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Statistical inference in non-Hamiltonian dynamics
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We assume that the formal results of the maximum-entropy approach for the description of some
quantal systems remain valid in the presence of a perturbation that cannot be formulated in terms of
a Hamiltonian, if the dynamical laws for a convenient set of observables are known. As an example
we study the harmonic motion of a quantal object coupled to a heat reservoir (a) reversibly and (b)
irreversibly. In case (b), the data concerning the evolution of the individual fluctuations permit the
construction of a density matrix for all times.

I. INTRODUCTION

Statistical inference methods based on information
theory' have shown their relevance for a large variety of
problems in physics, ranging from the interpretation of
statistical mechanics and thermodynamics to applications
of molecular ' and nuclear ' collision problems, nuclear
fission, and quantum mechanics. In spite of the diversi-
ty of systems under the focus of this type of description,
most of them correspond to either thermal equilibrium or
reversible dynamics. These are the processes governed by
the Schrodinger —von Neumann or Liouville equation,
where the density operator p varies in time as

ip= [H,p]IA

=Lp

under the action of the known Hamiltonian H or the
Liouvillian L. So far those dynamical problems that can-
not be cast in the form (1.1) lie beyond the scope of these
methods. Two main examples can be quoted.

One of them corresponds to an object that'undergoes re-
versible motion, but the structure of its Hamiltonian is
hidden from the observer, who suspects, after recording
some expectation values of observables, that the real
Hamiltonian differs slightly from a known one Ho. The
other example is the case of irreversible motion character-
ized by a non-Hamiltonian generator of the evolution. 9'0
Some of these situations have been dealt with in previous
papers. In Refs. 11 and 12 a typical problem of master-
equation dynamics has been approached but no general
rule has been formulated. In Ref. 13 the treatment is
based on the assumption that the measurable properties of
the system under consideration experience slight devia-
tions with respect to a set of unperturbed values, charac-
teristic of the Schrodinger problem. ' '

Our aim here is to propose a different approach. We
notice that statistical inference methods are founded on
the hypothesis that a closed algebra of observables under
commutation with the known Hamiltonian Ho does exist.
This assumption cannot be maintained when the Hamil-
tonian is missing. In many cases of interest, however, a
set of N observables A„r =1, . . . , X, representing the

measurable properties of the system, is available together
with their equations of motion. We will assume in this
paper that if these equations are "closed, " in the sense
that

A, =g„(IA, I,t),
where

A„=Tr(A„p),

(1.2)

(1.3)

II. INTEGRATION OF THE TIME DERIVATIVE
OF THE DENSITY OPERATOR

We assume that the system of interest, when isolated, is
governed by an unperturbed Hamiltonian Ho and the
overall dynamics can be referred to an algebra M of n ob-

one can write a density matrix for arbitrary time t in the
manner prescribed by information theory, with parame-
ters that are given functions of t. It cannot be demon-
strated, in general, that such a density matrix is the exact
one for the given system. However, it is "exact" in the
space of the observables I A„I since it reproduces the ex-
pectation values I A, I as well as their linear functionals
for arbitrary times t. Analytical functionals will be repro-
duced provided that dispersions and correlations remain

wg wgg
small, i.e., quantities like Tr(A „'A,'p), for example, can

rg n
be sensibly approximated by A, 'A, '.

This paper is organized as follows. In Sec. II we briefly
review the method of solution of the Schrodinger —von
Neumann equation within the framework of information
theory and present the formalism adequate for the gen-
eralization to dissipative evolution. Section III is devoted
to the construction of the density matrix for the time-
dependent harmonic oscillator (TDHO) using fluctuations
and constants of the motion. We illustrate the problem of
non-Hamiltonian dynamics examining, in this framework,
a quantal harmonic oscillator coupled to a heat reservoir,
whose master equation and properties of type (1.2) have
been worked out in the literature. ' ' This damped
TDHO is investigated in Sec. IV, where the parameters
characterizing the perturbed density matrix are evaluated
as functions of time. Section V contains the final sum-
mary.
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servables A„r = 1, . . . , n, plus the identity Ao ——I, name-
ly,

a=CA, . (2.11)

~=IA„~ [HO, A„]=iA+g„,A, , r =1, . . . , n J .

(2.1)

Hereafter we denote the set of n +1 operators by a vector

A=(AO, . . . , A„). The structure of the algebra is con-
tained in a matrix G, i.e.,

[FI0, A] =i fiG A . (2.2)

According to the Liouville equation (1.1) and the algebra
definition (2.2), one can write the equation of motion for
the c-numbers (1.3) as follows:

A=i%'( GA+—FA), (2.3)

p' '(t) =exp[ —A,
' '(r). A(t)] (2.4)

provided that the I agrange multipliers included in the
vector A,

' ' satisfy the equations of motion

(2.5)

In several applications, as will be exemplified later in this
work, it is convenient to resort to a 'slightly different way
of expressing the solution of the unperturbed Liouville
equation. Following Levine, ' we introduce a set of m

(m & n) invariant operators or constants of the motion J~
linearly related to the A, 's,

J =CA, (2.6)

where C is an m &&n matrix. The components of the vec-

tor J are constants of the motion if
A Ai' J =iA J+[J,HO]=0.

dt Bt

If such a set exists, a solution of Eq. (1.1) is

(2.7)

p' '(t) =exp[ —a. J (r)] .

A straightforward calculation gives

(2.8)

where F is the matrix accounting for the local variation of
the operators A, .

Now, following Levine et a/. , hypothesis (2.3) allows
one to write a solution for the Liouville equation in the
orm

We now consider the case in which the above-described
system no longer is isolated, due to some coupling to the
surroundings. To our current knowledge, this problem
has not been formally approached with the help of
information-based techniques, although there exist ap-
proaches in the sense of providing an ansatz ' for the
density matrix. Applications to molecular vibrational
and spin' relaxation have been worked for specific mas-
terlike equations of motion. It is our intent to look for a
prescription to extract a density matrix compatible with
the available information, in the case in which the exter-
nal coupling cannot be represented by a Hamiltonisn. ' '
Such a density matrix will approximate the exact one in
the space of the operators that provide the available infor-
mation. Regardless of the nature of the perturbation, we
assume that our ignorance of the algebra for this new situ-
ation is compensated by the knowledge of the functions or
c-numbers A, (t), or their equations of motion (1.2).
These functions will be, in general, supplied by an experi-
ment performed under given initial conditions. Qne
should expect that, in most physical situations character-
ized by smooth, well-behaved parameters and laws of
motion of the type of (1.2), the state of the perturbed sys-
tem can be described by a formally invariant density ma-
trix of the form (2.4) or (2.8). Some time dependence in
the parameters a„(t) makes room for the case in which
tl.e perturbation destroys the conservation of the mean

value J, namely, when

(2.12)

An example of such a situation will be analyzed in Sec.
IV.

Now, we declare that we will not look for the exact
solution p(t) of this non-Hamiltonian dynamics. To the
extent to which most of the predictions expected when
one studies a particular system depend on I A„] and on
linear functionals and small dispersions of these observ-
ables, a density matrix like (2.4} or (2.8) will provide exact
or very accurate solutions. Departures between the exact
and the approximated density matrix will be significant if
one becomes interested in the calculation of magnitudes
involving high powers of IA, j and subsequent large
dispersions. However, in many problems of interest a set
of implicit equations for the derivatives of the parameters
can be extracted from (2.4) and (1.2), giving

I

a(t)=0 . (2.9} (2.13)

Equations (2.4) and (2.8) must describe the same density
matrix for'given initial conditions. Thus the information
measure given by lnp(t) is unique and we have

If the multipliers A, chn be integrated out of this equation,
the matrix composed of these coefficients reproduces the
experimental evolution laws (1.2) for these observables by
means of the formula

leap= —A, .A
A= —V' -Ao ~ (2.14)

= —a.J . (2.10)

This indicates that a and A, are related by the matrix C:
We will illustrate in detail the possibility of such a solu-
tion in Sec. IV.
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III. UNDAMPED TIME-DEPENDENT
HARMONIC OSCILLATOR

i, =X(,0)X+X(20)P,

in the most general case the density matrix is

(3.10)

As a preliminary step to the examination of the damped
TDHO, we extract in this section the relevant characteris-
tics of the undamped problem. In this case the unper-
turbed Hamiltonian is

Ho(t)= + ,'k(-t)x'.
2m (t)

(3.1)

According to some previous experience with this sub-
ject, ' ' especially when dealing with the perturbed situa-
tions, we consider it useful to work with the centered,
rather than the original, position and momentum opera-
tors,

X=I—xo, x() = &x &() (3.2a)

P =P —S"0 Po = &P&0

with the second moments

Xo= &X'&o,

ao= 2 &(X,PI &o

(3.2b)

(3.3a)

(3.3b)

(3.3c)

with (, I the usual anticommutator. These fluctuations
are linked by the uncertainty relationship

fi
X040—ao &

4
(3.4)

A. Solutions of the Liouville equation

We select as the algebra W the set

W=(I,X,P,X,P, (X,PI ) . (3.5)

The matrices 6 and F of Eq. (2.3) are straightforwardly
constructed as well as the set of equations (2.5) for the pa-
rameters that reads

X0(0)=0,
i(,-0)+u2X'(.0)=0, s =1,2
X,(0) =2k'(50),

g 4
(0) 2 (0)

Pl

A, 5 = /(3 +kk4
' (0) i (0) (0)

Pl

(3.6a)

(3.6b)

(3.7a)

(3.7b)

(3.7c)

Comparing these equations with those displayed in Ref.
19 for the fluctuations, one sees that a solution of (3.7) is
provided by

(A,5 ', A, 4( ', A,5 )=—(Pp, X0, —op),
2

(3.8)

where a is some proportionality constant. Thus if we let

J2 be the quadratic invariant for the TDHO, '

J2 ——2 ($0X +XpP —crp(X, P I ), (3.9)

and JI the linear invariant 0

—Xg' —X,")P"'—X(,"(X,P]) . (3.12)

We will next carry out a transformation on P( ' that al-
lows us to take advantage of standard results of statistical
mechanics regarding the normalization. Once we know
A,o

' as a function of A, ')
'—A,5 ', Eq. (2.14) permits one to

relate parameters to expectation values. Even though we
are especially interested in these relationships at t =0 as
discussed at the end of Sec. III A, it will be seen that they
remain valid for arbitrary times.

A standard transformation in the space of the operators
X,P, actually a translation combined with a rotation, al-
lows one to write the quadratic form in the exponent of
(3.12) in its canonical representation. We obtain

p
(0) exp( P(0) P(0)g 2 P(0) 2) (3.13)

The rotated variables g and Q are given by the expressions

0) (0)

g=ap X+Xp+ (P+Pp) (3.14a)g(0)

0) (0)

5l =bp X+Xp+ (P+Pp)
A5

where the scaled factors ao and bp are

g(0) / t g(0)2+ (p(0) g(0) )2]1/2

g(0) g)g(0)2+ (p(0) g(0) )2)1/2

(3.14b)

(3.15a)

(3.15b)

and the shift operators Xo and Pp possess the expectation
valu~

&X&()——
A,"'A,(0)—A, '"A,"'

1 4 2 5

2g(0)

g(0)g(0) g(0)g(0)
2 3 1 5

2g(0)

(3.16a)

(3.16b)

p' '(t) =exp( —ao ' —a) 'J) —a2 'J2), (3.11)

with ao ', a') ', and a2 constant coefficients. We remark
that the linear and quadratic invariants are the only con-
stants of the motion for the TDHO. This assertion can be
verified by straightforward calculation of the matrix C in-
troduced in Eq. (2.6); as one imposes the conservation law
given in (2.7), one sees that the equations for the elements
of the matrix C possess two independent solutions, name-

ly, one that gives rise to J, and the other generating J2.
The determination of the density at any instant t

demands the knowledge of the initial conditions for the
I.agrange multipliers. Since the available data consist of
the initial mean values of the algebra components
(A„(0)I, we must relate these to the parameters I, at
t =0.

B. Canonical form of the density operator

Given a density matrix like (3.11), it reads, in the origi-
nal algebra,

)"o")(t)=exp( —X,"4—X(,"X—X(,"P
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with

g(0) g(0)g(0) g(0)
4 —

5 (3.16c)

Since pi&pz, it turns out that both (Xp)() and (pp)0
must vanish. According to (3.16) this means

The Lagrange multipliers in the rotated frame are related
to the older ones by

A,""A,"'—2A,"'A,"'A,"'+A,""A,"'
~(0) ~(P) i 4 i z 5 z 3 (317 )0 0

4b, (0)

(3.25)

In other words, no linear terms appear in the density
(3.12). The remaining three constraints lead, after some
algebra, to Eq. (3.8) with

g(0) +g(0)
p(0) 3 4

1,2

g(0) +g(0)
g(0)

2
(3.17b) tanh —'

(3.26)

We notice that density (3.13) has the form of a thermal
(Bloch) density related to a harmonic oscillator (HO)
Hamiltonian H,

pHo ——exp( —aI —PH ), (3.18)

if we properly identify the inertial and stiffness parame-
ters of the latter. This amounts to defining

P"'=8
2

(3.19a)

(3.19b)

and in this case we can profit from the following identifi-
cation: let the inverse temperature P be represented by

2
(3.20)

g2
(3.28)

Recalling that J2 is an invariant operator, we realize that
a is a constant. As anticipated at the beginning of this
subsection, the relations given in Eq. (3.8) are valid at all
times. Furthermore, the normalization A,p takes the form

0 ———ln( ) 1 1 4&Jz&o —1 (3.27)
2 4 A)2

We can see that if (Jz)p takes its ground-state value
)ri /4, the parameters A,I)

' and A, 3
'—A,5

' diverge. This
behavior causes some uncertainty with respect to the
boundedness of the matrix elements of the density opera-
tor )(). It is then worthwhile to perform an analysis
measuring the lack of information, or entropy, in the vi-
cinity of the singularity. With the variable

T 1/2

The frequency arises from (3.19) and (3.20) as

(g(0) +g(0)
)

(3.21)
the entropy S = —Tr(Plnp) reads

S ( U) = —ln2+ —,
'

ln( U —1)+ —,
' U ln

U —1
(3.29)

and the normalization can be found in standard text
books ' taking the form

r

P() ——ln 2sinh(o) . mP
2

Regarded as a function of the real variable U, S vanishes
when U =1 and increases as ln U when U approaches in-
finity. Furthermore, S'(U))0 indicates that S(U) is a
monotonic function. An analysis of S(U) in the neigh-
borhood of U =1 can be done as follows. Let

= —in[2 sinh(P', 'P' ')'i ] . (3.22) (3.30)

('g )o=—

The first two constraints give

The expressions of the Lagrange multipliers in terms of
the current expectation values arise from the set of condi-

tions, V'~0)PI)
' ——( A)0, actually,

&E&0= &8&0= & IF 8I &o=o (3.23a)

&~(0)
(3.23b)gp(0)

gp(0)
(3.23c)gp(0)

with 5«1. One finds

1+21n2 5
2 2

' (3.31)

IV. DAMPED TIME-DEPENDENT
HARMONIC OSCILLATOR

Equation (3.31) indicates that in the vicinity of the ground
state, namely when (Jz )p is slightly larger than A' /4, en-
tropy and excess quantal uncertainty are, except for a
scaling factor, equivalent measures of missing informa-
tion. The preceding observation suggests a thermodynam-
ic interpretation of Heisenberg uncertainty.

(X())()+, , (P() )()—0,
A5

&Xp &()+ (()) &&0 &Q=0 ~

A5

(3.24a)

(3.24b)

We now assume that the TDHO is coupled to its envi-
ronments in such a way that its motion is no longer
governed by a Hamiltonian. This problem has been
described through different perturbative approaches and
various versions are available. In particular, in Refs. 14
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and 15 the equations of motion for the fluctuations have
been derived. Since these equations have been obtained
froin a master equation that rules the evolution of the
density p(t}, ' they constitute a realization of Eq. (2.13).
We will now illustrate the application of the method pro-
posed in Sec. II to deal with these types of situations.

The formulas of interest are' '

%e have here used the notation

2A 5

B= +2(kk5 —yk3),
2D
a

(4.7a)

(4.7b)

20'
7

m

P =2( yP —ko +—D),

0 = —kg+ —Qo
m

(4.1a)

(4.1b)

(4.1c)

3C =kA4 — —yk, 5,
m

2ec'"
sinh(2A'b, '

)

(4.7c)

(4.7d)

Ao(t) = —in[2 sinh(A'5'~ )],
where

5—A3A4 A5 ~

2

(4.2)

(4.3}

It turns out that the relationship between fluctuations and
multipliers is the same as in Eq. (3.8) with 2/a given by

(3.26) after replacing the unperturbed value (Jz)0 by the
~ ~

current one (J2 ). Opposite to the case in Sec. III, here J2
is no longer a constant of the motion. Its expectation
value verifies an evolution law that can be extracted from
Eqs. (4.1) and reads

where k and m are the parameters of the free Hamiltoni-
an Ho [see Eq. (3.1)J and y and D are the friction and dif-
fusion coefficients, respectively, whose microscopic struc-
ture in terms of the coupling between the oscillator and
the heat bath is given in Refs. 14 and 15. These four coef-
ficients can be parainetrized by arbitrary functions of
time.

If we propose that the density matrix of the perturbed
TDHO is formally invariant, in other words, if it can be
written in the form (3.12} or (3.13) with coefficients

f a;(t) J or IA,;(t) I different from IaI 'I and IA,I 'I, respec-
tively, the equations of motion for the Lagrange multi-
pliers are obtained as follows. From the formal invari-
ance of A,o(t) and with the help of Eqs. (3.17), (3.22), and
(3.25) we have

Numerical integration of either the system (4.5) or the
original one (4.1) for the underdamped and overdamped
situations yield the results displayed in Figs. I—4. In Fig.
1 we display the Lagrange multipliers uo(t) and az(t) as
functions of time, while the horizontal lines indicate the
constant, unperturbed values ao ' and a2 '. The period T
of the free TDHO has been selected as the time unit, the
damping coefficient equals 2T ' and the diffusion coeffi-
cient takes the value 6T ' throughout all calculations. In
Fig. 2 we show the expectation value of J2, the propor-
tionality parameter 2/a in Eq. (3.26), the entropy S given
in Eq. (3.29), and the quotient b, =4(Ji ) /az for the same
selection of coefficients. Figures 3 and 4 are the same as
Figs. j. and 2, respectively, but correspond to the over-
damped oscillator with y =9T

Let us first look at the odd-numbered graphs. We ob-
serve that the full, perturbed Lagrange multipliers ao and
u2 increase with opposite signs, uo being negative, and
exceed the given scale at slightly more than 2T. Their
shape is quite similar, this fact being especially interesting

10

dt
(J &= —2y&J2)+2D&. (4 4)

Taking the time derivatives of Eq. (3.8) and equating
them with the data, namely Eqs. (4.1), we obtain a cou-
pled differential system

~r. ——,t =3,4, 5
d '

where

(4.5)

0

d3 — A, 3bA —( 1 + 2A, 5b —A,3k,gb)B +2k,3A 5bC

(4.6a)

d4 ———(1+2k,gb —A3kgb)A A4bB + 2A4A5bC—,

d 5 —— Ap.5bA A4A 5b—B + (2A3A4b ——1),
d =2bb —1 .

(4.6b)

(4.6c)

(4.6d}

FIG. 1. The Lagrange multipliers ao and a2 as functions of
time (in units of the free period T) for the underdamped oscilla-
tor. Damping parameter is y=2T ' and the diffusion coeffi-
cient is D =6T '. Horizontal lines indicate the perturbed
values of the multipliers.
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'
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located at the valu
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a e value is /4. In addition, we see that the
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d in Sec. III. Since we have seen that this is an
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avoidable sin ularit h
'

g
'
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o e entropy corre-other. Furthermore, the behavior of the
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). On first sight, this might seem to be in con-
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asse ions o information
eory and thermodynamics; however i th
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er, in e present ex-
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' '
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pliers are oscillating functions of time, rather than con-
stants. An illustration of the type of results one can get is
shown in Fig. 5, where we have drawn the dispersion P
and the parameter A.q for the underdamped case y =2/T.
The corresponding patterns for the unperturbed situation
are sinusoidal with a period indicated by an arrow below
the horizontal axis.

V. SUMMARY

In this work we have discussed the fact that in some
problems of non-Hamiltonian dynamics, information-
theory methods can be utilized to find an approximate
density matrix that exactly reproduces the available data.
We have assumed that, in general, one could look for a
group of time-dependent I.agrange multipliers, provided
that there exists a set of observables whose mean values
evolve according to closed laws of motion. The possibility
of such an approach in specific situations has been illus-
trated by studying a damped TDHO whose evolution is
not driven by a Hamiltonian. Instead, we know the equa-
tions of motion for the fluctuations. In order to treat this
problem with the approach proposed above it has been
necessary to solve first the case of the free TDHO with
the maximum-entropy formalism for the algebra of cen-
tered coordinate and momentum operators with respect to
the unperturbed Hamiltonian.

It has been seen that the linear invariant J& is irrelevant
to the description of the TDHO, where the quadratic one

J2 is equivalent to the complete algebra. A standard
coordinate transformation carried on this operator per-
mits one to calculate explicitly the Lagrange multipliers
and to provide a thermodynamical interpretation of Jz.
In the case of the TDHO, we have assumed that the den-
sity matrix remains formally invariant and have found
and solved the equations of motion for the shifted
Lagrange multipliers.

Finally, we would like to stress here that, in general,

one cannot assert that the "informational" density matrix
of Eqs. (2.4) or (2.8) is the exact solution of any problem
of irreversible motion. In the face of the need for the best
solution of such a problem, our proposal presents the fol-
lowing advantages. First, it is a maximum-entropy densi-
ty operator, i.e., S[p(t)]=—Trp(t)lnP(t) is not smaller
than S[&(t)] for any density & that does not possess the
exponential structure. ' Second, it reproduces exactly the
experimental constraints and, of course, every linear com-
bination of the set [A„). Third, it provides the correct
asymptotic or equilibrium solution, since P(0) is a
maximum-entropy density. In particular, it is well known
that in the case of a damped, time-independent harmonic
oscillator, a Fokker-Planck equation rules the evolution of
the density matrix. ' The fluctuations of this density ma-
trix obey equations of the motion of the type (4.1) and it
has been shown' that the solution of the Fokker-Planck
equation is exponentially quadratic. This exponent can be
seen to be precisely our operator J2. This is then an ex-
ample in which our proposal is the exact solution of the
problem of irreversible motion. We believe that most gen-
erally, specific studies will be necessary in order to deter-
mine whether the maximum-entropy density matrix is the
exact one for arbitrary non-Hamiltonian dynamics.
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