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A numerical solution of a hydrodynamic second-order model shows that the propagation of the
first ionizing wave arises from an overgrowth of hot electrons in the wave front in a zone of a great-
ly disturbed electric field. This gives rise, in the electron shock zone ahead of the wave, to a precur-
sor phenomenon, whose effect is to accelerate the channel propagation. Inside the shock zone, the
electronic energy differs from the characteristic energy; the nonequilibrium between the electrons
and the electric field, as a result of the electron pressure gradient, induces a heating of electrons in
this zone. The space-charge electric field is calculated assuming that the discharge evolves in a vari-
able ellipsoidal envelope with revolution symmetry around the propagation axis. The electron
shock-wave structure is shown to maintain itself and to propagate during the evolution of the
discharge. The results obtained from this second-order model are compared to those obtained from
a classical first-order model in which the electron temperature is a function of the reduced electric
field alone. This comparison allows us to define the concept of electron nonequilibrium in an elec-
tron shock wave and to show that it is the source of the high-speed propagation of the streamer.
The close agreement of the results obtained from the second-order model with the experimental data
justifies the formulation of the model, particularly that of the interaction operators of the energy
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equation.

1. INTRODUCTION

The inception of breakdown in a gas, i.e., the
phenomenon of a gas changing from an insulating state to
a conducting state, is determined by a succession of ioniz-
ing waves reflected one after another on the electrodes,
which gradually increases the ionization degree of the gas.
This transition from the insulating state to the conducting
state is well known to be controlled by the formation and
the propagation of the first ionizing wave, giving rise to
the ionized path through which the following waves prop-
agate. Although this first ionizing wave has been studied
experimentally by the most sophisticated diagnostic
methods (such as high-speed image converter techniques),
the mechanisms leading to its propagation in the neutral
gas must be clarified in a fundamental way, particularly
in the high-speed stage of the propagation, as the classic
concept of Townsend avalanche no longer explains this
propagation.

Many theoretical works try to explain this propagation
process. Most of them are based on a hydrodynamic for-
mulation of the ionized gas. Two different models have
been used. The first-order models are only based on con-
tinuity equations for electron and ion densities. Electrons
are supposed to be in equilibrium with the electric field,
and the macroscopic coefficients used in the equations are
experimental data obtained in the case of stationary or
slightly transitory experimental discharges. All these
models are one-dimensional but the discharge pattern is
taken into account through a three-dimensional electric
field calculation dealing with the radial expansion of the
discharge. Davies, Davies, and Evans,! Kline,2 Yoshida,
and Tagashira,® and Bayle and Bayle* have shown the im-
portance of the electric field perturbation, due to the
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space-charge effect, in the multiplication process and in
the propagation of the electron swarm, in the case of elec-
tronegative as well as nonelectronegative gases. Abbas
and Bayle’ have shown the limits of validity of these
first-order models for the study of the propagation of the
first ionizing wave. They showed that the structure of
this first ionizing wave always evolves towards an electron
shock-wave structure and the large gradients of the elec-
tric field and densities no longer allow consideration of
the electrons in equilibrium with the field, and so the clas-
sic macroscopic coefficients concept is no longer valid. In
fact, there is no direct relation between the electric field
and the electron temperature. This implies that the multi-
plication processes are explicit functions of the local elec-
tron temperature, which depends not only on the reduced
electric field but also on the collective phenomena of the
discharge. Thus it becomes necessary to develop second-
order models taking into account the electron shock-wave
structure of the wave and allowing the local-electron-
temperature calculation, which is the most important
point of the ionizing wave propagation.

Fowler and his students®’ used a multifluid hydro-
dynamic model to describe the ionizing wave in a station-
ary state. This stationary condition is characterized by a
zero total current (electronic plus ionic). The description
of the ionizing wave is obtained by two solutions. One of
them, which is continuous, is representative of the anti-
force waves and the other discontinuous solution is the
solution of the proforce waves. The ionizing wave is then
characterized by a discontinuity of its front where the
electric field and the electron temperature reach their
higher values. They assumed that the electron pressure
gradient was the force governing the wave. It is thus pos-
sible to set up an analytic approach expression for the
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wave speed versus this electron-temperature value.

Albright and Tidmann® studied the transitory wave
propagation with a strong electric field. They used a hy-
drodynamic time-dependent model for the electronic den-
sities, the electric field being linked only to the electron
variables. In the case of the proforce waves, the electric
field gives rise to the electron drift whereas for the anti-
force waves, the electron pressure gradient reinforced by
the electric field is the real propagation force. Klingbeil,
Tidmann, and Fernsler® tried to take into account the role
of photoionization with a time-dependent equivalent
model. They obtained stationary solutions for the positive
and negative waves. Abbas and Bayle!® put forth a hydro-
dynamic model to define and analyze the structure of an
electron shock wave when the electrons are no longer in
equilibrium with the electric field. They pointed out that
photoionization plays no role in the propagation as long
as the nitrogen pressure is more than 50 Torr. They par-
ticularly studied the reasons of nonequilibrium between
the electrons and the electric field and its possible effects
on the electron diffusion and on the plasma source term,
both these processes being essentially functions of the
electron temperature. They showed that the structure of
the wave is necessarily dynamic and that a permanence of
the shock profile exists.

Jurenka and Barreto'! studied the different terms for
the energy gains and losses and compared their relative
magnitude. They concluded that the electron fluid wave
is driven by electron pressure gradients in weakly ionized
plasmas. At the same time, the experimental results ob-
tained by Jurenka'? supported the concept of wave propa-
gation through the collision-dominated electrons.

In this work, we concentrate on the study of the elec-
tron shock-wave propagation, the geometric and electric
properties of the front of the discharge being particularly
defined. The second-order hydrodynamic model put forth
earlier by Abbas and Bayle!® is improved, modifying the
one-dimensional behavior of the hydrodynamic model by
a three-dimensional calculation of the electric field. As
the lines of force of the electric field are modified by the
space-charge field, the discharge always evolves in a fila-
mentary way, and this confining of the lines of force is
taken into account in defining the profile of the front of
the discharge. We assume that the discharge is enclosed
in an ellipsoidal envelope with revolution ‘symmetry
around the direction of propagation of the discharge. The
permanence of the electron shock-wave structure, appear-
ing at the ellipsoidal envelope tip, is studied. The electron
shock-wave results in a heating of the electrons ahead of
the front and these electrons grow in number and speed
up the propagation of the entire discharge. The high-
speed propagation of the so-called streamer is the result of
the superimposition of the effects of transport in a strong
electric field and of the effects of overgrowth of hot elec-
trons appearing in the electron shock-wave area.

II. DESCRIPTION OF THE HYDRODYNAMIC MODEL
FOR NONEQUILIBRIUM TRANSITORY DISCHARGES

A. Dynamics of an electron fluid

This model rests on the equations of the hydrodynamics

of weakly ionized gases governing the mean values of the -

fundamental parameters of the discharge state (charge-
carrier densities, speed, energy, etc.). This set of equations
is directly deduced from Boltzmann equation giving the
behavior of the distribution function f(T,w, %)

of
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int
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where T,W are the position and velocity for the particles,
(3f /1)y is the interaction term between the particles, F
is the external force acting on the particles, and m is the
mass of the particles.

If j represents one of the components of the gas (elec-
trons, positive ions, negative ions, neutral particles, etc.)
the equations for the three moments of Boltzmann equa-
tion are written, respectively, as

don j — .

—5;—+V,(njvj)=sjw (2)
for the transport equation of density n; for particle j,
where

Sje= [

is the source term for particle j,

of
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is the momentum transport equation, where
V,-:(ij):;l; I ¥.f dw

is the mean speed of the particles j, where dw; is the

volume element in the velocity space dw; =dw;,dw;,dw;,
B=nmy(%;—V)(%,;—7))

is the kinetic pressure tensor, and

~ |9
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int

and
—aa?[n,(ej +mp)) ]+, [0+ SmuD)],

is the energy transport equation, where ¢; is the thermal
energy for particles j,

of
ot
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and
=< m; — — — — \2
Q=L [ (9 =V, =9, P fduw,

is the heat flux.

It is obvious that Egs. (2)—(4) represent the discharge
only if it is possible to close the set of equations and to de-
fine the force F (that is to say the electric field) and the
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interaction terms S;,R|,R;. So it is clear that a macro-
scopic description of the discharge is necessarily linked to
an a priori description of the microscopic behavior of the
particles inside the collective phenomena.

Fundamental hypothesis

We assume that the propagation of an ionizing wave
under an electric field strength, in the experimental condi-
tions hereafter simulated (Wagner'), depends on the
weakly ionized gas theory.  In this context, the electron
cloud evolution, considered as a fluid through the neutral
gas, is achieved assuming that the neutral gas remains
static and uniform and is not heated by the crossing of the
ionizing wave which is too fast to disturb the neutral gas.

The interactions between electrons, ions, and excited
species can be neglected in regard to the binary collisions
between these particles and the neutral particles. There-
fore, the interaction term (9f/0t);, of Eq. (1) is the rate
of change of the distribution function due only to the
binary collisions.

The collisional terms S;,,R1,R; of the set of equations
depend on the distribution function. We have made the
traditional assumption of fluid models, that the energy
distribution of electrons in a gas submitted to an electric
field is approximatively. Maxwellian (Von Engel'*). This
formulation properly represents the experimental static
ionization coefficient (Abbas and Bayle!®®). This hy-
pothesis of isotropy of the distribution function results in
closure of the system of the equations (2)—(4) if P, and
Q. are defined by

P, =nkT.1, - (5)
Q.=0. (6)

These equations express the assumption that the kinetic
pressure tensor is reduced to its diagonal elements and
that the electron heat flux is equal to zero. Other formu-
las for the distribution function could be used, for exam-
ple, those proposed by Maurel, Bayle, Bayle, and Forn,!®
but their uses would increase the computer time without
any decisive improvement owing to the range of E/N
values used.

We assume that the positive ions, whose mobility is 2
orders lower than that of the electrons, can be considered
as immobile compared to the ionizing wave speed. This
hypothesis, without any restrictive nature, is of great in-
terest as it perceptibly reduced the computer time without
affecting ‘the accuracy of the results. The equality be-
tween the molecule and ion mass leads to instant and
complete energy transfers from one species to another.
Thus, the ions can be considered in equilibrium with the
electric field with a temperature nearly equal to that of
the molecules.

In the experimental conditions hereafter simulated (fast
electronic shock wave through nitrogen at 200 Torr), the
photoionization in the gas remains negligible (Abbas and
Bayle!9).

B. Formulation of the interaction operators

The equations of hydrodynamics in the weakly ionized
gas theory allow us to simulate the discharge only if the

operators S;,,,R1,R, appearing in the equations can be
defined. To be completely accurate, the expression of
these operators is based on a precise knowledge of the dis-
tribution function of the electronic speeds. It is obvious
that a hydrodynamic model does not offer knowledge of
this distribution function; therefore we use the hypothesis
of a Maxwellian distribution function characterized by a
temperature being a function of time (this is the dynamic
electron temperature). We assume that the operators
SjesR1,R; have the same formal dependence on the
dynamic temperature as on the static equilibrium tem-
perature. The equilibrium state is that of a stationary and
uniform Townsend discharge with electrons in equilibri-
um with the electric field, and the mean electron tempera-
ture (the characteristic energy) only depends on the value
of this electric field. Thus the static electron temperature
is only a function of the reduced electric field:

ES
Tes=f W )]

or
E,/N=y(T,) . v (8)

The experimental determination of this relationship is
based on a measurement of the ratio Dr/u of the dif-
fusion coefficient to the electron mobility in a quasiequili-
brium state mixed with the equilibrium state already de-
fined. The ratio Dy /u, a function of E,/N, is directly
linked to the mean electron energy, called the characteris-
tic energy €. Frost and Phelps!® showed that the charac-
teristic energy is proportional to the mean thermal energy

13
G2

The factor G depends only on the chosen distribution
function. If the distribution is Maxwellian as it has been
chosen here G is equal to 5 and so the Einstein relation is
found:

€)= kTes . 9)

D4(E;/N)
T =
es(E/N) 2(E,/N) (10)

with T, in eV. The relationships between the tempera-
ture T,; and E; /N and those between the drift velocity v,
and E; /N are reported in Sec. II E.

1. Interaction operator of the densities transport equation

The source term S, ,, [Eq. (2)] represents the number of
ion-electron pairs created per second and per volume unit
by the ionizing electron collisions. It is expressed as

S, (Ty,n,,N)=Nn, rfo“’ oi(ewle)f(e)de , (11)

where N is the neutral gas density, and o;(€) is the
electron-molecule ionizing cross section. A fit of the ex-
perimental data from Rapp and Englander!” gives

C0i(e)=C; X107 % e—W )Ale—W ) . (12)

W, is the ionization energy of the molecule, W _ =15.6
eV, C;=3.333%x10"2 cm?eV~! for nitrogen. o;(€) is
then in cm? Moreover, the Maxwellian distribution of
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the electron gas allows us to give explicit form to Eq. (11)
whose resolution leads to

S, (Teyne,N)=1.68Xx 10" 1n, N

o

T,

X T exp

1 27, (13)
+Ww .

This gives the dependence of the collision electron source
term with the electronic temperature.

2. Interaction operator of the momenium equation

The collisions between electrons and neutral particles
are considered as the main disturbance of the electron
momentum (Lorentz gas approximation) and the interac-
tion operator is

Ri=—nm,U,v, . (14)

v, is the momentum transfer frequency or elastic collision
frequency.

3. Interaction operator of the energy equation

Following Abbas and Bayle,!” the energy initially pro-
vided by the electric field at the head of the ionizing wave
is dispersed as

(a) ionization energy,

(b) elastic collisions with the neutral particles,

(c) inelastic collisions with the neutral particles (excita-
tion processes),

(d) electron heating.

The accurate determination of each energy loss is a
problem dependent on a microscopic analysis. In a mac-
roscopic model, these different processes can simply be es-
timated, either. globally or in individual cases.

(@) In the equilibrium case (stationary and uniform
discharge) the energy provided by the electric field is ex-
actly equal to the losses and the energy equation is re-
duced to

neEgog=2ToS , + (Vo + V) +mw?) , (15)

where V, and V; are the symbolic representation of the in-
teraction operators. The electronic velocity is reduced to
the drift velocity. The energy lost by electrons is equal to
the product E v, that is only a function of the electric
field in an equilibrium state. To obtain this product as a
function of the static equilibrium temperature, it is neces-
sary to determine the relations

T,,=f(E,) or E;=W(T,) . (16)

It results from this that in an equilibrium case the ener-
gy losses can be expressed either as a function of the elec-
tric field by the relation n,E;v (E;) or as a function of the
static electron temperature alone substituting E; by its
function of T:

> (losses)=n,W(T o5 g (W(T))
—n,®(T,,) . (17)

(b) In a nonequilibrium case (nonuniform and transitory
discharges), it is no longer possible to fix the losses as a

function of the electric field but it is necessary to resort to
the dynamic electron temperature T,;, (that is to say, to
the value of T,; deduced from the energy equation). If it
is assumed that the effect of the expected change in the
energy distribution function on the collision interaction
term is negligible (this hypothesis introduces no restriction
on the losses processes), the formal dependence of the en-
ergy losses as a function of the temperature obtained in
the equilibrium case [Eq. (17)] can be extrapolated to the
nonequilibrium dynamic case. Thus

> (losses)=n,P(T,y) . (18)
In the function ®, T, has been replaced by T,,.

C. Practical formalism

This nonequilibrium model, previously described, is ap- -
plied to the propagation study of the leading edge of an
ionizing wave appearing in the breakdown of a plane
parallel gap in an impulsed overvoltage. Because of com-
puter time restriction, the formalism is one dimensional.
Nevertheless, the three-dimensional behavior of the
discharge has been taken into account as seen below. So
the model consists of the electron density transport equa-
tion

aan; +§~"£i =S... , (19)
the ion density transport equation

o 20)

a T
and the electron momentum transport equation

n,U, = neg.E  g. 0nT,)

m,v, m,v, ox

or

nU,=n,vg [1— n:Eya:clfl \21)

The mean velocity of the electron gas results from the ac-
tion of the applied electric field [first term of the right-
hand side (rhs)] and from the action of global diffusion
phenomena (second term of rhs) [Eq. (21)]. Finally, the
electron energy transport equation giving the nonequilibri-
um temperature is

T, aT,

1 o(nT.U,)
ar T ax

=——————®(T,)+EU, .
n, ax

3

2

(22)

. We proceed as follows. At an instant ¢, the electronic
densities n,(¢), the ionic densities n;(z), and the electron
temperature T,(t) are supposed known; the electric field is
calculated by the method described in Sec. III and the re-
sulting electron velocity (drift velocity plus thermal velo-
city) is obtained by means of Eq. (21). The system is then
numerically solved by the method of characteristics in an
iterative way. This method is applied to find the solution
for densities and electronic temperature after a time step
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At assuming that E, U, are unchanged during A¢, then we
use the new values of n,,n;,T, to find better approxima-
tion for E,U, at t +At. This process of iterations is re-
peated until the solution of n,,n;,T, converges within a
permissible error. These values of n,,n;,T, are then used
as the initial condition for a further step.

D. Equilibrium model

To show obviously the role of nonequilibrium between
the electrons and the field appearing in the electron
shock-wave structure and thus the role played by hot elec-
trons ahead of the discharge, a parallel is made between
the results obtained from a second-order model (non-
equilibrium model) and those obtained from a first-order
model involving an equilibrium state between the elec-
trons and the electric field.

This first-order model is based on the equations of
transport of electron (19) and ionic (20) densities and of
electron momentum transport (21). As this is an equili-
brium situation, the electron temperature is defined by the
characteristic energy and is only a function of the reduced
electric field defined in Eq. (10).

The source term S in the electron density equation
keeps the same connection with the temperature [Eq. (13)]
as for the nonequilibrium model.

In the equilibrium state the source term S, can be
identified to the first Townsend coefficient experimentally
measured

Syo(Tog,n1o,N) = %(Es /N)Nn,v, . (23)

In this relation T, and E; are linked by relations (24) and
the drift velocity v, is calculated by relations (25). In this
case we verified that this source term is perfectly equal to
the experimental data of a(E /N)/N given by Dutton.'?

E. Relationships at the equilibrium case
between the reduced field E; /N
and the static electronic temperature
and between the reduced field E; /N
and the drift velocity vy

The relationships used in Ref. 10 have been slightly
modified to obtain a best fit of the source term S, of the
drift velocity vy and of the static temperature 7,5 on the
experimental results. In the case of the drift velocity and
of the characteristic energy, the former relations available
for the whole range of variation of the electric field have
been replaced by a set of formulations, each one of these
relations being adapted to a part of the variation of the
electric field or of the electron temperature. This is of
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great interest because of the wide range of variation of
these two parameters on the front of the ionizing wave
and because of the excessive sensitivity of the calculation
linked to the twice-exponential variation of the densities
with the'electron temperature.

The experimental works of Kontoleon, Lucas, and
Virr!?® for values of E,/N between 130 and 850 Td and
those of Naidu and Prasad® for E /N below 130 Td give
Dy/u as a function of E;/N. The relation
T.,=f(E;/N) is obtained by means of a least-mean-
squares fit from these works.

The expression of T, (€V) has been obtained in the fol-
lowing form:

E, E,
N ]+C N

T, in eV and E;/N in Td. The values of coefficients a,
b, and c are different for the different range of E; /N (Td)
and are reported in Table 1.

In recent experimental works, Flechter and Reid?! mea-
sured the drift velocity v,; of electrons in nitrogen for a
large range of applied electric fields (57 < E; /N <567 Td).
The formulation of the relations of dependence of the
drift velocity function of the reduced applied field is tak-
en from these results. For higher values of E; /N, the ex-
perimental results of Schlumbohm?? show a slower in-
crease of the drift velocity with E;/N. The least-mean-
squares fit applied to these results gives the following re-
lations. For E /N > 334 Td,

Ty=a+b , (24)

V;=2.58%x10"In

E;
— | —1.2%x10%.
N J X

For 9.1 <E;/N <334 Td,
Vy=3x10°4+8.04 X 104E, /N) . (25)
For E;/N <9.1 T4,
V;=4.21X10°(E,/N) .
V4 isin cms™! ahd E; /N in Td.

III. CALCULATION OF THE SPACE-CHARGE
ELECTRIC FIELD

A. Expression of the electric field

In order to be applied, the earlier hydrodynamic model
needs the addition of the equation governing the space-
charge electric field. It is well known (Wagner'®) that the
electron avalanche, issuing from a group of primary elec-
trons released by the cathode, evolves first as a sphere

TABLE 1. Coefficients a,b,c for different ranges of E; /N used in Eq. (24).

E,/N
E, E E E,
(Td) 2 <97.09 97.09 <« — <303 303 < = <1210 z
N < < N < < N < N > 1210
a 9.02 10! —1.18x 10! 8.07x 10! 6.14
b 1.13x 1072 1.96x 102 1.36x 102 4.72% 1073
c —3.7 x10~° —1.37x10°° —4.08%10¢ 0
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whose radius is equal to the electron diffusion radius;
then, as the carrier number increases the collective phe-
nomena of carrier interaction applies in two ways.

(a) An electrostatic mode, by means of a change of the
value of the electric field strength and of its force lines.

(b) An energetic mode, discussed later but showing a
longitudinal diffusion, much higher than the transverse
diffusion. The rhs of Eq. (21) gives a representation of
this fact.

Both these phenomena give a high anisotropy of the
electron cloud which tends to lengthen in the direction of
the electric field. The discharge evolves in a filamentary
stage and its radial extension is lower than its longitudinal
one. It appears that the monodimensional Poisson equa-
tion is coherent with the formalism and we presented it in
a previous paper.!’ This involves, however the assump-
tion the charges are spread in infinite planes perpendicu-
lar to the propagation axis. This may lead to an overes-
timation of the electric field. To avoid this drawback,
Davies and Evans?? calculated the space-charge field, as-
suming that the charge carriers are in a cylinder with a
flat end. Its radius is equal to the electron diffusion ra-
dius. They assumed that the charges and the field are
constant on a cross section and equal to their axial values.
The resulting field is obtained by the superimposition of
the elementary fields created by all the discs uniformly
charged and placed at the network points of the gap.
When the discharge propagates, the cylinder lengthens
without modifying its radius or its bottom form. This
analysis has been carried on (Caumes,’* and Bayle, Bayle,
and Caumes®’) with the following different assumption:
The charges are supposed to be distributed inside elemen-
tary cylinders of thickness equal to the network mesh and
the net space-charge density inside an elementary cylinder
is assumed to be constant. The total field created at a
point of the discharge is the result of the superimposition
of the elementary field AE of each cylinder. This method
can be called the “constant net space-charge density
cylinder method” (CNC). The accuracy of the calculation
can be improved, assuming that the net space-charge den-
sity evolves linearly inside an elementary cylinder and this
method can be called the “variable net space-charge densi-
ty cylinder method” (VNC).

B. Study of the profile of the discharge front

The previous computations are based on the hypothesis
that the discharge evolves in a cylinder with a flat end and
propagates without deformation. In fact, the space charge
induced by the electrons and the ions yields not only a
change in the resulting field strength, but also a change in
the form of the lines of field. However, the revolution
symmetry around the propagation axis is maintained.
This induces an anisotropy of the transport and diffusion
phenomena, leading to the conclusion that the tip of the
discharge channel cannot end on a plane surface.

To study the influence of the modification of the lines
of force on the profile of the discharge channel, we first
suppose that the charges n,(x,t?) and n;(x,t) defined by re-
lations (28) are distributed inside a flat-ended cylinder
with a radius Rp=0.15 cm. This constitutes the situa-
tion in the first-order model described in Ref. 5. The
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value of 0.15 cm for the cylinder radius is the radius of
the channel estimated from Wagner experiments!> and
used by Davies! and Abbas and Bayle’ to define the
discharge channel.

From this cylindrical repartition, the lines of force are
calculated by numerically resolving the Poisson equation:

vV 13V p(x,r)
x2 r or a or? + € =0. (26)

The question was whether the lines of force were suffi-
ciently perturbed to modify the flat end of the cylinder. It
is indeed what we noticed. A convergence of the lines of
force occurs, just ahead of the discharge channel (Fig. 1).
This convergence takes place in the zone where the elec-
tron density is about 3 orders lower than the higher densi-
ty of 4% 10~7 C/cm3. This modification of the lines of
force, parallel at the origin, yields a charge confining and
thus a narrowing of the envelope of the discharge, ahead
of the wave. In consequence, the propagation of the wave
front cannot be developed on the cross section of a
cylinder whose radius remains constant all over its length.
It is necessary to define a profile for the discharge front
that is able to produce an electrostatic confining (leading
to a tip effect) and show the effect of the electron pressure
gradient (leading to a modification of the longitudinal dif-
fusion).

The most suitable profile for these constraints seems to
be ellipsoidal, maintaining axial symmetry and lengthen-
ing in the direction of propagation. A similar profile of
the discharge channel has been set up by Lozansky and
Firsov?® with the assumption that the channel was per-
fectly conducting and that the tip of the ellipsoid had a
constant curvature radius, whereas in this ,work we con-
sider a variable curvature radius for the tip of the ellip-
soid.

In the transverse direction, the small axis of the ellip-
soid is chosen equal to the radius of the transverse elec-
tron diffusion Rj, which is experimentally measured.
The radial extension of the discharge and particularly the
extension radius of the channel appearing behind the ion-
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FIG. 2. Ellipsoidal envelope of the discharge.

izing wave front, i.e., between the cathode and the wave
front, is established by this parameter. In this part of the
discharge, the radius remains nearly constant and the net
space-charge density is low. It is a glow discharge-like
situation with a low field (Abbas and Bayle,’ and Davies
and Evans®®). The long axis choice is more difficult. We
define this ellipsoid by the focusing of the electron cloud
under the effect of the lines of force. To show the role of
localization of the charges, we assume that the ratio of the
highest density (at the limit of the channel) to the lowest
density (just ahead of the front) equal to 10° defines the
envelope of the useful part of the electron cloud in the
field computation. The focusing of the lines of force of
the electric field nearly occurs at this point. We verify by
the tests carried out that the electronic densities situated
outside of the envelope, which are not taken into account
in the field calculation, intervene in a negligible way in
this field value. We found that the definition of the en-
velope at 10 was a good choice as it is able to show the
convergence of the lines of force ahead of the channel
without introducing notable changes in the field calcula-
tion. The electron cloud is inside this ellipsoidal envelope
and for the field calculation only we consider that there
are no electrons in the area outside the envelope. The
field computation is carried out by one of the two previ-
ously described methods (CCN or CVN). The ellipsoid is
cut in elementary cylinders of variable radius (Fig. 2),
each section radius being equal to

1/2

x2

1— 2
xr

Rx =RD (27)

(x7 being the abscissa of the ellipsoid tip).

It is necessary to elucidate if, during the spatial evolu-
tion of the discharge, the radius of curvature of the ellip-
soid at its tip evolves. We allow the profile of the ellip-
soid to vary during the propagation, by a variation of its
long axis and a change in its curvature radius at the tip.
During the spatiotemporal evolution of the discharge, the
ellipsoid modification follows the evolution of the electron
density. This limit of the plasma propagates locally (near
the axial tip) like a one-dimensional plane wave. The
modification of the ellipsoid-gives rise to a cylinder of
constant radius Rp behind the front as found in Eq. (27).
This new definition of the discharge front plays a deter-
minative role in the electric field configuration.

Figure 3 gives a comparison between two calculations

N W b
T

-
T

o

E (kvcm)

FIG. 3. Comparison in the eléctric field calculated by the
cylindrical model (solid line) and the ellipsoidal model (dashed
line) applied to the initial net space-charge density defined in
Fig. 5.

of the electric field due to the charge carriers situated in
the analysis window

(a) assuming the envelope is a cylinder with a flat end
(solid line),

(b) assuming the envelope is the ellipsoidal model above
defined (dashed line).

In the two calculations, the charges repartition n,(x) and
n;(x), have the same value, and are those defined in Sec.
IV A [Eq. (28)]. The ellipsoidal envelope shows a tip ef-
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FIG. 4. Definition of the analysis window. T, and T, are
defined by the ratio n,(max)/n.(xr)=10"3 and fix the tip of the
ellipsoid used for the field calculation.



fect characterized by an increase in the maximum yalue
and the field gradient ahead of the front. This tip effect
will give an enhancement of the shock and a higher degree
of localization of the electrostatic phenomena.

IV. PROPAGATION OF ELECTRON FLUID WAVE

A. Description of the simulated experimental work.
Initial and boundary conditions

We studied the propagation of a ionizing wave in a
breakdown in nitrogen in a 3-cm plane-parallel gap. The
applied electric field was equal to 10.6 kVcm™! and the
gas pressure (nitrogen) was equal to 200 Torr, leading to
an overvoltage of about 25%. These experimental condi-
tions were those of Wagner’s'> experiment. This experi-
mental situation has been analyzed by one of us in previ-
ous works (Abbas and Bayle»!?). The simulation of the
discharge by a first-order model shows that the discharge
front evolves in an unavoidable way towards the forma-
tion of an electron shock wave, whose propagation will be
studied. The shock conditions obtained 125 ns after the
release at the cathode of the initiating electrons are the in-
-itial conditions in this work.

For the computer analysis, it was necessary to treat
only a part of the gap and this involved the definition of
an analysis window, situated in front of the discharge. It
corresponded to the front of the anode-directed streamer
and held the electron shock wave (Fig. 4). The length of
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FIG. 5. Initial conditions at ¢ =0 [corresponding to ¢ =125
ns from Abbas and Bayle (Ref. 5)]. (a) Initial electron density
n,, ion density n;, electric field E, and electron temperature T,.
(b) Initial ellipsoidal envelope. Each tic on the x axis is equal to
3.266X 1073 cm.
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the studied area measured 0.163 cm and was divided in
250 meshes. The spatial resolution was Ax=6.53x 104
cm and the temporal resolution was Ar=3Xx10"!2s. The
initial conditions for the ion and electron densities, the
electric field, and the electron temperature are shown in
Figure 5(a). Towards the left of the analysis window, the
discharge is a quasipositive column with nearly equal ion
and electron densities with cold electrons in a weak elec-
tric field. On the right-hand side, few hot electrons evolve
in a strong field. The initial profiles of the ion and elec-
tron densities are identified as exponentially decreasing
curves, based on the previous works (Abbas and Bayle’).
For x <x,

n.(x,0)=n,q ,

n;(x,0)=n;, ,
and for x > x, (28)

ne(er):neoexP['—ke(x _xc)] ’

n;(x,0)=n;oexp[ —k;(x —x.)] ,
with 7,0=4%10"7 Ccm™3 and n;0=3.5%10"7 Cem—3.
The shock is defined as the narrow transition zone be-
tween a region of the gas with high charge-carrier densi-
ties and a region without charge carriers. The values of

coefficients k, and k; represent the electron shock-wave
strength:

k;=1500,
(29)

X —Xx,

k,=1000 |1—

Xp —X¢

with x; =(xo+x4)/2,
ne(x,0)=n;(x,0)=0 for x >x;

where xg is the initial left boundary of the analysis win-
dow and x, is the window boundary towards the anode.
x, is the point from which the electronic and ionic densi-
ties begin to decrease (see Fig. 4). During the spatio-
temporal evolution of the discharge, the relative gradient
k, of the electron density represents the shock-wave
strength. The left and right boundaries of the window are
far enough removed from the electrodes for the virtual
charges, carried by the metallic electrodes, to be ignored.
It is obvious that all the charges taken into account in
the analysis window do not constitute an isolated system
and, this implies the necessity of determining the interac-
tion of the whole discharge with the studied area. This
action is the result, on the left-hand side of the investigat-
ed zone, of the closeness of charge carriers of the
discharge channel and appears as an electrostatic effect.
The charge repartition is then as follows: As a further
approximation, the charge in the cylindrical column for
X <xq is replaced by a charge Q, located at a position
xg,=xo—1Io from the cathode. This position is the center

of gravity for the electron and ion cloud and is estimated
from the results of the first-order model (Abbas and
Bayle®). This part of the discharge creates an electric field
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equal to 6 kV/cm on x, the initial left boundary of the
analysis window.

In the analysis window, the charges are distributed in-
side the ellipsoidal envelope and, only in the electric field
computation, we consider there are no electrons outside.
The initial electric field E(x,0) in the analysis window is
equal to the sum of the applied field E, plus the field
E(Qy) created by the charge Qg plus the field E(W)
created by the charges located inside the ellipsoid:

E(x,0)=E +E(Qo)+E(W) . (30)

E (W) is calculated assuming that the charges distribution
in the ellipsoidal envelope are represented by a set of disks
(as shown in Fig. 2) within which the charge density is as-
sumed constant at the value calculated for the value of x
appropriate to the disk. :

Once the analysis window is clearly defined the evolu-
tion of the ionizing wave must be allowed to occur while
preventing it from reaching the right boundary of the
window. It should be borne in mind that this event will
introduce the problem of electron cloud impact with an
absorbing wall. To avoid this drawback, the window was
shifted with time towards the anode, the total shift being
equal to 0.294 cm in 2.4 ns. Each shift was carried out in
such a way that only the left part of the positive glowlike
column was affected by the boundary shift. The charges
remaining on the left of the analysis window were taken
into account by the electric field they created in the win-
dow. The fact that the zone of the quasi positive glowlike
column is a cold area with a weak net space-charge densi-
ty of generation and transport rates nearly equal to zero
justifies this procedure. The electric field at the time ¢ is
then the sum.of E(Q,) plus E, plus E(Q,), the field
created by the charges left by the window shift plus
E(W). Therefore

E(x,t)=E +E(Qo)+E(Q,)+E(W) . (31

The electron temperature T, is initially supposed to be an
equilibrium temperature as defined in relation (24).

In the following figures, the abscissa origin is the x,
position of the left boundary of the window as has been
defined according to the initial conditions. The integer
values on the abscissa axis are values of the factor M by
which Ax must be multiplied in order to obtain the posi-
tion of the point by reference to the position x of the ini-
tial conditions (Ax =6.53% 10~* cm).

FIG. 6. Deformation of the discharge envelope during the
temporal evolution. ¢;=0.6, #,=1.05, t;=1.5, t,=1.95,
ts=2.4 ns. Each tic on the x axis is equal to 0.0261 cm.

B. Results and discussion

1. General description of the propagation mechanism

The evolution of the discharge envelope points out in a
general way the channel propagation in the neutral gas.
Figure 6 shows the progressive change in the ellipsoid pat-
tern, when the transverse diffusion radius of the quasi
positive glowlike column is kept constant and equal to its
experimental data. We assume this radius is nearly con-
stant in the positive glowlike column (the ambipolar dif-
fusion is slow enough so that the column radius does not
change). One may notice that the channel is progressively
accelerated and that the ellipsoid profile is modified. The
long axis is lengthened in the propagation direction and
the curvature radius at its end rapidly decreases, yielding
a tip effect. This fact is of great significance to the
discharge evolution as the electric field ahead of the front
is greatly amplified as shown in Fig. 7. These increasing-
ly high-field values are at the same time more and more
located in front of the channel, the tip effect leading
directly to an increase in the electron drift. Figure 8
shows the simultaneous evolutions of the ion and electron
densities and of the dynamic electron temperature [de-
duced from Eq. (22)] and of the electric field. One may
notice that the low electron temperature in the positive
glowlike discharge keeps the densities varying slowly with
time. The net space-charge density remains nearly con-
stant in this part of the discharge and evolves towards a
quasineutrality in this part of low electron temperature
and weak electric field. On the opposite side, in the shock
area ahead of the channel the electron temperature is
high. The largest part of the electron production takes
place in this zone because of this temperature increase,
and this induced here a strong ionization rate. The net
space-charge density, nearly constant in the column,
greatly increases in the shock-wave front. This implies a
parallel increase of the resulting field. Hence an amplifi-
cation process develops, the increase in the field strength
leading to an increase in the speed of the electrons ahead
of the cloud. This implies a partition of the carriers in
the front, the ions remaining quite immobile. So a pro-
gressive deforimation appears on the ellipsoid pattern with

-
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FIG. 7. Spatio-temporal evolution of the electric field.
t;=0.6, t,=1.05, t,=1.5, t4,=1.95, ts=2.4 ns. Each ticon x
axis is equal to 0.0326 cm.
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FIG. 8. Evolution of the profile of electron and ion densities, electric field, and electron temperature vs time. Each tic on x axis is
equal t0 0.0163 cm. (a) t =0.6ns, (b) t =1.2ns, (c) t =1.8 ns, (d)  =2.4 ns.

an increase of the tip effect by a decrease of the curvature
radius of the end of the ellipsoid. This phenomenon is
greatly emphasized by the high degree of localization of
the field maximum ahead of the ionizing front. Only
electrons present in this zone are affected by this increase.
This localization of the field effect is correlated with an
enhancement of the heating effect of electrons. The result
is to maintain and even reinforce the shock-wave structure
in the front of the ionizing wave.

The electron temperature, among the parameter values,
evolves the more rapidly, particularly just in the shock
zone. The temperature curves show that one of the first
phenomena of the propagation is the importance of the
strong heating of electrons that takes place on the wave
front. Equation (13), giving the expression of the source
term of ionization, shows that this temperature rise in-
duces an electron overproduction that, simultaneous with
the acceleration due to the tip effect, leads to an accelera-
tion of the propagation. Hence the high-speed propaga-
tion arises from the double contribution of local perturba-
tions coming from electrostatic phenomena (increase of
the drift velocity on the wave front) and from energetic
phenomena (overproduction of hot electrons). After an
acceleration phase, the wave velocity reaches a nearly con-
stant value of 1.2 10® cm/s, in perfect agreement with
experimental data of Wagner.!3

2. Permanence of the electron shock wave
during the wave propagation

It is necessary to clarify whether the electron shock-
wave maintains itself and/or is amplified during the prop-
agation. In a general way, the spatio-temporal variation
of the different values (Figs. 8—10) show the permanence

400 X

FIG. 9. Spatio-thermal evolution of the ratio of the electron
pressure P, on the neutral pressure PNz' t,=0.6, t,=1.05,

100 200 300

t3=1.5, t,=1.95, ts=2.4 ns. Each tic on the x axis is equal to
x=0.0163 cm.
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FIG. 10. Electronic densities and relative gradients. #;=0.6,
t,=1.05, t3=1.5,1,=1.95, ts=2.4 ns. Each tic on the x axis
is equal to 0.0163 cm.

and enhancement of the electron shock wave by a maxima
increase and a half-width decrease. The evolution of these
variables is perfectly represented by the evolution of the
ratio of the electron pressure P, to the neutral pressure
Py, (Fig. 9). The electron pressure P, represents the elec-

tron energy density and in a previous paper (Abbas and
Bayle!®®) we have shown the decisive role played by P,.
The evolution of the electron pressure P, =n kT, appears
as the result of the conjugate electrostatic and energetic
effects. It is the value that best reproduces the evolution
of the discharge front. Figure 9 allows us to draw con-
clusions about the permanence and amplification of the
electron shock-wave structure, which appears to drive the
ionizing wave. The relative gradient of electron densities
k.=(1/n,)(dn,/3,) represents the shock-wave strength
and reaches high values ahead of the electron density
maximum. In this zone there is the greatest number of
hot electrons in nonequilibrium with the electric field,
having a higher temperature than the temperature de-
duced from Eq. (24) (Fig. 10).

3. Role of hot electrons in the propagation

After the study of the mechanisms of propagation of
the electron shock wave and its permanence during the
propagation, the reasons of the propagation need to be
analyzed. The intricacy of the involved processes linked
to the complexity of both the phenomena and the formu-
lation do not allow simple conclusions and it appears il-
lusory when analyzing the collective phenomena to identi-
fy what is the cause and what is the effect. To solve this
problem, we chose to compare two different models of
discharge, involving different formalisms, and to analyze
the possible differences appearing between their results.

The first model is the one we developed above. It takes
into account the concept of nonequilibrium between elec-
trons and the electric field as introduced by the definition
of the electron shock wave. This model is based on Egs.
(19)—(22).

The second model is an equilibrium model. It assumes
that the electrons are in equilibrium with the electric field,

-7
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FIG. 11. Comparison between the nonequilibrium field E,

and the equilibrium one E;, the dynamic nonequilibrium tem-

perature T,; and the static equilibrium temperature T, and the

nonequilibrium electronic densities n.y and the equilibrium den-

sities n.. Each tic on the x axis is equal to 0.0131 cm. (a)
t=1.2ns, (b) t =2.4ns.

and their temperature is the static temperature deduced
from the characteristic energy. This model is based on
Egs. (19)—(21). The electron static temperature is ob-
tained from the electric field by the relation (24).

Hence, except for the fundamental definition of the
electron temperature, this second model is exactly identi-
cal to the first, particularly in the formulation of the
source term of the transport equation of electron and ion
densities. The electric field calculation is made by CNC
method, assuming in the two models that the discharge
evolves in a ellipsoidal envelope. Of course, the initial
conditions are the same in the two models and are those
described in Sec. IV A.

Figure 11 shows the evolution of the electron densities,
the electric field, and the electron temperature in the two
models, 1.2 and 2.4 ns after the initial conditions. The
values obtained by the equilibrium model are written with
5 (ng, T, Es) because it uses the static temperature and
the values obtained by the nonequilibrium model are writ-
ten with d(n.,T.4,E;) because this model uses the
dynamic temperature. The curves for the electric fields
E,; and E; show similar variations. It is obvious that the
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FIG. 12. Ratio of nonequilibrium electronic densities n., to
equilibrium electronic densities n,,. Each tic on the x axis is
equal to 0.0326 cm. t;=0.6, t,=1.2, t3=1.8, t;=2.4 ns.

relative positions of the maxima cannot concur because
the electron generation and thus the spread of the canal
are not the same in the two models. However, these
curves show that the significance of the electrostatic
phenomenon is the same in the two situations. This is
linked to the fact that the evolution of the electric field is
greatly determined by the net space-charge density change
inside the ellipsoid. Notice that the greater the distance
between these maxima (i.e., the more the ellipsoids are dif-
ferent), the greater the difference between the values of
these maxima. The evolution of the electron temperature
depends on the model used. In the equilibrium model, the
temperature and the field evolve in the same way and
their respective maxima appear at the same place. In the
nonequilibrium model, the field and the temperature do
not evolve in monotonous ways and the temperature max-
ima are located in front of the field maxima. Therefore,
the role of nonequilibrium effects on the discharge propa-
gation is settled for situations where the significance of
the electrostatic phenomena is similar. The space-charge
effects leading to a reinforced field in front of the channel
are not sufficient to induce over-acceleration. The curves
show that the hot electrons induce the overproduction in
front of the channel leading to an increased acceleration

of the ionizing wave propagation. The relative values of

the propagation velocities are, respectively, equal to
8.5 10" cm/s in the equilibrium model and 1.2 10%
cm/s in the nonequilibrium model. This last value agrees
with the data obtained by Wagner!® for the last stage of
the anode directed streamer. This electron heating on the
wave front creates a precursor effect ahead of the plasma
channel while, in the positive glowlike column, the field
and temperature values are low enough for the two
models to give nearly the same results. This precursor ef-
fect generated by the energetic nonequilibrium between
the electrons and the electric field is shown in Fig. 12 giv-
ing the ratio n.4/n. of the electron densities obtained by
each model. Figures 8 and 12 show that the wave front
acts like a source of hot electrons, with little spatial exten-
sion.

If these results are compared with the results obtained
in the analysis of experimental image converter records
(Caumes,” Bayle, Bayle, and Caumes,?* and Bayle, Bayle,

1057

TABLE II. Experimental work data showing the formation
of a strong field gradient.

E/N  Pressure
Reference (Td) (Torr) Mixture
Bayle, Bayle, and Caumes, 409.60 130 90% N,
Ref. 25
Caumes, Ref. 24 409.60 130 10% O,
Bayle, Bayle, and Morales, 367 130 97.5% N,
2.5% CH,

Ref. 27

and Morales?’), one may notice that in both cases the for-
mation of a strong field gradient with shock-wave effect
was observed. However, the over-voltage was not the
same in these two studies. The different values used in
the experimental works are reported in Table II.

These experimental works involve too-high E /N values
and the numerical computer treatment overflows and we
choose to simulate Wagner’s experiments involving lower
values of E/N (159 Td). For high values of E/N, the
charge separation is probably increased and this can ex-
plain the second field maximum which is not observed in
this work. )

On the other hand, it is interesting to correlate our re-
sults with those obtained in a point-plane gap in air by
Hartmann.?® He deduced the mean value of the electronic
temperature in the active front of the discharge from a
fine analysis of the emitted spectrum of the streamer tip
and he found about 10—15 eV, which completely agrees
with our calculated electronic temperatures.

V. CONCLUSION

The analysis of the front of the first ionizing wave by a
hydrodynamic second-order model allows us to character-
ize the precursor effect, set forth in many experimental
works. The whole collision-dominated phenomena (elec-
tron production, transport, diffusion) gives rise to the for-
mation of an electron shock-wave structure, ahead of the
channel. In this zone, because of the strong field gra-
dients, the electrons are no longer in equilibrium with the
field and their energy no longer appears as a function of
the field alone. This induces a great modification of the
elastic and inelastic interactions with the neutral particles,
globally taken into account by our model. The electron
shock wave appears then as a zone of high electron tem-
perature leading to an increase in the ionizing collisions.
The observed overproduction of electrons is the result of
nonequilibrium mechanisms between the electrons and the
field.

This high overproduction of electrons (linked to an in-
crease of the thermal electron energy) takes place under a
strong electric field and constitutes the driving phenome-
na of the discharge and so the precursor. The agreement
with Wagner’s experimental data confirms our model,
which appears very satisfying in the range studied.
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