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Observation of noisy precursors of dynamical instabilities
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%'e have measured the power spectra of a periodically driven p-n junction in the vicinity of a
dynamical instability. The addition of external noise introduces new lines in the spectra, which be-
come more prominent as a bifurcation point is approached. The scaling of the peak, width, area,
and hne shape of these lines is measured near the onset of two different codimension-one instabili-
ties: the period doubling and Hopf bifurcations. The results are in excellent agreement with recent
theoretical predictions.

I. INTRODUCTION

Nonlinear dynamical systems displaying a variety of
complex behavior have been the subject of much research
over the last decade. Of obvious physical relevance is the
effect of external random noise on these systems. For ex-
ample, several investigators have studied the effect of
noise on the scaling behavior of an infinite sequence of
period doublings, which in the absence of noise leads to
deterministic chaos. '

More recently, a theory was developed to predict the
effect of random noise on the power spectra of systems
displaying stable periodic behavior as those systems ap-
proach a dynamical instability. It was found that noise in-
duces new features in the power spectra, and that these
"noisy precursors" become more prominent as the insta-
bility is approached. Here, we report results of experi-
ments designed to test the predictions of that theory.

The most striking result of the theory is that the details
of the dynamical system are unimportant for the main
features of the power spectrum. Instead, there are only a
small number of qualitatively distinct precursors; the one
observed in any specific situation depends on the class of
instability the system is near. The classification, further-
more, follows solely from the deterministic dynamical sys-
tem.

The notion that seemingly unrelated physical systems
behave the same quantitatively in the vicinity of an insta-
bility is most familiar from the study of critical phenome-
na in statistical mechanics. The great success of the re-
normalization group leads to the grouping together of
varied systems undergoing phase transitions into univer-
sality classes. In an analogous way, bifurcation theory
allows one to classify the behavior of nonlinear dynamical
systems in the vicinity of a dynamical instability, or bifur-
cation. Reference 7 showed that this classification
scheme could be extended to include the effect of random
noise near an instability for systems displaying time-
periodic behavior. In particular, quantitative results were
derived for the codirnension one bifurca-tions, i.e., instabili-

ties encountered as a single control parameter is varied. A
similar extension for the codimension-one bifurcations of
time-independent behavior was previously derived within
the framework of a Fokker-Planck analysis.

The same set of noisy precursors should therefore ap-
pear in all types of dynamical systems. The experiments
described in the following were performed on a well-
characterized nonlinear physical system, a driven p-n
junction ' ' similar results should be seen, for example,
in laser systems' and hydrodynamical systems. "

Section II reviews the basic ideas and predictions of the
theory. Section III describes the physical system and pro-
cedures used in the experiments. Sections IV and V
present the results for the period doubling and Hopf bi-
furcations, respectively. Finally, a brief discussion is
presented in Sec. VI.

II. THEORY

xo(t+ T) =xo(t) . (2)

In the absence of noise, the observed power spectrum is a
sequence of 5 functions at frequencies co =0, 2w/T, 4'/T,
6'/T, etc. We want to see how the power spectrum
changes when external noise is added.

In phase space, xo(t) sweeps out a closed orbit. An
external perturbation can kick the system off of this orbit.

In this section, we summarize the theory of noisy pre-
cursors. A complete mathematical analysis is presented in
Ref. 7; here, we emphasize the physical picture behind the
theory, and state the main results.

The aim is to analyze the power spectrum of a periodic
system subject to external noise, when the system is near a
dynamical instability. Suppose that the dynamics is
governed by the set of differential equations

x =F(x, t;A, ), x C)R",

where E depends on some adjustable parameter A, , and
that the system has an asymptotically stable T-periodic
solution xo(t):
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After a single small kick, the subsequent evolution is
governed by Eq. (1) linearized about xo

j=D(xo,'l, lq, (3)

where q—=x —xo is the deviation from the periodic orbit,
and D is the matrix of partial derivatives

where g is a Gaussian white noise

(g( t) ) =0, & g;( t)g, (t') )

=a;J.6(t t') . — (6)

The results obtained in Ref. 7 were derived explicitly for
delta-correlated noise, but are valid for more realistic
noises provided that the correlation time of the second
moment is short compared with all time scales relevant to
the deterministic system.

Equation (5) is a linear, inhomogeneous equation with
periodic coefficients, and may be solved by employing the
results of the Floquet theory. ' Of particular significance
are the Floquet multipliers pj, which arise from special
solutions g~ of the homogeneous equation (3), such that

QJ.(t ~ T) =p~g)(t) . (7)

The QJ may be thought of as transient responses of the
system to an external impulse. Since xp is asymptotically
stable, the QJ diminish with time, so the (possibly com-
plex) Floquet multipliers must all lie inside the unit circle

~p, ~
(1 forallj.

As the single parameter A, is varied [see Eq. (S)j, the pi
move around in the complex plane —an instability is sig-
naled when one or more of the pz exit the unit circle. Ac-
cording to the results of bifurcation theory, the periodic
orbit xp will generically lose stability in one of three ways:

(i) a single multiplier P may exit the unit circle along
the positive real axis;

(ii) a single multiplier P may exit the unit circle along
the negative real axis;

(iii) a pair of complex conjugate multipliers (p,p*) exit
the unit circle, off the real axis.

From Eq. (7), we see that close to the instability the
transient response is dominated by a single +J in cases (i)
and (ii), and by a pair of QJ in case (iii). Furthermore, the
transient recovery or "relaxation" time ~ is governed sole-

-ly by the near-critica1 multiplier p. This last fact may be
exploited to experimentally measure p—we return to this
point in the following. The long-lived transient response
to perturbations is responsible for new features in the ob-
served power spectrum.

The dominance of the near-critical multiplier(s) simpli-
fies the analysis of the full Eq. (5) tremendously, and is
the origin of the fact that the main features of the noisy

D,J =
Bxj.

The effect of external noise is to continuously kick the
system, and may be modeled by adding a random function
of time to Eq. (3)

(5)

precursors in the power spectrum depend only on the class
of instability approached, and not on the details of the
dynamical equation (l). In fact, case (i) already noted
may be subdivided into two distinct classes, depending on
the existence or absence of a symmetry in the system.

We return to the relation between p and the relaxation
time r of the noiseless system subject to a single impulse.
Equation (7) may be rewritten as

gq ( t)=e ' Pi( t), (9)

r=( —Rep) '—:e (12)

The small quantity e is a natural bifurcation
parameter —it is zero at the onset of the instability. The
detailed calculations of Ref. 7 show that e determines the
size and shape of precursor lines represent in the power
spectrum, while Imp determines the position of the pre-
cursor lines. Quite generally, the precursor lines are cen-
tered at frequencies to=2~n/T+Imp, n=0, 1,2, . . ., while
the line shape is given by

i2 —1

K CO —6)pS(m)- —1+2 E
(13)

where a is the intensity of the external noise as defined in
Eq. (6), i.e., K is the added external noise power. The scal-
ing of these Lorentzian lines is shown in Fig. 1.

The general nature of the scaling is easy to understand.
As a~0, the transient response is more lightly damped,
which has two effects: first, the power contained in the
precursor line grows proportionally to ~= 1/e, and
second, the line becomes narrower, the width being pro-
portional to e. The power in the precursor also grows
with increasing noise power K. Together, these imply that
the peak of the Lorentzian must grow as Ke

En the present experiments, we were able to test these
predictions for cases (ii) and (iii) already noted, called the
period doubling and Hopf bifurcations, respectively.
Since the intrinsic noise level of our system is very low,
we could make direct measurements of the parameter e by

Peak — ~/g2

Width —&

Area —~t&

FIG. 1. Scaling of the noisy precursor lines, as given by Eq.
(13).

where Pj(t) is a T-periodic function, and the Floquet ex-
ponents pj are related to the corresponding Floquet multi-
pliers pj. via

pj =e (10)

The stability condition (8) may be expressed as

Repj (0 for all j .
The near-critical multiplier P corresponds to the exponent
p with the smallest (negative) real part, and from Eq. (9)
we see that the relaxation time is given by
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using Eq. (12): The noiseless system is given a single,
short perturbing pulse, and the damped oscillations of the
transient response is then measured for its decay time ~
(see Sec. III).

III. PHYSICAL SYSTEM AND
EXPERIMPNTAL PROCEDURES

We performed experiments to observe noisy precursors
for period doubling bifurcations on a simple physical
system —a resonantly driven silicon p-n junction, shown
in Fig. 2. This system has been studied in detail' and
is well characterized. It is essentially a driven nonlinear
asymmetric oscillator. Recall the nonlinear charge
storage properties of a p nju-nction: electrons from the
n region diffuse into the p region {Fig. 2), annihilating
with holes and leaving a net charged layer of donor and
acceptor ions fixed in the lattice, together with a built-in
potential difference N. For an applied reverse bias voltage
V, solution of the partial differential equations of dif-
fusion and drift yields a junction differential capacitance

CJ = =Cjp(1+ V/@)J gV Jo

where P=0.5, typically. For a forward bias voltage, holes
(electrons) are injected into the n (p) region, where they
become minority carriers, recombinating with electrons
(holes) and also diffusing back in a characteristic lifetime

However, for times t & r& following injection, this can
result in a rather large charge storage capacitance

Cs ——Cspexp( V/Ip),

where y=kT/e. The junction also conducts according to
the Shockley relation

Ig( V) =Ip [exp( V/q& ) —1 ]

Here, Vp(t) = Vpscos(capt ) is a driving sinusoid of precisely
controllable amplitude Vo~ and frequency mo, chosen to be
approximately

ro„,= [LCd( Vps ——0)]

i.e., at the resonant frequency of the inductor-junction
resonator at very low driving voltage. The voltage U„(t)is
a wide-band white random noise voltage generated from
the amplified current of a Zener (avalanche breakdown)
diode. Together with a precision attenuator X of range 0
to —100 dB, this provides a variable noise voltage V~(t)
at the driving point. The voltage Vp(t) is a perturbing
pulse used for measuring the recovery time ~, (i.e., the
critical slowing down time) of the system near a bifurca-
tion point and hence to provide a direct measure of rela-
tive values of the parameter e=r '=~, ' introduced in
Sec. II.

By solving the equations of motion of the system, it can
be shown to be equivalent to a driven damped oscillator
with a very nonlinear asymmetric restoring force. ' '

%ith V& ——0, Vz ——0, the system can be driven at increas-
ing values of Vps and displays a cascade of period dou-
bling bifurcations leading to chaos, as shown in the bifur-
cation diagram of Fig. 3, obtained by sampling and plot-

for the junction current.
Our experimental arrangement (Fig. 2) shows a p n-

junction of assumed total differential capacitance
Cd{V) =CJ+C„in series with an inductance L and resis-
tance R, driven by a summing amplifier g, with output
driving point voltage

Vp(t) Vs(t)+ VN(t)+ ~p(t) (14)
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FIG. 2. Experimental arrangement: a p-n junction driven
resonantly through an inductance I. and resistance R by a volt-

age Vo, which is the linear sum of voltages Vq, Vp, and v„(re-
duced by attenuator Ã). A single p-n junction is used for period
doubling bifurcations; a second (upper) identical is added to ob-
serve a Hopf bifurcation. The junction is a Si crystal containing
+ donor ions and electrons ( ~ ) in the n region, and —acceptor

ions and holes (0 ) in the p region.

FIG. 3. Typical bifurcation diagram for driven p-n junction
(Fig. 2), showing a period doubling cascade, chaos, and periodic
windows. Plotted is the set of consecutive current maxima II„)
(horizontal) versus amplitude of sinusoidal drive voltage Voq
(vertical).
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ting consecutive junction current maxima [I„}.Corre-
sponding power spectra [Fig . 4(a)] show peaks at
fo,fo/2, fo/4, . . ., and their harmonics. A two-parameter
study has been made with Vo~ and uo as control param-
eters, yielding the phase diagram Fig. 5, with these
features: characteristic hysteresis jump phenomenon of a
driven nonlinear oscillator, period doubling, onset of
chaos, band merging (e.g., 2—+1), periodic windows (e.g.,
3,6), crises, and hysteresis.

The effect of added random noise has been previously
studied experimentally for this system, with a value of
the noise sensitivity scaling factor I =6.4+0.2 found to
be consistent with the theoretical prediction I =6.649. . .
of Crutchfield, Nauenberg, and Rudnick. The scaling
factor I is defined as follows: for added noise voltage
Vg, suppose the cascade of period doubling bifurcations is
terminated (i.e., obscured) at some period T. Then if the
added noise is increased to I V~, the cascade will be ter-
minated at period T/2.

In summary, the driven p-n junction has been abun-
dantly studied and is perhaps the best candidate for quan-
titative testing of the predictions of Sec. II for the period
doubling instability of a periodic system.

By the addition of a second identical p njun-ction reso-
nator, shown by dashed upper lines in Fig. 2, we achieve a

lg
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)
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I

I I

10 20
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FIG. 5. Phase diagram Voz versus f for single p njun-ction
[Ref. (22)]. The noise-induced precursor is studied along the
dotted arrow.

simple system that displays a Hopf bifurcation to quasi-
periodicity. The phase diagram for two coupled junc-
tions is shown in Fig. 6, and power spectra in Figs. 4(b)
and (c). At driving frequency fo 27 kHz, th——ere is first a
period doubling bifurcation (1~2) at Vpg=0. 6V and
then a Hopf bifurcation at Vos ——3 V~, to a new incom-
mensurate frequency f, =(0.23)fo. The power spectrum
[Fig. 4(c)] shows peaks at the combination frequencies
f„=nfo/2+mfI, where n and m are integers. The
Poincare section is that of a 2-torus. We use this system
to study noisy precursors near a Hopf bifurcation.

In the experiments we measure the frequency spectrum
of the junction voltage Vd(t) using a H'ewlett-Packard
3580A scanning spectrum analyzer with scan range
0&f &50 kHz, maximum sensitivity 30 nVHz '~, and
spurious frequency rejection 80 dB. It has two output
modes: linear voltage V(f)= I ([Vd(t)] ) I'~; and log
power 10 logIoP(f)=10 logIo( Vd(t)) in dB, where the
average is taken over a selected bandwidth hf; typically
bf& 10 Hz « line width of noisy precursor. Both linear
and log power spectra were recorded for various values of

f
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0 l „PERIOD
DOUBLI NG

HOPF

lk L. Lk.
f
2

FREQUENCY

FICr. 4. Power spectra: 101og&OP(f) (in dB) versus frequency
f. (a) For single p njunction, showi-ng period doubling up to
period 8, f=f0=20 kHz. (b) For two coupled p njunctions at-
a drive voltage Voq ——3.20 V „afterperiod doubling, f=f0=27
kHz. (c) At Vpg =3.35 V, after a Hopf bifurcation to a
second frequency f'~ &fo/4.

0
0 10 20

& (aHz)
30

FIG. 6. Phase diagram for two coupled p njunctions [Ref. -

(22)] showing the domain of 1~2 period doubling and Hopf bi-
furcations. The noise-induced precursor is studied along the
dotted arrow.
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additive noise voltage V~ ——1.2 m V~, X 10 X ~&.
Here 8 is the band width of the summing or driving am-
plifier (-10 Hz, typically) and N (in dB) is the noise at-
tenuator setting (Fig. 2). We refer to N as the added noise
(in dB). Data were taken for various values of
b, V—:V,h —Vos, the deviation of the driving voltage from
its bifurcation threshold value V,h. To directly relate b, V
to the tlt. :.oretical parameter e introduced in Eq. (12), we
apply a short perturbing pulse Vp(t) and record the tran-
sient V~(t) on an oscilloscope to measure the time r, for
the damped orbit to decay to —, of its initial value; this
time is expressed as the number of cycles N, of the period
fo

'. For the period doubling case the experimental result
is N, (cycles) =(b.VV, 10 )

'+— o'. We assume that
data for a measured value of N, correspond directly to
the model with e~r, '~N, '. For a Hopf bifurcation we
similarly measure the decay time of the damped orbit,
finding N, ~(b.V)

To summarize, we rewrite the theoretical power spec-
trum prediction [Eq. (13)] S(co,K,e) in terms of measured
quantities

20—

cn 40-

4J

~ 20-
CL

(c)

I'(v, N, N, ) ~ NN, [1+(v/vo)~] (15)

for a I.orentzian line centered at relative frequency v=O,
with half-width at half maximum equal to vo ~ N, '. We
assume the correspondences a~N and e~N, . We fur-—1

ther assume that the linear spectrum V(v, N, N, ) to be
given by the square root of Eq. (15).

IV. EXPERIMENTAL RESULTS:
PERIOD DOUBLING BIFURCATION

P( 0) N l.o+0.05 (17)

Figure 7 shows power spectra for a junction driven at
fo ——20 kHz, slightly below the threshold for 1~2 dou-
bling, for which N, =27 cycles. The precursor peaks at
fo/2, 3fo/2, and Sfo/2 are shown for noise attenuation
settings N= —100, —50, and —30 dB, respectively, for
Figs. 7(a)—(c). For Fig. 7(a) the residual stochastic noise
of the junction system itself exceeds that added
(N= —100 dB) and is equivalent to Neq ——60 dB. Fig-
ure 8 is a linear voltage frequency spectrum, V(f) versus
f for N = —50 dB, on an expanded frequency scale of the
precursor at 3fo/2=30 kHz. Data are shown for three
different values of b, V, corresponding to N, =10, 26, and
S5, respectively for Figs. 8(a)—(c). This clearly displays
the decrease in width and increase in height of the line as
N, is increased toward the bifurcation point. The points
(+ ) are computed from the expression for a I.orentzian
line,

V(v)=H[1+8(v/v3) ]
where H is the observed peak height, V(v=0) =H, and v3
is the observed line half-width at one third of H. Except
for a small asymmetry in the observed hne shape, the fit is
quite good and verifies the prediction of Sec. II.

Figure 9 is a plot of the precursor peak power P(v=O)
versus the added noise power X for severa1 values of X,.
For the linear region —70 dB ~N ~ —20 dB we find, in-
dependently of N„

0—
Qt

i

2Q 40
FREQUENCY (kHz)

FIG. 7. Power spectra in 18 for precursors at fo/2, 3fo/2,
and Sfo/2 with f0=20 kHz and Voz set at b, V=0.015 Vbefore
the 1—+2 period doubling threshold. (a) Noise attenuation
N = —100 dB; (b) N = —50 dB; {c)N = —30 dB.

The upturn of the data at high attenuator setting,
X & —60 dB, is due to the intrinsic residual noise N, q in
the system before V~ is added. (Recall that N is the at-
tenuation of the controlled added noise. ) The precursor is
induced by the total noise N,q+N. The departure from
linearity for small attenuation, N & —20 dB, is not fully
understood. However, we measured the quantity ( V~) in
dB at fo —f„,with Vos ——0 and found a linear depen-
dence on N (in dB) up to N& —20 dB, where ( Vq) sa-
turated and then decreased at X-0 da due to nonlinear
noise-induced frequency shifting of the system resonance
to below fo at this high noise level. We note, nevertheless,
that the saturation effect in Fig. 9, and also in Fig. 12 for
the Hopf bifurcation, may be due to departure from the
simple theoretical model of Sec. II. Indeed, the simple
scaling is expected to break down very close to the bifur-
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+p( ()) N1.03+0.OS

gr —1.02+0.05 (20)

tQQ

For these data we also compute and plot the product H w
versus N„finding a line of slope 1.12+0.1, the uncertain-
ty due to scatter of data points. We interpret these results
as an experimental indication that the area

A= P N," e (21)

which should be compared with Fig. 1, A ~ e
To summarize, all the results [Eqs. (17)—(21)] are con-

sistent with the predictions [Eq. (16)].

I-
C9
IJJ l0—

1JJ
CL
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I-

LIJ

1

IO

N {cycles)
too

V. EXPERIMENTAL RESUI.TS:
HOPF BIFURCATION

FIG. 13. Relative peak height H (0) and half-width (6) for
precursor line shape Vq(f ) for Hopf bifurcation at N = —40 dB,
f1 ——6.744 kHz, and f&& 20 kHz——.

For the system with two coupled junctions (Fig. 2) with
phase diagram (Fig. 6) and power spectrum [Fig. 4(c)], we
have measured the effect of added noise on the peak of
the precursor of the second frequency f1 for a set of
values of b.V below the Hopf bifurcation threshold. These
data (Fig. 12) show that over the range —60 dB
~ N ~ —40 there is a simple relationship

N 1.03+.05
c

gp —0.99+.05

(24)

(25)

The measured quantity H m versus N, has a slope
1.09+0.1 implying that

p( 0) NO. 88+0. 1 (22) fp(f)df e—1.09+0. 1 (26)

p( 0) N1.97+0.OS (23)

From a linear spectrum scan we have measured the peak
precursor voltage H =p(v=0) and the width to, shown in
Fig. 13 for N= —40 dB,

I
IJJ

C)
CL

~ 20

CL

Deviation from straight line behavior for large and small
N are undoubtedly due to the same reasons discussed in
the last section: residual noise and nonlinear resonance
shifts. Other data near a Hopf bifurcation give an ex-
ponent —1.0+0.1 in Eq. (22).

In Fig. 10(b) we show measured values of the peak
power height for the precursor as a function of measured
values of the decay time N, . The results are

In summary, the results [Eqs. (22)—(26)] are consistent
with theoretical expectations [Eq. (15)].

VI. DISCUSSION

We have seen that the predictions of Ref. 7, as summa-
rized in Fig. 1, correctly describe the noise induced
features observed in these experiments. The scaling of the
height and width with bifurcation parameter e were
separately tested, since the experiment provided a means
for independently determining e via measurement of the
relaxation time 7. in the absence of noise. Carefully mea-
sured precursor lineshapes were found to be I.orentzian,
again in agreement with the theory.

We close by making a qualitative observation. ln Fig.
7, the broad precursor lines appear only at the odd har-
monics of the half-fundamental, while the lines due to the
basic oscillation remain narrow. This is the signature of a
nonautonomous dynamical system —that is, a system
whose evolution equation (1) depends explicitly on time,
which is the case for the experiments reported here. On
the other hand, the theory of noisy precursors predicts
that for autonomous systems, broadening of the funda-
mental frequency line will occur in addition to the precur-
sor features observed in driven systems.

0, 1 1 I

-6 -60 -50 -40 -30 -20
NOISE N (dB)

FIG. 12. Precursor peak power P(v=0) (in dB) versus added
noise X in dB for several values of Voq below the Hopf bifurca-
tion threshold, 6V=0.01 to 0.61 V, . The average straight line
slope is 0.88+0.1.
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