Although
they used a real-time and a real-length scale to analyze the
experimental data, instead of the reduced ones, this yields
no problem to examine the volume fraction dependence of
the exponent a. Except for the temperature dependence,
the observed result qualitatively agrees with a theoretical
prediction.'> The experimental data suggest that the dif-
fusion constant Dy does not have a simple temperature
dependence. The data also seem to suggest that the
growth rate becomes slower as the temperature becomes
lower far from the critical temperature. This is similar to
certain model systems with large degeneracies.” 2

In this paper we temporarily neglect such an effect of
“intermittent” growths of droplets.> Let v be the volume
fraction of minority phase (0 <v <0.5). Then the per-
colation threshold may be roughly evaluated as v, =2/z,
where z is the number of the nearest-neighbor droplets
when the droplets are close-packed (z=6 and 12 for d =2
and 3, respectively) (see the first reference of Ref. 12).

Let us use the same estimations of the coefficients C’s

as Siggia.* ‘Namely, we set (for d =3)

C3=3.0, C4~1/(12v) (and thus C; =36v). (4.10)
A rough estimate also gives

Cy~1. @.11)

Then let us consider the region I, for example This re-
gion is shown by Q <1 and R <1. Q <1 is equivalent to
L >6v'2, On the other hand, the growth law in this re-
gion is given by setting Y, =1. Therefore, the condition
R <1 is replaced by R <1, which is L >3v~!. Near the
critical point Z is small. Thus, the region I near the criti-
cal point is 6v'> <L <3Z~!. The growth law in this re-
gion is L =0.3z. In this way the region of the applica-
tions of four growth laws can be known. They are illus-
trated in Fig. 2. A few remarks should be added. For
smaller volume fractions such as v <v, = +, the regions I
and III do not occur. The region of the small Reynolds
number lies between the regions of the large Reynolds
numbers, since one of regions of large Reynolds numbers
belongs to the region of large-Q value and the other to the
region of the small-Q value. The growth laws at low tem-
peratures are essentially the same as those at high tem-
peratures. In practice, however, the regions I and II be-
comes very narrowed since Z ~1, and therefore the re-
gions I and II are not observed at low temperatures.
Thus, for v <v, and far away from the critical point, only
region IV is applicable. For v >, far away from the crit-
ical region, the region III also becomes applicable. Since
the Reynolds number in this region increases indefinitely,
the system becomes turbulent (turbulent growth). In the
case of A4 of Fig. 2, the region I has no reality, since the
droplet sizes in this region must be unphysically small.

The ratio Z defined by (4.8) depends on the dimen-
s1onahty d. The kinetic viscosity may be evaluated as
var /ty, where ry and to are of the order of the atomic
distance and the collision time, respectively. The kinetic
viscosity may also be evaluated as ro(kgT/mo)'? with
mo=go /ng and no~1/rs. We can thus evaluate the ra-
tio Z as
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v: T=2w2/4/5,

FIG. 2. Dominant droplet growth laws in three dimensions.
“Dominant” means the neglect of the “intermittent effect” (Ref.
12) which may shift the growth rates and exhibit a wide cross-
over regime of the growth rates as actually observed.!° In (a) the
solid curve represents the two phase coexistence, and the dashed
curve represents the percolation threshold. In (b) the upper hor-
izontal line indicates the time axis. Lower four horizontal lines
indicate the regions of the growth laws at corresponding times
on the upper horizontal line. The symbols A, B, C, and D cor-
respond to those in (a). Far away from the critical point (C and
D) the regions I and II become very narrowed, and they are
therefore omitted. In two dimensions the region corresponding
to the region I disappears since Z ~1 for all temperatures. Z*
on the time axis is replaced by Z = and therefore the region II
remains in two dimensions.

Z=C(ro /)72,

with C being a constant of the order unity.

In two dimensions the region I disappears since Z is of
the order unity independent of the temperature (Z!/¢—2
is the same as that in three dimensions). Except for the
disappearance of the region I, the global behavior of the
growth law in two dimensions is the same as that in three
dimensions. In two dimensions we may set v, =+

4.12)

V. DISCUSSION AND REMARKS

Experimental studies of phase separation of fluid mix-
tures are usually done in the very vicinity of the critical
point. * For instance, the reduced temperature e=(T,
—T)/T, is less than 10~* for the isobuthyric acid + wa-
ter mixture.'* For such a region the ratio Z is smaller
than 10~7 and the thermal correlation length £ is larger
than ‘10~ cm and the kinetic viscosity is of the order
v~0.1. The Reynolds number (R,) is less than unity for
L <107. Therefore, reported experiments are those for
small Reynolds numbers, corresponding to the growth
laws in the regions I and IL."

There is no experiment for the real two-dimensional
system. Therefore, a numerical simulation on argon'®
provides the only available data. Setting the average ki-
netic energy of an argon atom to be of the order 100 K,
one may evaluate the collision time ¢y of an argon atom to
be 1 ps. Therefore, the growth law corresponding to the
regions II or IV is L 2=t¢, where L is scaled by the diame-
ter of the argon atom and 7 is scaled by to=1 ps. The nu-
merical simulation!® was done at the density which seems
to be smaller than the percolation threshold density
U, =% (for d=2). Therefore, the growth law is for the

region II or IV. The numerical simulation gives
L ?~0.6t, which is consistent with the above theoretical
prediction.

In connection with dynamic critical phenomena, the re-
gions I and II correspond to the so-called critical regime,
while the regions III and IV correspond to the so-called
hydrodynamic regime.

The regions III and IV, where the inertia term becomes
dominant, must be further examined, for instance, in con-
nection with the turbulence, or with the generation of a
turbulent state by stirring a phase-separating fluid.!” This
is, however, left for a future problem.

In the case of the region III (the turbulent growth
L «<t?/3), the total kinetic energy which has been sup-
plied, (3.1), is evaluated as

Kr=A—BL™1, (5.1

where A and B are constant. Equation (5.1) means that
the total kinetic energy supplied is equal to the released
surface energy.

The growth law exponents a’s in regions I and II are
given by (1.4). For the regions I and II we may set
h=d —1 and O, respectively, together with = —=2:

a=1/(d—h) (for regions I and II) . (5.2)

On the other hand, for the regions III and IV, (1.4) does
no longer hold. Instead, we have

a=2/(d+2—h) (for regions III and IV) . -(5.3)

Throughout this work we have not taken the gravita-
tional effect into consideration. For fluid experiments the
gravitational effect often becomes important for the late
stage of the phase separation since two phases may have
different mass densities. In the late stage of phase separa-
tion this may give a faster growth rate.* In this respect
the problem of gravitational collapse of a star core after
exhausting the nuclear fuel'® may be a suitable application
of the present theory. Since the star material is “falling,”
the star material does not feel the gravitational field. This
problem is, however, outside the scope of this paper.
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APPENDIX A:
FLUCTUATION-DISSIPATION RELATIONS

We assume that the fluid is in a thermal equilibrium
state for a very short time interval of the order of the col-
lision time of a fluid atom, say #y,. Then we replace the
left-hand side of (2.1) by the local differentiation du /dt
and we neglect the first term on the right-hand side of it.
Then operating V on both sides, and multiplying the both
sides by V-®(F",t'), we obtain

<[k'ﬁr(’)][k'ﬁ_i’(”])
— L_ro([l_(’-ﬁ’i.(t)][l—c"
=—(/e, L*[K-U KT _21),

_z{tDar

(A1)



1108 } HIROSHI FURUKAWA 31

where the overdot denotes the time derivative. The first
term can be neglected due to the local equilibrium as-
sumption. Thus, we obtain

(V/CILZ)(kBT/gQ)kZ

— —lu

t — —(u) )
= [ _ (K UK-T L0 . (A2

Here we have put

([K-ULIKT_ 1) =(ksT /go)k>

(equipartition law). The equality (A2) represents the

fluctuation-dissipation theorem. ‘With the use of this
fluctuation-dissipation relation we can justify (2.10).

APPENDIX B:
THE THERMAL DIFFUSION CONSTANT

Using the relations

d
‘d—tnk‘—‘——MTkz,uk ) (B1)

,uk=kBTnk /(nkn_k>=kBTnk /(cznzLd) » (B2)

and setting the thermal mobility M as M for L =¢ in
(2.6), we obtain the diffusion constant (4.6).
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