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This paper reports the result of a calculation which shows the effect of damping on the quantum
interference of two Gaussian wave packets in a harmonic potential. We use the influence-functional
method, which seems to be the most appropriate one for this kind of calculation. It is shown that
quantum interference effects are severely diminished by the presence of damping even when its in-
fluence on the system is only light. The corrections to the undamped formulas are always expressi-
ble in terms of the phenomenological damping constant y, the temperature 7 (in the high-
temperature limit), the cutoff frequency (Q) of the reservoir oscillators, and the mean number (N) of
quanta of energy initially present in the system. Both weakly and strongly damped systems are
analyzed in the regime of low and high temperatures.

I. INTRODUCTION

During the past few years there has been' an increasing
interest in the study of the influence that damping in a
physical system exerts on its quantum effects. Special at-
tention has been paid to the phenomena of quantum tun-
neling"? and quantum coherence,>~> when it is taken into
account that the physical system under study is not isolat-
ed but is interacting with a heat bath instead. The main
reason to deal with this type of problem arises from the
very nature of the systems in question. In general, these
systems are macroscopic ones such that quantum effects
should involve a linear superposition of states which are
macroscopically distinguishable.® On the other hand, it is
well known that the macroscopic variable which describes
the dynamics of the physical quantity to be measured in
the system is always coupled to its internal (microscopic)
degrees of freedom. Consequently, this variable can be
thought of as being representative of a system coupled to
a heat bath, and, when certain approximations are al-
lowed,’” its dynamics is governed in the classical limit by
the standard Langevin equation [see Eq. (1.2) below].
Several examples can be given, but two of them are of spe-
cial interest: SQUID (superconducting quantum interfer-
ence device) rings and current-biased Josephson junctions.
For the former, the flux trapped inside the ring is the
variable which can display quantum effects, while for the
latter this variable is the phase difference of the macro-
scopic wave function across the junction. In both cases
normal electrons represent the heat bath.® These two sys-
tems have been investigated at very low temperatures on
the theoretical®® as well as on the experimental side,’ and
the results are in qualitative agreement with each other.

At this point the reader should be reminded that in
both examples given above quantum tunneling plays an
essential role. However, the influence of the coupling to
the environment (or the influence of damping, to be more
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specific) [see Ref. (2) for the difference between the two
cases] on the quantum properties of the system in ques-
tion can be shown to exist even in the classically accessible
region. To exemplify this point, suppose one wishes to in-
vestigate what happens to two undamped wave packets
subject to the same harmonic potential when they are ini-
tially separated from each other with one of them at rest
at the origin. This situation can be realized by preparing
the initial state of the system as the sum of two Gaussian
wave packets, one centered at the origin and the other one
at a point far apart from the first. As one releases the
finite-amplitude wave packet, the total probability density
of the system starts to change in time. It is trivial to
show that

plx,t)=¢*(x,0)(x,t)
=p1(x:t)+P2(x’t)+pint(x:t) ’ (1-1)

where p;(x,2) = (x,00(x,t)  [palx,2) =14 (x,t)h,(x,1)]
would be the probability density if the first (the second)
packet were the only one representing the system and
Pint(X,2) is the interference term. When the two packets
are very far apart, p;,(x,?) is vanishingly small. However,
as the second packet moves toward the one at rest, this
term increases. When the two packets start to overlap, an
interference pattern starts to develop due to the existence
of pin(x,t). This interference term achieves its maximum
when the centers of the first and second packets coincide.
So far, nothing is new. This is a standard problem of in-
troductory quantum mechanics.

A very interesting question can now be raised if one
studies the same problem in a viscous medium where the
classical equation of motion for a particle reads

M5 +m% +Maogx =F (1) (1.2)

with (F()F(¢'))=2nkT8(t —t'). It is a well-known re-
sult [see, e.g., Ref. (7)] that one of those packets moving
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by itself in the harmonic potential would have its center
performing the classical motion of a damped particle
while its width would evolve in time in accordance with
the asymptotic behavior given by the fluctuation dissipa-
tion theorem.!® The time it takes for that packet to lose
all its energy is of the order of y~! for very lightly
damped systems and ywg? for heavily damped ones
(y=n/2M). The question is then what happens to the in-
terference term of the preceding paragraph if one consid-
ers two packets instead of only one in the same potential.
The centers of the two packets still perform classical
motion as expected, but does the interference pattern still
exist when the two packets go on coinciding cycle by cy-
cle? Is it destroyed at the same rate as the finite-
amplitude packet loses its energy? If not, can the formula
expressing the destruction of the interference pattern be
written in terms of the phenomenological quantities ap-
pearing in the classical equation of motion of the damped
particle? What are the differences between underdamped
and overdamped cases, and between low and high tem-
peratures? These are the questions to be investigated from
now on.

The principal aim of this paper is to give an exphclt
evaluation of the time-dependent density matrix of the
system for an exactly soluble model of a quantum damped
harmonic oscillator with the initial conditions specified
J

J(x,3,t;x",y’',0)

l

—ffDnyexp %

X exp 1——1 f vcoth

2kT

Here T is the temperature, k is the Boltzmann constant,
and

Srlx]= f IM% 2 I MokxVdr

is the action renormalized by the presence of the bath (see
Ref. 7, Sec. III). Expression (2.2) is obtained by consider-
ing that the system of interest is linearly coupled to a bath
of oscillators through a coordinate-coordinate coupling.
Moreover, the set of oscillators is assumed to have a given
spectral density and frequency cutoff Q. For details of
the influence-functional technique applied to quantum
Brownian motion the reader is referred to Ref. 7.

It should be noted that the expression (2.2) is derived
under the assumption that at ¢t =0 the environment is in
what would be its thermal-equilibrium state in the absence
of coupling to the system. It is a delicate question how
sensitive the various details of the results to be derived
‘below are to this assumption.

In order to study the effect of damping on quantum in-
terference the only thing one has to do is to follow the
time evolution of p(x,x,t) given by (2.1) when y =x and
p(x’,y’,0) has the appropriate form; namely, it is a super-
position of two well-localized Gaussian wave packets with
centers far apart from each other. Suppose one initially

[SR[X] Sgly]l— MVf[X(T X (7)—y () (1) +x (7)p(7) ——y(r)x(r)]dr]
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above. The interpretation of these results raises some
quite subtle points, not all of which we can claim to have
completely explored in this paper.

Section II is a brief review of the model to be employed
and also contains the general results. In Secs. ITII and IV
the high- and low-temperature cases are treated. Section
V is devoted to the interpretation of the results and to fur-
ther discussion of them. Finally, the conclusions are
presented in Sec. VL.

II. MODEL

There are many ways to deal with damping in quantum
mechanics but the system-plus-reservoir approach is the
one that will be employed here. In particular it is the
Feynman-Vernon!! influence-functional technique, which
has recently been applied to quantum Brownian
motion,”!? which is the most suitable one to attack the
above-mentioned questions. The reason for this is that in
the Feynman-Vernon approach one directly finds the time
evolution of the reduced density operator of the system in

question as”!!

plxy,t)= [ J(x.p,t;x",y",00p(x",y",0)dx" dy’" ,  (2.1)

where J, which is the propagator for p, can be written in
the form’

f f [x(7)—y(r)]cos[v(T—s)][x (s)—yp(s)]ds drdv (2.2)
I
prepares the system of interest in a state i given by
- 2 (x _2)2
(x)=0" I ey
23 ¥=x exp +exp pe 2.4)

where .7 is the normalization constant, z is the initial dis-
tance between the centers of the packets, o is the width of
each packet (assumed to be equal only to simplify future
calculations), and z >>o, which means that we can distin-
guish one packet from the other at t =0. (Note, however,
that there is always an exponentially small overlap be-
tween the two packets.) Multiplying ¥(y) by ¢*(x), one
finds p(x,y,0) which is given by (1.1) with

_ 2 2
pint(x’y,0)=‘/’/.2 €Xp "“ic—__t(y—z—z_)—}
4o
2 )2
~+exp S rex=z +‘:;2 2) ] (2.5)

By linearity one can say that the time evolution of
p(x,x,t) is given by the sum of the time evolution of each
of its initial components. The time evolution of
p10x,x,2)=p;(x,t) and py(x,x,t)=p,(x,t) clearly describes
the motion performed by each one of the packets if it



were alone in that potential (see Ref. 7). The interesting
information is in pj,(x,x,t) =piy(x,t) which is given by

Pincx,)= [ J(x,x,2;x",p",0)pi(x",y",0)dx’ dy’ (2.6)
with the initial reduced density operator as in (2.5). If we
take ¥ =0 in (2.2), this interference térm is the undamped
one which has been previously discussed. The packet ini-
tially centered at z oscillates back and forth and each time
it overlaps the one at the origin an interference pattern
develops; at the time the centers coincide, we have

nw ™
Pint x’x’t=ZR_+—2a
z x?
=constcos [—x lexp |—— |, (2.7
o o
]
o= % o’=wg—7° R=1L, s=2 o=
ZMO)R ’ R ’ R ’ R > =
z(0)= ﬁEI’S,(—Sﬂ+cos(S6) exp(—R@),
Crl(6,0)=——
R sin2(50)
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[} [}
fo fo sin[S(6—6,)] cos[A(8; —6,)]sin[S (6 —6,)] exp[R (0, +6,)1d 6, d6, ,
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where the oscillatory term is due to the momentum ac-
quired by the finite-energy wave packet as it moves under
the influence of the harmonic force. However, this is not
the limit in which one is interested. The term depending
on ¥ must be kept finite in Eq. (2.2) if one wishes to study
the influence damping has on quantum interference.

The path integral (2.2) can be evaluated exactly and this
has been done in Eq. (6.26) of Ref. 7 [in this equation
£=(x —y) and X=(x +y)]. Although there is no con-
ceptual difficulty in doing this, its evaluation is too
lengthy to be reproduced in this paper. Therefore, what is
quoted here is only the final form of p;,(x,t) given by
(2.6). In order to do this in a convenient way a new set of
parameters and functions should be introduced. For the
underdamped motion (wg > ¥) they are

(2.8)

A'C
IR(e)E—:—'r— [, dAACR(,M)coth(K D), Q(8)=1-+RIz(0)+(R +S cotf)?

a*Q(6)sin*(S9) exp(—2RH)
S? ’

aX(0)=

while for the overdamped motion one should make the replacement w?—& 2 (& 2=y*—w}), S—iS (§=&/wg). Notice
“that o was chosen to be the minimum uncertdinty width only to simplify the expressions defined above. This will not

change the physical significance of the final results.

With the help of all these newly defined quantities the expression for p;,(x,¢) can be finally written down as

1

Pint(X, 1) =pin(x,x,0)= A (6) cos

20%(0)[R +S cot(S)]

{[x —z(8)*—x?}

x2 [x —z(0)]? z2RIR(0)
_ _Ix—z(0)] _ZRAROT , 2.9
XEXP | =12 g) | °*P 40%0) |P|” sa20(0) @9)

where 4(0) is a time-dependent amplitude which is given
by 40~ 4(8)a#"2. 1t is easy to identify z(6) and o(6) as
describing the time evolution of the center and width of
the wave packets siiice the total reduced density operator
can always be cast into the form

plx,0)= pi(x,0)+py(x,0)
+ 2[p1(x,0)1'*[py(x,0)]'/? cos¢(x,6)

ZZRIR(G)
852Q (6)

X exp

> (2.10)

where the third term on the right-hand side (rhs) clearly
corresponds to p;,.. This expression can be easily verified

if one assumes that .#"2~(2V 270?)~! which means that
the initial overlap between 1,(x) and ¥,(x) has been
neglected.

A glance at (2.10) is enough to convince oneself that the
only term which will modulate the intensity of the in-
terference fringes is the last exponential on the rhs of that
expression. Thus one has to analyze this term very care-
fully in order to obtain any nontrivial information about
the destruction of quantum interference.

This careful analysis will be carried on in what follows.
However, there are some very general features about that
attenuation term which are worth mentioning before any
detailed procedure. To start with, the expression for
RIR(0) [see definitions (2.8) above] can be evaluated in
the underdamped limit (R < 1) as
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RIR(6)sin*(S0)= ( -

_257cos(S6)+2RS sin(S6)
T

_ sinX(S6) d’1(6)

™ d6* |o_o’
where
e 4RA
10)= [, DA AR Ot cos(A0)

and the exponent of the attenuation factor becomes [see (2.8)]
R sinX(SO)Iz(6)

z2 RIR(0) 72

S?exp(2R0) 4 IR sin(S0)+S cos(S6)]*
w

exp[(Re)I(e)]Jr—zf sin(S) exp(RO)

1(0)

dI(6)
deo

(2.11)

802 Q(6)

Now, it is easy to see from (2.11)—(2.13) that
RIR(6)/Q(6) is equal to zero when 6=0 and tends to one
when 6— . Consequently, the attenuation factor tends
to exp(—N/2) at long times, where N =z%/40? (notice
that N is a measure of the initial mean energy of the sys-
tem in units of #iwg). As one is interested in the situation
where the two packets are quite far apart at t =0 (z >>0),
the mean number of quanta present at this moment is cer-
tainly much greater than one. Therefore, for long times,
one can say that the attenuation factor is practically zero
[for example, if z/0~ 10, exp(— N /2) <10~°]. This ap-
proximation is particularly important when the two pack-
ets are macroscopically distinguishable at ¢ =0 because in
this case N turns out to be a huge number. The main
question of this work is then, how long does it take for the
attenuation factor to become negligible?

Actually the existence of this residual interference term
is quite artificial. Since p; and p, must be correctly nor-
malized to 5 —e, where € is a measure of thé overlap
between ,(x) and ,(x) at =0 [consequently
O(exp(—N))], one expects that corrections proportional
to € will cancel that residual term when f— oo.

In order to simplify the final results, four specially in-
teresting limits are taken. Firstly, the high-temperature
limit (Aiwg <<kT) is considered for two extreme situa-
tions, namely, weakly damped (wgp >>7) and strongly
damped systems (wg <<¥). Secondly, the low-
temperature limit (Awg >>kT) is taken where, once again,
weakly as well as strongly damped systems are considered.
Before proceeding any further one should keep in mind
that all conclusions to be reached below are valid only
when z>>0.

II1. HIGH-TEMPERATURE CASE

When fiwg <<#i€) < 2kT the expression for Iz(60) can be
simplified because (2.12) can be evaluated by residues as

1(9)27?3,—[5008(56)+R sin(S6)]exp(—RO) . (3.1)

With this result it is trivial to show that (for R < 1)

" 80?2 sin®(S8)+R sinX(SO)Ig(0)+[R sin(SO)+S cos(S0)]>

(2.12)
(2.13)
[
> —Zg-sinh(RO)—exp(—RG)
X %sinz(S0)+25in(S¢9)c0s(S’9) ]
(3.2)

On the other hand, if #iwg <<2kT <<#£), the last term
on the rhs of (2.11) gives (in dimensional units)

1dMe) | 2T 4y [ #0

T do* |,_, fiwr Tog 2kT

(3.2

and because 2kT >>#iwy, the first term on the rhs of (3.2")
might still dominate even for moderately overdamped sys-
tems. As all the other integrals in (2.11) do not change
much in this new range of temperatures, one can still say
that (3.2) is a justifiable approximation. However, for
heavily damped systems it can only be used if 2kT > #Q.
Now, expression (3.2) will be studied when R—0 (S—1)
and R — o (S—iR).

A. Weakly damped limit

Taking the limit R—0 in (3.2) and in Q(8) [see (2.13)],
one has

RIR(6) _ 20—sin(20)
00) T K

R +20—sin(206)
As both K and R are very small (K,R <<1) one has to
study three new situations separately. These are the limits
K/R>>1, K/R <1, and K/R~1. In the first case
(K/R>>1) only long times (6>>1) will make
RIR(6)/Q(8)~1. Then for times such that 26 >>sin6,
one can write

22RIR(0)
852Q(0)

as R—0 . (3.3)

~exp(—Tt), (3.4
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where I')=(NR/K)wr [=(2NkT /fiwg)y]- As R/K
<< 1, the time it takes for the interference pattern to be
washed out (I';!) depends on the ratio between N and
KR!, For example, take N >>1 but N/R “IK «<1.
Then, I'T ! >>wgx ! which means that it will take many cy-
cles before the interference pattern disappears. On the
other hand, if N >>1 is such that N/KR ~!> 1, one has
Fl_l < w;‘ and there would be no interference even at the
time the two packets would first overlap. Nevertheless,
since NK~! is always much greater than one, one can
safely say that ';>>y no matter whether I'y>>wpg or
I'y <<wg. For later cgnvenience it is important to define
the regime NRK ~! << 1 as the extremely weakly damped
limit. The foregoing discussion is clearly in agreement
with the fact that when R is strictly zero, it takes an in-
finite time for the interference pattern to disappear.

The other two cases (K/R~1 and K/R << 1) actually
represent a single situation, namely, K/R < 1. This is due
to the fact that when it happens, times that are O (wg!) or
greater make RIg(0)/Q(6)~1. Then for K/R <1 only
short times are important to the study of the time evolu-
tion of RIR(0)/Q(8). When 0<<1, (3.3) can be written
as

z2RIR(6)
T l~exp[—(Ty0)'], (3.5)
exp 80 (0)02 pl — (I, '
where T,=(3NR /K)'3wg, and one always has
ry 1 <w;1. However, in order to be consistent with the

short time approximation (I"y ! «<wg!), one needs either -

RK~lor N>>1.

Therefore one can finally conclude that the interference
pattern is destroyed in a typical time which is shorter thla'n
y~1, possibly being of the order of (or shorter than) wg if
the system is not extremely weakly damped.

B. Strongly damped limit

In the limit R — oo, the ratio RIRx(0)/Q (6) becomes
|

z2 RIR(0)

N R sin*(S6)Iz(0)
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RIR(0)
lee) - 6+0KR (3.6
which allows one to write
z2RIR(6)
exp —W ~exp[ —(T'38)], (3.7)

where T;=Nowg/2KR =(2NkT /#iwg ok /2y. For the
overdamped motion the finite-amplitude wave packet
comes to. equilibrium at the origin without oscillating at
all and the time it takes to achieve its equilibrium position
is O(ywg?). On the other hand, the expression for I'; in-
dicates that I';! <<ywg?, which means that the interfer-
ence pattern is destroyed much faster than the relaxation
time of the system. Actually, overdamped systems are not
the most appropriate ones for the present discussion since
there is no interference pattern to be washed out. In the
beginning of the motion the packets do not overlap each
other, and in the end (when they overlap) the system is in
thermal equilibrium with the heat bath and once again no
interference is present. However, a very similar calcula-
tion can be applied to free damped packets which are al-
lowed to overlap during their motion (see Sec. V).

IV. LOW-TEMPERATURE CASE

When fiwg >>2kT (K >>1), the approximation used in
(3.2) is no longer valid. One has to evaluate (2.12) as

A
1 < 4RA
’ f—"c PR

I(9)=Klim coth(KA)

Xcos(A8) |, A.>1, 4.1)

which can be done by residues as in the limit K—0. The
attenuation factor can be rewritten (for R < 1)

exp | — =exp

802 Q(0)

which with the help of (2.11) and (2.12) turns out to be an
extremely cumbersome expression. However, its time
dependence can be studied in certain limits.
A. Weakly damped limit
When R <1, I(0) [see (4.1)] can be approximated by

1(0)  exp(—R06) exp(RO) r~ , exp(—6x)
p—— S cos(S9)+ - ,fR dx—————xz_*_s2

_ SP=RO) o g o =0) 4.3)
- _

x24+58?
which when substituted into (2.11) still leaves the attenua-
tion factor with too complicated a structure to be
analyzed in a simple way. However, when R <<1 and

2 sin%(S0)+ R sin*(SO)Ig(0)+[R sin(SO)+S cos(S6)]?

] ' (4.2)

[

0>>1 such that R@ << 1, one can expand the attenuation
factor in a power series of R and write those integrals in
(4.3) in their asymptotic forms. The final result is (to first
order in R) ‘

z2 RIR(6)

802 Q(0)

~exp(—NRO+ - ), 4.4)

exp | —

where the ellipsis also includes unspecified oscillatory
terms. Therefore one can say that the time for the de-
struction of the interference pattern is approximately
T 7'=(Ny)~! which is clearly much shorter than y~L
Notice that depending on the product NR, this time can
be O(wg') and once again it is possible that one observes
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no interference at all even when two packets overlap for
the first time.

B. Strongly damped limit

In the limit R — oo one initially needs to rewrite expres-
sions (2.11), (4.1), and (4.2) with the appropriate modiﬁca-
tions, namely, the replacements ®*—>&?% and S—iS [see
definitions below (2.8)]. After that, it is easy to show that
the overdamped analog of (4.3) can be written as
J

22 RIz(0)

R sinh®(R0)I(6)
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1(6) e, 1 w  exp(—6x)
o =exp | — o |+ —exp(RO) [ "dx ——P;R Tl

—iexp(—RG) fw d-Zp(—6%) , (4.5)
T —R

2-—-—R2+1

where the two integrals must be evaluated in principal
value. Substituting this expression in the overdamped ver-
sion of the attenuation factor which reads

(4.6)

exp ~exp—

_ N
802 Q(9 2

one can finally write (for RO>>1)
22 RIR(6)
802 Q(6)

where T,=Nw% /2y and as in the previous approxima-

tion, the time for the destruction of interference is shorter

than the relaxation time of the finite energy wave packet
by a factor N 1.

exp ~exp(—T,1) , 4.7

V. DISCUSSION

The central result of the previous sections is that the
time it takes for the interference pattern to be blurred out
by the coupling to the environment is much shorter than
the relaxation time of the system when the two wave
packets in question are initially prepared far apart from
one another. Although this has been proved to be valid
for some specific limits, there is no apparent reason why
those results should be drastically modified in more gen-
eral situations.

At this point the reader should certainly be worried
about two basic questions upon which no comment has
been made so far: (a) What is the physical interpretation
of the results found in this work? (b) Is there any real sit-
uation where this theory could be tested?

In order to answer the first of these two questions, take
for simplicity the zero-temperature case. At ¢ =0 the sys-
tem of interest is prepared in a state |¥) = |¥,)+ | ),
where |9,) is a Gaussian centered at x =z and |p) is
the ground state of the oscillator. This state initially con-
tains a mean number N of energy quanta fiwr as men-
tioned in Sec. II. As one is dealing with the zero-
temperature case, the environment is clearly in its ground
state which is here denoted by |0). Therefore one can
say that the state of the universe (system plus environ-
ment) is initially given by

|0 =([4,)+ | %))® |0) .

After a time 7 (the relaxation time of the system of in-
terest), the universe is in its final state which can be writ-
ten as

|®r)=[0)® |N),

(5.1

(5.2)

sinh?(R 6)+ R sinh®(R0)Ig(6)+R?[sinh(R ) +cosh(R6)]* ’

where | N) is a state of the environment containing N
quanta of energy. Notice that (5.2) is valid only when one
further assumes that the coupling between system and en-
vironment is vanishingly small, otherwise |®,) would
not have that simple form.

Now, suppose one wishes to investigate the state of the
universe after the oscillator has emitted one quantum of
energy #iwg to the environment. Since the emission of N
quanta takes place in a time 7, the emission of only one
quantum must occur in a time which is of the order of
7/N. At this time the state of the universe is given by

| @)= 9,08 | 1)+ |¢)® |0), (5.3)

where |1,) is the initial |4, ) after having emitted #wg
and | 1) is the state of the environment containing one
quantum of energy. What allows one to write the time
evolution of (5.1) after 7/N as (5.3) is the fact that the in-
teraction Hamiltonian between system and environment
(being a coordinate-coordinate coupling) correlates |, )
and |,) to different states of the environment. It was
also assumed that the ground state |,) of the system
does not change much during the emission of one quan-
tum of energy. However, the state which has been investi-
gated throughout this work is the reduced density matrix
of the system only, or

p=tr | ®)(P] , (5.4)

where tr, indicates that one must trace over the states of
the environment. Thus, the reduced density operator at
t =71/N is given by

p='¢z><¢z[+l¢0)<¢0! s (5.5)

where orthogonality between |0) and | 1) has been used.
It is now a trivial matter to argue that after a time 7/N
has elapsed no interference between 9,(x) and ¥y(x) can
be observed since p is a mixture of these two states. The
emission of more energy quanta by 1,(x) will clearly rein-
force this conclusion because the new states of the envi-
ronment will always be orthogonal to the previous ones.
Although this simple argument has been used only for
T =0, the reader will not find it much harder to general-
ize it to the finite-temperature case. The only difference
now is that one needs to take into account that the reser-
voir induces transitions between the harmonic-oscillator
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states. In order to make life simpler, consider only two
neighboring energy eigenstates of the system of interest la-
beled by 1 and 2. The equation of motion for their occu-
pation number can be written as (see, for example, Sec. II
of Ref. 13)

ﬁ1=—An1 —BU(O)R )(nl—n;_) s
(5.6)
ﬁ2=An1+BU(coR )(n1 —nz) ’

where A is obviously O((7/N)~1) (the spontaneous emis-
sion rate for one quantum of energy) because at T =0 the
emission of one quantum is enough to dephase |,) and
|¢.),and

4 1 _4
VOr= | ptrwg /-1 |~ " @8- 67

B

The solution of (5.6) is very simple and the difference be-
tween the occupation number of the two. states considered
above reads

ny—nycexp{ —[2n(wg)+1]4t} , (5.8)
allowing one to write the new dephasing time as

1 T

Tqg < o)1 (@0g)+1 N (5.9)

which agrees with the high-temperature limit where
Tq~tiwprT/2NKT. Notice that (5.9) is also in agreement
with the zero-temperature limit, namely, 74~7/N. Of
course all these arguments could be made more rigorous
but it would be an unnecessary complication since the
simpler approach is enough to explain the basic results of
this work.

The occurrence of the last term in (2.11) which is loga-
rithmically dependent on the environmental upper cutoff
frequency (, raises some interesting questions which we
hope to discuss in the future, together with the (possibly
related) question of the influence of the precise initial con-
ditions on the environment.

Another very interesting example that could be studied
with the same techniques which have been used so far is
that of an undamped oscillator which is subject to an
external stochastic force satisfying

(F())=0, (F()F(t'))=F378(t —t') , (5.10)

where F, is the intensity of the force and 7 is the mean
time elapsed between successive actions of F(z) on the os-
cillator. Taking the limits 7— c and y—0 (but keeping
4kMyT =F%7) in (2.2), one easily sees that it now corre-
sponds to the above-mentioned case. Notice that those
limits are only formal and the new problem involves no
finite-temperature effects. It is a simple harmonic parti-
cle which is not coupled to any environment (y =0) but is
acted on by an external force instead. Since previous
finite-temperature results depend on y and T only
through the product y T, one can replace

g 2Miwg

= —— = 5.11
7d 2NykT 74 NF37 ( )

which on its turn can be rewritten as

~and that wg <7~

"At such that At <<wg!

) 7
(r*) N’
where (I?)=F2372 is the mean-square impulse transmit-
ted through the stochastic force to the oscillator and (p?)
is the mean-square momentum of a particle in the ground
state of the oscillator. Since one assumes that the external
force is only weakly disturbing the system ({p2) >>(I?))
1. the dephasing time can be O(7)
which is obviousl}' much shorter than the natural period
of oscillations wg .

Before leaving the subject of the first of the two ques-
tions raised in this discussion it should be very instructive
to realize that the results presented in this work are also in
agreement with the quantum theory of measurement.!*
The environment acts as if it were measuring the position
of the oscillator through the coordinate-coordinate cou-
pling. As the initial state of the oscillator is a superposi-
tion of two approximate eigenstates of position (two
Gaussians centered at x =0 and x =z) they become a
mixture in a very short time scale. Notice, however, that
the concept of pointer basis'* should be carefully applied
to the position operator since the very act of measuring
clearly modifies the value to be measured. In other words,
the position operator of the harmonic oscillator does not
commute with its own Hamiltonian. This concept is only
valid if the measurement is performed in a time interval
in the underdamped case and
At <<ywg? in.the overdamped case.

The second question which was raised in the beginning
of this section deals with the possibility of testing the re-
sults investigated so far in real life systems. Although no
real experiment is proposed in this work, the following
“gedanken” experiment can be inspiring to some experi-
mentalists.

Consider the double-slit experiment designed in Fig. (1)
below. In region I there is a source of charged particles
which are directed toward the double slit. Around each
slit one has identical magnetic fields oppositely directed
which are used to bend the charged particle’s beam. In re-
gion II there is only a screen. Now suppose that the
width of each slit is given by o and they are separated by
a distance z. When z >>0 and the magnetic field is zero
it is obvious that one can see no interference on the screen

Ta=4 (5.12)
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FIG. 1. Schematic diagram of the double-slit experiment.
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in region II. However as one switches on the magnetic
field the semiclassical paths followed by the two distinct
beams start to be bent and it is possible to detect a quite
intense interference pattern on the region the two beams
coincide. Now, if one introduces a “viscous” medium in
region II, the effect of damping on quantum interference
can be investigated by varying the intensity of the magnet-
ic field and the position of the screen.

Notice that this example is not entirely equivalent to
the one that has previously been investigated. In this new
situation there is no potential to which the wave packets
are subject. Now, one initially has the superposition of
two free wave packets of width o which are separated by
a distance z and directed against each other with momen-
ta p and —P (here, one obviously means the components
of momenta parallel to the screen). By symmetry the
maximum intensity of the interference fringes occurs
when the two packets coincide halfway between their ini-
tial positions. The magnetic fields can be clearly used to
vary the initial momenta of the packets.

In the viscous medium one expects the intensity of the
interference pattern to be a function of the initial com-
ponent of the momentum of each packet parallel to the
screen and of the ratio z/o. It is hoped to. give a more
thorough treatment of this problem elsewhere.

VI. CONCLUSIONS

The main result presented in this paper is that damping
tends to destroy interference effects on a time scale short-

er than the relaxation time of the system. In the specific
case of the two Gaussian wave packets subject to a har-
monic potential one easily sees that they behave as two
classical Brownian particles exhibiting no quantum in-
terference when they overlap except in the extremely
weakly damped limit. Perhaps this is a justification for
the use of nonlinear wave equations (for example, the
Schrodinger-Langevin equation'®) to describe quantum
Brownian motion; however this claim deserves a much
deeper investigation.

Finally, it should be mentioned that the results obtained
in the extremely weakly damped limit can be partially de-
duced with the use of quantum master equations.!
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