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Exactly solvable model of a particle interacting with a field:
The origin of a quantum-mechanical divergence
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The dynamically exactly solvable system of a local oscillator coupled harmonicalIy to a finitely ex-

tended one-dimensional string (continuum transmission line field) is studied in detail. An earlier

recognized quantum-mechanical logarithmic ultraviolet divergence in the oscillator s kinetic fluctua-

tions is shown to originate in the infinitely strong (rigid) coupling limit. For any finite couphng

strength the fluctuations are finite. Inter alia attention is given to such aspects as mode stabihty,

nonorthogonality of the eigenfunctions, the essential singular nature of the eigenmatrix, complete-

ness relations, the initial-value problem, infinite-system limit, quantum exponential decay,
coherent-state evolution, and the thermal string model.

I. INTRODUCTION

Physical observations (measurements) are generally
made on subsystems. The system of interest is embedded
in a (much) large system, and the interaction between the
two parts is usually considered to be weak in some sense.
Normally, the precise dynamical features of the "rest of
the system" are eliminated from the modeling of the "sub-
system under observation" in favor of a statistical descrip-
tion. In this spirit the (infinitely) large environment is
typically treated as a heat bath (or thermal reservoir). In
consequence of the coupling the subsystem loses part of
its coherent (i.e., directed) energy from its few degrees of
freedom to the reservoir, where this energy is (often rapid-
ly) distributed randomly among the very many degrees of
freedom of the environment. In turn, the reservoir then
couples incoherent energy (noise) back into the subsystem.
In this way the well-known relation between dissipation
and fluctuations is physically realized.

The precise mathematical formulation of the above-
described features has been recognized to be highly non-
trivial. In view of the encumbering difficulties, and also
for practical purposes since the noise is often small, dissi-
pation has been described historically most frequently by
means of classical phenomenology within a Newtonian
framework. The standard textbook example is the simple
linearly damped harmonic oscillator, i.e., g+ 2A,g
+Q /=0, where A, is often called the friction coefficient
(see, e.g. , Ref. 1). However, for good reasons modern
mathematical physics relies heavily on the Lagrange-
Hamilton formulation of mechanics. This is true in par-
ticular for quantum theory. Unfortunately, it is highly
problematic to cope with time-irreversible phenomena
within this framework in any simple consistent manner.
An interesting, though still controversial, attempt is
known in the so-called time-dependent Caldirola-Kanai
Hamiltonian (see, e.g. , Refs. 2—5). Another example may
be provided by the author's quasi-Hamiltonian theory, in-
voking complex dynamical variables (see, e.g., Refs. 6—8).
Although this approach can be pushed quite far even in

its quantum-mechanical consequences (see, e.g., Refs. 9
and 10},it obviously never really gets beyond the descrip-
tional level.

At the more conceptual level one indeed begins with a
closed Hamiltonian system and investigates the dynamics
of a nonisolated subsystem. It is useful to divide such
modeling into two categories. First, there are models con-
sidered to be physically realistic, such as for an atomic
electron interacting with the electromagnetic field, for in-
stance, in a laser cavity. These models can be solved only
perturbationally in terms of the coupling strength, if it is
weak enough. Generally it is difficult to decide, for ex-
ample, on the problem of convergence or analyticity, or
completeness of the solution. Second, there are models
that are hopefully still relevant for the crucial questions
but are so simple that they can be solved exactly. The sys-
tem to be discussed in the present paper belongs to this
second category. It is a generalization of an earlier ver-
sion, discussed in some detail in Refs. 11 and 12, which is
closely related to work of Lamb, ' Stevens, ' Yurke and
Denker, ' ' van Kampen, ' Schwabl and Thirring, '

Ford, Kac, and Mazur, ' Ullersm3 20 and I.odder. ' See
also Refs. 22 and 23.

The treatment in Ref. 11 in particular has clearly
shown how dissipation may arise. Suppose that the physi-
cal object of interest (say, an oscillator, be it purely
mechanical or electrical; see Ref. 11 for details) interacts
with its environment in such a way that it is capable of
emitting and receiving waves (of some kind), and suppose
further that it is possible to distinguish clearly between
so-called "outgoing" and "incoming" waves a la
d'Alembert. This will be the case, for instance, for an os-
cillating "ball" attached rigidly to a long "cord" that is
kept under some tension. Then the damping of the
oscillator's motion takes place through the generation of
outgoing waves (emission}. If the velocity of propagation
of these waves is now finite, while the environment is of
infinite extension, then these outgoing waves mill never re-
turn to the oscillator in any arbitrarily large finite time in-
terval. However, the environment itself may and in gen-
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eral will also generate waves, for instance, by thermal ex-
citations. Part of those waves are incoming for the oscil-
lator and represent the noise.

Unfortunately, the earlier version of the model gives
rise to two difficulties. The least troublesome one is that
the exact dynamical solution, obtained by means of an
eigenfunction expansion, requires a finite renormalization
of the initial conditions (see, e.g., Appendix B, and also
Refs. 20 and 22). This problem manifests itself in
eigenfrequency sums or integrals of the
type deuto 'sin(cot)=n/2 ind. ependent of t, whereas

0
each separate 'mode sin(cot)~0 as t~O. Apparently, this
is due to the fact that the model described in Refs. 11 and
12 does not possess any intrinsic cutoff frequency. The
more serious difficulty, however, shows up in the model's
quantum mechanics although it is intimately connected
with the above-mentioned absence of a spectral cutoff
mechanism. Namely, it turns out to be impossible to cal-
culate the frequency sum or integral pertinent to the
oscillator s kinetic quantum noise because it diverges loga-
rithmically at the high-frequency end. The ca1culation of
Ref. 11 anticipated the limit of infinite extension of the
environment (a string, or continuum transmission line) at
an early stage, but in Ref. 12 is was definitely shown that
this infinite result is an exact consequence of that model
for any size of the system. Further, this logarithmic in-
finity could not be removed by means of some renormali-
zation procedure or other mathematical manipulation. '

In Ref. 22 a first brief attempt has been made to ex-
plain and eliminate the above-noted deficiencies in a
quantitative manner within the context of a somewhat
different model. It was clearly pointed out that, as con-
jectured (see also Ref. 23), such infinities vanish only if
there are no particles in the system which are "rigidly" (or
"stiffly") coupled —in a sense that will be made more pre-
cise in the present article —to a continuum transmission
line (or string) as the environment.

Therefore we will consider the simplest nontrivial gen-
eralization of the model treated in Refs. 11 and 12. On
one hand it is still fairly easy to solve exactly, but on the
other hand it is structurally rich enough to provide the
proper framework for a comprehensive quantitative dis-
cussion of all relevant aspects. In macroscopic terms (see
Fig. 1) the system can be said to consist of a particle with
mass I, which has been connected first of all to a rigid
support by means of a spring with Hooke's constant b, in
such a way that it is constrained to move frictionlessly up
and down only. Next, the particle has been attached to a
string of length A via another spring with Hooke's con-
stant B, which is generally different from b. The string is
under tension u and has a mass p per unit length, so that
the velocity of propagation for transverse waves becomes
c =(M/p)'

In Sec. II we essentially solve the dynamics of the sys-
tem in terms of its natural modes. In Sec. III we discuss
certain interesting features of this solution. Quantum-
mechanical aspects of the model are treated in Sec. IV, all
considerations being exact for any finite length A of the
string. Then, in Sec. V the limit A~~ is considered.
Section VI contains a final discussion and some conclud-
ing remarks. Further aspects are discussed in the appen-

dixes. In Appendix A the singular character of the matrix
of eigenfunctions on the string is proven in detail. The
quantum-mechanical law of exponential decay is con-
sidered in Appendix B, where we present a calculation
based on the work of Schwabl and Thirring. Appendix C
has been devoted to some aspects of the system's coherent
states. Finally, the case of a thermal string is treated in
Appendix D.

II. CLASSICAL MECHANICS

z „cz~=0 o—n x E (0,A)

z „(A,t)=0,
B(g—zo)+pc z„(O,t)=0,
m0+b0+B(0 —zo) =0 .

(2.2)

(2.3)

(2.4)

The Neumann condition (2.3) at x =A is the natural con-
dition following from (2.1), where the far end of the string
is free. Pinning the end at x =A to z=0 would have
lead, of course, to the Dirichlet condition z (A, t) =0. This
results in effect only in an overall phase shift of m/2 in
the eigenmodes (see, e.g, Ref. 22). In the limit A~ ao this
difference even becomes totally irrelevant. In view of ear-
lier work we adhere to (2.3). Using (2.4) to eliminate g(t)
from (2.5), one gets

mi o+bzo (pc /B)[mi ——„+(B+b)z„]o . (2.6)

Once using (2.2) on the right-hand side and dividing by
m, one may write (2.6) as

io+ 0 zo 2Ac(z ——„+c, Hz „„)o,

FIG. 1. Model of an osciHating particle coup1ed Aexibly to a
mechanical string of finite length. See the Lagrangian (2.1) in
the text.

Consider Fig. 1. This model has already been explicated
in the Introduction. The transverse displacement from
equilibrium (z:—0) of the string is indicated by z (x, t); the
displacement of the particle is denoted as g(t). The La-
grangian reads

L = —,
'
mg —,' bg ——,B—(g—zo)

(2.1)

where pc =u, z, =dz(x, t)/dt, etc., and where we have
set zo=z(O, t) for convenience. It is straightforward to
obtain from (2.1) the dynamics as
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where'4 (2.12) to eliminate yA, . Indeed, setting cur, =ia, .one im-
mediately notes the inequality

(2.8) 2A«(1+1~ H)tanh(«A/c)+«+Q &0 &0. (3.3)

Equation (2.7) simply plays the role of the (dynamical)
boundary condition on the wave equation (2.2) at x =0.
Subject to the Neumann boundary condition (2.3) at
x =A, the wave equation is solved by

1/2

(&qe +&q e " )@I,(x), (2.9)z(x, t)= g
263k

@1,(x)=v'2/Acos(col, x /c —q&«),

cur, A/c —y« kn w——ith k =0, 1,2, . . . ,

(2.10)

(2.11)

pI, ——arccot[(Q —coI, )/2i. a)r, (1—coj,r )] . (2.12)

This completes, in fact, the solution of the string's
dynamics. The explicit behavior of the particle is now
easily obtained from either (2.4) or (2.5). Employing the
latter is the more direct route. One finds

—Icos f g IMI f)@0( )g(t)= g — (a~e
k 2cok

L

@«(0)= [(1 Qr )/(—1 —a)gd)]@g(0),

(2.13)

(2.14)

where from (2.8) we have inferred that (1+6/8)
=1 Qr . —

and where the scale of the coefficients in (2.9}has been set
by convention, anticipating quantum-mechanical con-
siderations. Inserting now (2.9) and (2.10) into (2.7), one
obtains the phase shifts

Hence, there are no imaginary cok, which is what we set
out to show.

B. Nonorthaganality

As a necessary consequence of the attachment of the os-
cillator to the string, the eigenfunctions (2.10) ar'e not
orthogonal on x E(O, A). This consequence is indeed
necessary, for if the @1,(x) were orthogonal on the string,
we could readily invert (2.9) at t =0 in order to express
the a«and aq in terms of the initial conditions of the
string only. But by (2.13) that would imply that the
dynamics of the particle could be given in terms of those
initial conditions only, i.e., without specifying the
particle s own initial conditions. Clearly, this can not be
correct. Mathematically this lack of orthogonality arises
because the boundary condition (2.7) at x =0 is of a
dynamical nature, so that per mode it depends itself ex-
plicitly on the eigenfrequency (see also, e.g. , Ref. 26). De-
fining

'gkI = 4k X NI X X (3 4)

»n(ei —qi}»n(e a+a i)+
COk —CO~ Q)k +MI

c
Ikl

inserting (2.10) for the 41,(x), evaluating the integral, and
using (2.11) at x =A, one finds

c slntpk cosk
9kk —l+ (3.5)

A COk

T

III. PROPERTIES OF THE SOLUTION

It is of interest to investigate a number of important
features of the dynamical solution obtained in Sec. II.

A. Made stability

H= —,mg + —,'bg~+ ,'B(g—zo)—
0.1)

the present model should be free of such instabilities.
This is confirmed explicitly by the characteristic equation

i

2~~tan(co~A/c) =(0 coI, )/(1 —m1, 2)—, (3.2)

which arises from taking the tangent of (2.11) and using

Self-accelerating or runaway modes might occur if the
Hamiltonian belonging to the Lagrangian (2.1) were not a
positive definite form. Such a situation arises, for in-
stance, in the theory of the (point) electron, the elec-
tromagnetic field playing the role of the transmission line,
typically due to the involved (mass-) renormalization pro-
cedure. In view of the absence of any such procedure in
the treatment of Sec. II, and considering the apparent pos-
itive definiteness of the Hamiltonian belonging to (2.1),
namely,

k~1 . (3,6)

By means of some elementary goniometric manipulations
one easily rewrites (3.6) as

2c cosjPk cos+I
Ikl 2 2 (cogtan%g coltan+t) '

COk —Q)~

k+1 . (3.7)

Now employing (2.12} for tanyI, and tang~, and combin-
ing terms, one obtains

r

2c 1 —Q 2 cost'I

A 2A 1 —Q)g 9 1 —Q)I 'r

(3.8)

4&g(0)@((0), k&I .
P

(3.9)

The effective oscillator eigenfunctions 4~(0) have been
defined in (2.14). Note that, as expected, the off-diagonal
elements gq+~ become zero if either (i) 8 =0, so that
Q 2=1, i.e., complete decoupling of string and particle,
or (ii) m =0, i.e., complete absence of the particle. In Ap-

Finally, using (2.10) at x =0, and (2.8) for 2A, , the result
reads
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pendix A it is shown that the qkI not only are norizero for
k&1, but that they essentially form a singular matrix, i.e.,

does not exist. This unequivocally rules out the pos-
sibility to use 11k/ to invert (2.9) in order to express the
dynamical solutiori in terms of the initial conditions. For-
tunately, from (3.9) it is now evident that the matrix

z (x)= g m 8kk'&k(x)@k(0) g(0)
k

+ f g p4'kk'@k(x)@k(x') z(x')dx', (3.15)

'1) k/ =Pr/k/ +m @k( )@I( (3.10) g(0) = g m5kk'4 k(0)' g(0)

X(1—Qr )
cos+k

1 —cok r

2

(3.11)
L

This formula reduces to the earlier obtained results in
Refs. 12 and 27 if r =0.

C. Completeness relations

The eigenfunctions (2.10) obey a number of interesting
completeness relations. All considerations in this subsec-
tion are at the arbitrarily chosen time t =0. First consid-
er z(x)=—z(x, O) from (2.9). Define the spectral coordi-
nates

will be exactly diagonal by construction. Hence, it can be
inverted trivially. Two comments on (3.10) seem in place.
First, it is important to note the structure of the added
term as the product of two (effective) eigenfunctions.
This property will be crucial in the application of (3.10),
already in Sec. III C. Second, the structure of 8k/ as con-
sisting of the usual form (3.4) along the transmission line
(with density p) plus an added product term pertaining
solely to the attached particle (with weight m) readily
generalizes if more particles are attached. See for an ex-
ample of such a situation Ref. 22. Finally, using (3.5) for
11kk and (2.12) for tanyk, an explicit calculation of (3.10)
yields

2 2I & +~k 2'4/ =~k/ P+ (1+cokr ) (20r)—
A Q)k

A

+ I gp&kk'@k(0)ek(x) z(x)dx . (3.16)

Hence,

y pekk'ek(x)ek(x') =5(x —x'),
k

X &kk'@k «)~'k(0) =0,
k

Xj m8kk Nk(0) = 1

k

(3.,17)

(3.18)

(3.19)

It is an iriteresting exercise to verify these relations, even
if ~=0, for instance in the limit A~ oo, so that the sums
can be replaced by integrals (see Sec. V) and one can resort
to the standard mathematics of complex functions. See
also Refs. 11, 12, and 22.

D. Initial conditions

Pk= —~

1/2
k

«k &k»— (3.20)

In this subsection the dynamical solutions (2.9) and
(2.13) will be expressed explicitly in terms of the initial
conditions of both the transmission line and the particle.
Using essentially the same completeness relations pro-
cedure as discussed in Sec. IIIC also for z(x)—=z(x, O)—:z, (x,O) and g(0), one finds that the spectral momenta
defined by

1/2

qk =— (ak+ ak ) .
2COk

(3.12)

may be given as
A

pk =5kk' m@k(0)g(0)+p J @k(x)z(x)dx (3.21)

Then multiply (2.9) at t =0 by N/(x) and integrate from
x =0 to A. Using the definition (3.4) of 11k/, one thus has

Introducing now both (3.14) for qk and (3.21) for pk into
(2.9) and (2.13), one obtains

f 4k(x)z(x)dx = g r/k/q/ .
0

l
(3.13)

z(x, t)= mA(x, t)g(0)+mA (x, t)g(0)
A

+ [ A(x, x', t)z(x', 0)+A (x,x', t)z(x', 0)]dx',
0

As shown in Appendix A, this result cannot be inverted,
which is as it should be. Now multiply (2.13) for the os-
cillator at t =0 by m@&(0) and add this to p times (3.13).
Noticing the definition (3.10) by 5k/ and the diagonality
property expressed in (3.11), one then readily obtains

g(t)= A(t)g(0)+A(t)g(0)
A

+ p A xtz x0+A xtzx0 dx,
where

(3.22)

(3.23)

A

qk =5kk' m@k(0)g(0)+p J @k(x)z(x)dx (3.14)

A (x,x', t) = gp8kk'@k(x)@k(—x')cok 'sin(cokt),
k

A (x, t) = g 8kk Nk(x)@k(0)cok sl (cd t)k,
k

(3.24)

(3.25)

Substituting these qk back into (2.9) and (2.13) at t =0,
one arrives at the two identities A (t) = g m5kk @k(0) cok sin(cokt) .

k
(3.26)
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Notice that the completeness relations (3.17)—(3.19) imply
A(x, x', 0)=5(x —x'), A(x, O) =0, and A(0) =1. Thus
they supply an explicit check on the proper initial condi-
tions in (3.22) and (3.23). Finally, it is of interest to con-
sider a special case in shghtly more detail. If we suppose
that the string is initially in a state of .complete rest, in the
sense that z(x, O)=z(x, O)=0, then the behavior of the

particle is obviously simply given by

g(t) =A(t)g(0)+2 (t)g(0) . (3.27)

Using the definition (2.14) of the @k(0), (2.10) for the
@k(0), and (2.12) for the phase shifts yk, one obtains in
extenso

4X cko(1 —Q r )

2 2 2 2 2 2 2A k (Q —cok) +4k, cok(1 t—okr )

sin(cok t)
(3.28)

It is recalled that 8kk has been given explicitly in (3.11), and that the frequencies cok follow from (3.2) for arbitrary A.

IV. QUANTUM MECHANICS

In view of the conservative nature of the system
described by the Lagrangian (2.1), the Hamiltonian (3.1)
will be a constant of the motion so that the following cal-
culations can be done at t =0 for convenience. But before
substituting the explicit solutions (2.9) and (2.13) into
(3.1), it appears to be considerably easier to first slightly
rewrite this Hamiltonian. Let us partially integrate the
potential energy term of the string. Using the boundary
condition (2.3) at x =A, this leads to

H= —,mg'+ , bg'+ ,'—&(g z—) —,
'—pc'z z—„(0)

Next using the "x =0" boundary equation (2.4) to elim-
inate z „(0)yields

H= 2m''+ 2bk'+ z&PP —z0)

(4.2)

F1~ally, using the "x =0" boundary equation (2.5) to
eliminate zo and, moreover, employing the wave equation
(2.2) on x E (O, A) for z, one obtains

H = —,
'

m (g —g') + —,
'
p J (z, —zz «)dx .

Now inserting (2.9) and (2.13) at t =0, one readily finds

(4.3)

2 y @kk(Pk+t0kek) ~

k
(4.4)

where use has been made of (3.12) and (3.20), and of (3.10)
and (3.11) for 5kt. The Hamiltonian (4.4) clearly
represents a sum of independent harmonic oscillators with
so-called normal mode frequences cuk. Of course, this is
as it should be if (2.9) and (2.13) indeed exactly solve the
dynamics. The fundamental commutator pertaining to
(4.4) is found in the standard manner from (3.14) and
(3.21), on the basis of the only nonzero commutators

[g,mg]=is, [z(x),pi(x')]=iriS(x —x'), (4.5)

H = g fkOk@kkakak
k

[ak at*]=&ai'

(4.7)

(4.8)

any other commutator being zero, as usual. It is now in
fact a textbook exercise to construct the complete set of
harmoriic oscillator states per modes cok for the present
system. In principle, from these or any linear combina-
tion of them (for instance, coherent states, see, e.g., Refs.
29—31) anything can be computed. See also Appendix B,
where we calculate a transition element, and Appendix C
where coherent states are considered. In view of earlier
work, which as explained in the Introduction can be con-
sidered as a major motivation for the current investiga-
tion, it is of particular interest to study the quantal fluc-
tuations of the particle in an eigenstate of (4.7). Special
attention will be given to be ground state, which is not
only typical but will also be the zero-temperature final
state for the oscillator, independent of the initial condi-
tions, in the limit A —+oo where this subsystem behaves
dissipatively for all times. See also Sec. V. In Appendix
D the case of the thermal string is considered. The
ground state is defined by 5kk ak

~
0& for all k, and expec-

tation values in it will from here on be indicated by a sub-
script zero. Using (2.13) for the position fluctuations and
the kineti'c momentum Auctuations, one easily gets,
respectively,

& g'&0 , e g ——ek—k'~k 'C k(O)',
k

(4.9)
&p &0 2™y'4k ~kg k(0)

where p =mg. By means of (2.14), (2.10), and (2.12) it is
straightforward to arrive at the explicit formulas

(Q —cok) +4k, tok(l —a)kr )

(4.10)

tions (3.12) and (3.20), one may ultimately present the re-
sult also in terms of the ak and ak as

to be

[A Pt]=~&&kr (4.6)

4A, teak(1 —Q r )
&0 m g+kk

A k (Q —tgk) +4k. COk(l t0kr )—
It is recalled that Ski is diagonal. In view of the defini- (4.11)
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These expressions are exact for any size A of the system.
Notice that neither (g )0 nor (p )o involve infrared prob-
lems (tok&0) as 0&0. Further, as long as r&0, (4.10)
converges like cok and (4.11) does so like'cok when
cok ~ ao. Only if ~=0, the momentum fluctuations (4.11)
show an ultraviolet logarithmic divergence since in that
case the summand goes like ~k ' when cok —+ m. This very
special case for the present model, however, precisely
represents the situation considered earlier in Refs. 11 and
12. Physically, with m&0 and Q finite, the case r=O can
be realized only by B=ao, which defines "strong" (or
"rigid, " "stiff") coupling between particle and transmis-
sion line field. See Fig. 1. See also Ref. 22.

V. INFINITE-SYSTEM LIMIT

Let us consider the interesting limit of infinite system
size A~ oo. In this case, where the string extends to in-
flnity, 'the frequency spectrum becomes continuous and
sums over discrete cok can be replaced by integrals over
continuous co. This replacement can be done perfectly
simply in the present treatment. There are no subtleties
involved and, hence, there is no reason to go into the com-
plex frequency plane for the purpose (see, e.g., Refs. 17,
20, and 33). From (2.11) and (2.12), with 1=6,k, one
infers that

—Ak =—b,cok 1 ——[y'k+0(b, cok )]
c 1 C

A m A
(5.1)

(ci) ) =2l A,t co —co —2E A,co +Q (5.3)

where X(to) is just the usual response function (see, e.g.,
Refs. 22, 23, and 34) for the classical dynamical system

J

But according to (2.12) g'k:—Byk/Brook, and higher deriva-
tives, will be a function of order A . Hence, as A~~
one has

00

CO . (5.2)
O ~ 0

Consider now the dynamics of the particle as given by
(3.27), which is correct subject to the initial condition
z(x, O) =z(x,O) =0 along the string. By means of (5.2) the
propagator (matrix element) (3.28) becomes a fairly simple
integral which may be calculated explicitly using standard
contour integration in the complex co-plane. Factorizing
the denominator in (3.28), and taking t &0, the relevant
poles are easily seen to follow from the zeros of

equation as zo(t), one immediately arrives again at (5.4).
The result (5.4) is exact for the present model for all time
tE'(O, ao) only if A= ao. Its crucial feature is ~&0. As
has been noted at the end of Sec. IV, it is precisely this
feature which provides a sufficient intrinsic frequency
cutoff in order to yield a finite result in (4.11).

In the physically significant case where ~ is very small
compared to any other time scale in the system (i.e., Q

'), the analysis of the zeros of (5.3) simplifies enor-
mously. It is an elementary exercise, keeping only leading
terms in r everywhere, to show that X '(co) from (5.3)
can be factorized as

- X (to) =(2i A. re 1—)(co co+i—A, )(co+co+i A), , (5.5)

4',
(g )0—— (1—Q v ) f dao' iX(co) i@pc

(1—Qr)

(5.7)

&& f dcoco/t (I+4K, r to )

where co—:(Q —A, )'~ represents the standard reduced
classical frequency. According to (5.5) the dynamics of
the particle is now clearly governed by three simple ex-
ponentials, one of which is purely and rapidly decaying.
Instead of calculating (3.28)—in the limit A~ ao and with
the normalization adapted to the approximation involved
in (5.5)—one can, of course, also determine the three con-
stants of integration involved in solving (5.4) in the ap-
proximation (5.5) by means of the initial conditions, i.e.,
g(0), g(0), and (2.5), which reIates g(0) to g(0). Finally,
one can similarly determine A (t) directly from the three
requirements A(0)=0, A(0)=l, and A(0)=0. Keeping
again only leading orders of r everywhere, one finds

1

A(t)=- 8A, r [e ' —e 'cos(tot)]

+(1/B)e "'sin(cot) .

Let us consider the oscillator's quantum fluctuations
(4.10) and (4.11) in the limit A~ oo. Using (5.2) the sums
again become integrals, which can be calculated to give a
finite result since v&0, as noted previously. We once
more discuss the important limit &~0. In the approxi-
mation (5.5) the integral (4.10) for the position fluctua-
tions can be evaluated as

2A,Hg +/+2', g+ Q /=0 . (5.4)
X [(Q —co ) +4k. co ] j . (5.8)

This exact result for the dissipative behavior of the oscil-
1ator in the limit A —+ oo could have been obtained easily
in the alternative way outlined in the Introduction.
Namely, if the string is at complete rest at t =0 [as it is
with (3.27)] and if its length is infinite, then "lassically
and at zero temperature —there can only be outgoing
waves a la d'Alembert in the system, which stem from the
excitation of the oscillator. But hence the field along the
string is of the type z(x —ct) only, such that
z „=—(1/c)z, . Using this relation in the boundary con-
dition (2.7) at x =0, recalling that z, (O, t) =ic(t), and no-
ticing from (2A) that g(t) must obey the same differential

Then setting s =—~ and writing the integrand as two obvi-
ous fractions yields

(g ) = (1 QH)—

00 l —4X2&4s le.4~'
22 2+(s —Q ) +4k, s I+.4A, ~s

(5.9)

In the usual manner, proceeding with the first fraction
(see, e.g., Ref. 38) and carefully evaluating the pertinent
logarithmic integrals, one obtains
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1 ci) —A,
arccot

2A,QP, 2A,QP

(5.10)

This reduces to the by now well-known result if &=0, as it
should (see, e.g., Refs. 11, 12, 15, 22, 23 and 39). The in-
tegral (4.11) for the momentum fluctuations can be han-
dled in the approximation (5.5) as

(p )0—— (1 Qr—) f deco IX(co) I

ape
2 4

RA. 2+) J~ 1 —4A, ~s
m.m o (s —Q2) +4k, s

(5.11)

(5.12)

The linearly diverging parts of the two fractions precisely
cancel and one is left with

(p )o-=(1—0 2) f ds
4A v Q+s

(s —0 ) +4k, s

(5.13)

This form can now be treated in the usual manner, as with
(5.9). The result is

co —A,
arccot

2A,co

in(4g2~4Q2) (5.14)

VI. FINAL REMARKS

which clearly exhibits the appearance of the logarithmic
divergence when v—+0. From

I
X(co)

I
it is clear that the

effective cutoff frequency may be given as co, = (2iLr )
co, =(2A,v ) (6.1)

which effectively suppresses the quantum-mechanical in-
finities found in earlier work.

the obtained set of eigenfunctions were derived, while the
dynamical initial-value problem has been solved explicitly
in Sec. III D.

In Sec. IV we have considered the exact quantum-
mechanical spectrum of the system. As expected, it con-
sists of a complete set of harmonic oscillator eigenstates
per classical natural mode ~k. The particle's quantal
noise has been discussed as a function of the coupling
strength between the particle and the string. The previ-
ously observed (see, e.g., Refs. 11, 12, 22, and 23) logarith-
mic ultraviolet divergence for the momentum fluctuations
has been shown, most clearly in (5.14), to originate in the
strong (or rigid) coupling limit (Hooke s constant B +ou, —
i.e., ~~0). It may further be of interest in this context to
dote that the present mechanical model depicted in Fig. l
has an electrical analog where, essentially, self-
inductances take the place of masses and capacitors play
the role of springs. See, e.g., Refs. 11 and 16. This analo-
gy is relevant, for instance, with regard to Josephson and
superconducting quantum interference device (SQUID)
circuit investigations (see, e.g., Refs. 23, 40, and 41).

Finally,
' Sec. V contains considerations regarding the

limit of a (semi-) infinitely extended string. The problem
of a two-sided string extending from x = —A(~ —oo ) to
x =A(~ oo ) has been discussed in Ref. 12 and essentially
leads to a redefinition of the friction coefficient A, (i.e., the
oscillator's dissipation rate) by a factor of 2. In the limit
A~ oo spectral sums become integrals over a continuous
frequency spectrum in a very simple manner. Several for-
mulas, e.g., for the propagators (3.24)—(3.26) and the
quantum noise (4.9)—(4.11), were shown in their relation
to the exact classical response function in this limit. The
particle behaves dissipatively: there are two damping
terms in its equation of motion, namely, 2A,g and 2A,r g.
The case where v. is much less than 1/A, and 1/0 has been
treated explicitly in some more detail. A basic result of
this paper is the quantitative recognition of an intrinsic
Lorentzian cutoff factor with finite cutoff frequency

The dynamics of the system described by the Lagrang-
ian (2.1) has been solved exactly for arbitrary finite size A
by means of the Lagrange formalism, employing tech-
niques of spectral decomposition and determining the per-
tinent phase shifts. Then, in Sec. III A it has been shown
that the model is free of self-accelerating or runaway
modes. Section IIIB provided a discussion of the nature
of the nonorthogonality of the eigenfunctions. This
feature was clearly shown to arise from the flexible
( B & oo ) coupling of the particle to the continuum
transmission line. Only if this coupling were rigid, so that
r as defined in (2.8) were zero, according to (2.14) that
@k(0)=Nk(0), and by (3.10) the mass m can then be in-
cluded as a singularity at x =0 in the mass density p of
the string (see also Refs. 11, 12, 15, 22, and 27). Qf
course, the nonorthogonality feature also vanishes from
the formulas if m =0, i.e., if the particle were totally ab-
sent, In Sec. III C a number of completeness relations for

APPENDIX A: THE SINGULAR NATURE OF gkE

We prove by explicit construction that the matrix gkI
defined by (3.4) is singular. If g~~ exists, then it is de-
fined by

—1

Ikl gin ~kn
1

Using (3.10) for rik~, one obtains

g I +kl mc k(0)@l(0)1 )ln p~kn
1

(Al)

(A2)

Since by definition Skl =@kk5ki, one. immediately finds

)kn =p+kk ~kn +m+kk @k(0)g gin @j(0)
I

(A3)

Multiplying (A3) by @k(0) and summing over k, one can
solve for
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g ns. '~'t (0)=S»n. 'C" (o)
l

1 —g mekk'c pk(0)'
k

(A4)

+pm &kk'C'k(0»tI '~ i(0) 1 —g m 4.„„'4&„(0)

which upon substitution into (A3) gives the result
—1 —1

lkl P@kl

In the limit A~ oo the sum becomes an integral according
to (5.2). But because the sum, and hence the integral, con-
tains essentially only positive frequencies, (83) cannot lead
to purely exponential behavior, as in Ref. 18. As usual, in
the weak damping limit A.~O the main contribution to
(83), due to the denominator arising from Nk(0), is
recognized to come from cok —Q. Moreover, the factor
(tpk+0) in the numerator effectively suppresses a reso-
nance near ~k ———Q. Simply extending then the spec-
trum to all negative frequencies and collecting those con-
tributions which are even in cpk, using (3.26) one finds

(A5)
P(t) = [A(t)]'+(1/4Q')[A(t) —O'A(t)]', (84)

However, according to the completeness relation (3.19) the
denominator in the off-diagonal part of gkt will always
be exactly zero, which explicitly proves the assertion that

does not exist.

u( t) —=i(m /2AQ)'~ [g(t) i Qg(t)], —
which together with its conjugate creation operator ~ (t)
forms the usual algebra [~(t),~'(t))=l on the basis of
(4.5). We then define our initial state with probability 1

by operating once with ~'(0) on the physical ground state
~
0), which as in Sec. IV is defined by 5kk ak

~

0) =0 for
all k =0, 1,2, . . . . This creates the so-called "undressed"
state of Ref. 18. Now one might ask for the probability
that the particle remains in this first excited state until
time t. In an obvious notation we have

P(t)—= (&I,g, i l, gp& ['= ]~p&0~-«)-*(0) ~0& ~'.
Here go is a normalization factor at t =0, which is needed
since the state

~
l, gp) as defined above is not necessarily

normalized to unity. This is so because, obviously, the
ground state

~
0) of the Hamiltonian (4.7) does not coin-

cide with the ground state of the Hamiltonian operator
Hp=trtQ~'(0)~(0). It is now straightforward to insert
(2.13) into (81), and to obtain

y m~kk teak (~k+II) C k(0) e
4Q

(83)

APPENDIX 8: QUANTUM EXPONENTIAL DECAY

In this appendix we briefly present y calculation of a
transition probability between oscillator states of the par-
ticle. It is basically an adapted version of the original cal-
culation of Schwabl and Thirring. ' These authors ob-
served two difficulties in their modeling: (i) the absence
of negative frequencies spoiled the purely exponential
behavior and (ii) even after including those (in fact nonex-
istent) negative frequencies, their initial normalization
P (0)= 1 was spoiled [it approached unity only in the
weak damping limit I,—&0, such that 8:—(0 —2, )'~ ~Q;
see the footnote on p. 231 of Ref. 18]. The authors, how-
ever, apparently did not recognize a more substantial defi-
ciency of their original formula (with only positive fre-
quencies), namely, that it has a logarithmic ultraviolet
divergence when the time t~0.

Following Ref. 18, let us define for the oscillator the
annihilation operator

P (t) =e ' 1+— +— cos(2tpt), (85)
Q2 2 Q2

disregarding terms of higher order in A, /A. Obviously,
deriving the quantum-mechanical law of exponential de-
cay is a nontrivial business (see also, e.g. , Ref. 44).

Let us finally consider the initial-state normalization qp
in some more detail in the general case. From (83), apart
from an irrelevant phase factor we have

'gp = g m~kk &k '(v@k+0) 4 k(0)
4Q

(86)

Using the completeness relation (3.19) and (4.9) for the
ground-state fluctuations, one rewrites (86) as

'= —+, (&P'&o+ 'II'&g') ), (87)
2 2mRQ

which considerably facilitates the discussion. For in-
stance, from (5.10) and (5.14) if A, LO with r&0, i.e., in the
weak damping limit, ultimately (P )p-m 0 (g )p
=—,mfiQ take on their standard free oscillator values, and

go
' neatly approaches unity. On the other hand, for arbi-

trary A,&0 but if rtO, i.e., in the strong coupling limit,
&p )p becomes the dominant quantity in (87) since it
grows logarithmically as ln~, ——ln~ in that case. This is
precisely the behavior of P(t tO) in Ref. 18, which there-
fore is apparently due to the rigid coupling of the electron
to the electromagnetic field in the Schwabl and Thirring
model.

where gp ——1 in view of the initial conditions A(0)=1,
2 (0)=2 (0)=0. In connection with the Introduction (see
also Refs. 20 and 22) it is worthwhile to mention that
these initial conditions cannot form a self-consistent set if
r=0, i.e., in the ease of perfectly rigid (or strong) interac-
tion. Namely, considering A= ~ for convenience, in that
case 3 (t) obeys (5.4) with r=O. But then (5.4) reduces to
the simple textbook damped oscillator equation (e.g. , Ref.
1), which is of the second order only. Hence

~ ~

A(t &0)= —2A., which is confirmed by an explicit calcula-
tion. So, if and only if ~=0 we should have set
gp ——(1+A, /II )

' . These remarks merely show how
unphysical it is to consider the rigid coupling case on its
own. If r & 0, no matter how small it may be, we just face
a matter of time scales. Taking A= oo, and on a time
scale much longer than ~, i.e., when transient effects have
disappeared, one may use the result (5.6) for A (t) with
v=0. Inserting this into (84), one gets
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APPENDIX C: COHERENT-STATE EVOLUTION

lak&=e ' y«k') '"ak" l&k& (C2)

We define expectation values as, for example,
(z(x, t) &

—= (a lz(x, t)
l a&, where we have set

Ia&=—I [akim & From(29) and(C1) onehas
1/2

(ake " +ake " )4k(x),(z(x, r)&= g fi

cok kk

(C3)

which appears to be as classical as possible. Let us now
assume that for the string initially (z(x,O) & = (z(x, O) &

=0, while for the particle (g(0) &
=—g(0) and (g(0) &

=g(0). Using the completeness relations (3.18) and (3.19)
it is easily verified that this amounts to the choice (see
also, e.g., Ref. 17, Sec. 21)

ak ——(2Acok@kk) ' '[coke(0)+i/(0)]m4 k(0) .

Then using (2.13), (Cl), (C4), and (3.26), one finds

(C4)

It is a standard exercise to construct ihe coherent states
for the quantum system of (4.7) and (4.8). See, e.g., Refs.
29—31. Per mode these states can be considered basically
as eigenstates of the annihilation operator 8kk ak. There-
fore,

@kk'~k
I [ai] &=—ak lak& 0 la~&

l~k

where jak j is a set of arbitrary complex numbers. Each
l ak & can be written in terms of the number states of

mode k, as

where (p &0 is also given in (4.9). Since (g(t)& and
(p(t) &=m (g(t) }decay to zero when A= oo according to
(5.4), (C6) and (C7) clearly show that the oscillator will
necessarily always end up at least with the system's
ground-state noise independent of its initial conditions, as
was stated in the main text.

( ak & =0, (aka& & =0, (&ka& & =8&&'~k,

~k =[exp(p~k) —1], p=(ggz )

(D 1)

It is recalled that &k~=&kk5k~. See (3.11). From (2.9) at
t =0, and (Dl), one obtains

( z (x,O) & = (z{x,O) &

=(z(x,O)z(x', 0)+z(x', 0)z(x,O) & =0,
(z(x,o)z(x', 0) &

APPENDIX D: THERMAL STRING

Suppose that our system (2.1), consisting of the particle
and the string, is embedded in an infinitely large thermo-
stat. If t &0, the system is taken to be in thermal equili-
brium with this super-reservoir, so that we may apply the
standard methods of (quantum) statistical mechanics. At
t =0 the string still is considered to be in this equilibrium
state, but the particle is excited by some unspecified exter-
nal mechanism. Evidently, this situation is of consider-
able experimental interest. Below we will answer the
question: what will the dynamics of the particle be in this
case? In view of the Hamiltonian (4.7) the thermal. equili-
brium state may be specified by (see, e.g., Refs. 11, 20,
and 30)

(g(r) & =A(&)g(0)+A (&)g(0), (C5)
~y(+k+ 2 )+kk ~k ~k(x)+k(x )

k
(D3)

(p'(r) & =(p(r) &'+(p'}. , (C7)

which is as close to (3.27) as quantum theory allows. Let
us now consider (g {t)& =—(a

l g {t)
l
a &. Using (2.13), the

commutator (4.8), and (Cl), the result may be written in
the comprehensive form

(g'(r) & =(g(r) &'+(g'&. , (C6)

where (g &c has been identified with the ground-state
noise (4.9). Similarly, one finds for the momentum fluc-
tuations

~ g {+k+ z )+kk ~k@k{x)@k{x
k

Now, from (3.23) for g(t) and (D3), it is obvious that the
particles position varies simply as (3.27), or (C5), i.e.,
purely classical. This also holds for the momentum
p=mg. Next we consider the fluctuations. First square
(3.23) and then average, using (D3). Further invoking
(3.25) for A (x, t) and A(x, t), evaluating the integrals over
x H(O, A), using the definition (3.4) of qk~, and expressing
gk~ in terms of 8k~ by means of (3.10), one finds

(g (r)&= A (&)(g (0)&+A(t)A(&)(g(0)g(0)+g(0)g(0)&+A (t)(g (0)&

+A'g (Nk+ —,
'

)5kk'cok '[[A(t) cos(cokt)] +co—k[A(t) cok 'sin(cokt)] —J@k(0) (D4)

The same calculation for ($2(t) & yields

(g'(r) & = A '(r)(g'(0) &+A(t)A(r)(g(0)g(O)+g(0)g(0) &+A '(t)(g'(0) &

+fig(Nk+ —, )8kk'cok '[[A(t)+coksm(cokt)] +cok[A(t) —cos(cokt)] J@k(0)
k
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It is noted in passing that, by explicit calculation, it is
easily shown that the thermal string does not add to the
dynamical cross correlations —,

' (g(t)g(t)+ g(t)g(t) ). This
should be contrasted with phenomenological theories (see,
e.g., Ref. 11). Moreover, it is oncemore emphasized that
the present formulas are still exact for the model (2.1) for
any value of the parameters specifying it. The limit
A~ ae can be taken again according to Sec. V. In the fi-
nal steady state t~ae, which exists in fact only in the
limit A~ ao, (D4) and (D5) give

(g'(~)&=&+(~k+ z»kkcok ~'k(0)'
k

(p ( 00 ) ) =thorn y (+k+ 2 )ekk cok@ k(0)
k

(D6)

which precisely reduce to (g )o and (p )o as given in
(4.9) in the main text at zero temperature T =0, where
Xk =0 according to (D2).

H. Goldstein, Classical Mechanics (Addison-Wesley, Reading,
1950).

P. Caldirola, Nuovo Cimento 18, 393 (1941).
E. Kanai, Prog. Theor. Phys. 3, 440 (1948).

4J. R. Ray, Am. J. Phys. 47, 626 (1979).
5P. Caldirola and L. A. Lugiato, Physica 116A, 248 (1982).
H. Dekker, Z. Phys. 8 21, 295 (1975).

7H. Dekker, Phys. Rev. A 16, 2126 (1977).
H. Dekker, Physica 95A, 311 (1979).

9E. N. M. Borges, O. N. Borges, and L. A. +marante Ribeiro
(unpublished).
H. Dekker and M. C. Valsakumar, Phys. Lett. A 104, 67
(1984).

'H. Dekker, Phys. Rep. 80, 1 (1981).
~~H. Dekker, Phys. Lett. 104A, 72 (1984).

H. Lamb, Proc. London Math. Soc. 2, 88 (1900).
~4K. W. H. Stevens, Proc. Phys. Soc. London 77, 515 (1961).
58. Yurke and O. Yurke, Cornell University Report No. 4240,

1980 (unpublished).
B. Yurke and J. Denker, Phys. Rev. A 29, 14'19 (1984).

7N. G. van Kampen, K. Dan. Vidensk. Selsk. , Mat. Fys. Medd.
26, 1 (1951).
F. Schwabl and W. Thirring, Ergeb. Exakten Naturwiss. 36,
219 {1964).
G. W. Ford, M. Kac, and P. Mazur, J. Math. Phys. 6, 504
(1965).

OP. Ullersma, Physica 32, 27 (1966).
J. J. Lodder, Rijnhuizen Report No. 95, 1976 (unpublished).

22H. Dekker, Phys. Lett. 105A, 395 (1984).
23A. O. .Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374

(1983).
24It may be noted that the present ~ is closely related to ~0 rath-

er than ~ of Ref. 22.
Using (2.4) one explicitly needs the phase shifts (2.12) in addi-
tion.

2sP. M. Morse and H. Feshbach, Methods of Theoretical Physics
{McGraw-Hill, New York, 1953), Vol. II, p. 1345.
H. Dekker, Phys. Lett. 92A, 61 (1982).
In Ref. 27, formula (13), should read Oki ——uI@kI. The ensuing
diagonalization in that paper is still correct, but of little
relevance to the original problem. Further, the result (2.18) of

Ref. 22, although applying in fact to a somewhat different,
longitudinal model, coincides with the above (3.11) if we now
take b =8, while in Ref. 22 we set m0 ——0 and read ~ for ~0.
R. J. Glauber, Phys. Rev. 113, 109 (1963)~

3oW. H. Louisell, Quantum Statistical properties of Radiation
(Wiley, New York, 1973).

H. Dekker, Physica 83C, 183 {1976);83C, 193 (1976).
32These results coincide with ( U2)o and (P2)0 of Ref. 22 if one

sets ~=0 there and reads-~ for ~0, while presently we take
Q2r = z, i.e., b =B. See Fig. l.

A. A. Maradudin, E. %. Montroll, G. H. Weiss, and I. P. Ipa-
tova, Theory of Lattice Dynamics in the Harmonic Approxi
mation, 2nd ed. (Academic, New York, 1971).

34D. Pines and P. Nozieres, The Theory of Quantum Liquids
(Benjamin, New York„1966).

35It is also useful to notice that the coupling constant ~ and the
friction constant A, are clearly playing separate roles. For in-

stance, strong coupling (Q~ and A,~&&1) can coexist with
weak damping (A, «0).

6In this approximation the equation of motion is, of course, not
exactly (5.4) anymore, but rather the following:

2lr g +(1+4K,'r )/+2'(1+0'r )(+Q (=0.
Everywhere in the following only the leading orders of ~ are
kept in order not to obscure the formula by largely irrelevant
details.

3sI. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series
and Products (Academic, New York, 1965), Sec. 2.103.
A. O. Caldeira and A. J. Leggett, Physica 121A, 587 (1983).

~R. de Bruyn Ouboter and D. Bol, Physica 112B, 15 (1982).
W. Zwerger, Z. Phys. B 51, 301 (1983).

42A slightly more general formula may be gleaned directly from,
e.g. , (4.11), namely, co, =(2Ar ) '(1 —SA~r )'~, which of
course reduces to (6.1) if A,~~O.

" Mathematically, this comes about through sums or integrals
of the type dm co 'sin(cut )=m/2, even if t 10. The

0
problem is a matter of interchanging the noncommutating
limits t&0 and vl0.

~E. Merzbacher, Quantum Mechanics (Wiley, New York,
1961),Sec. 18.9.

45See especially Ref. 18, formula {3.21).


