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The Fermi-Pasta-Ulam B model has been studied by integrating numerically the equations of
motion for a system of N nonlinearly coupled oscillators with N ranging from 64 to 512. Mul-
timode excitations have been considered as initial conditions; the number An of initially excited
modes is such that the ratio An /N is kept constant. We can consider the system as a gas of weakly
coupled phonons (normal modes), so that if we keep the ratio An/N constant we find an analogy
with the thermodynamical limit of statistical mechanics where the ratio M /V is constant when both
the volume ¥ and the number of particles A are increased up to infinity. The relaxation towards
stationary states is followed through the time evolution of a suitably defined ‘“spectral entropy”
which depends on the shape of the space Fourier spectrum; this spectral entropy is a good equiparti-
tion indicator: Strong evidence is reported in favor of the existence of an equipartition threshold.
Its persistence at very different values of N is also clearly shown. The main result concerns the oc-
currence of the threshold at the same value of the energy density (i.e., of the “control parameter”)
when the number of degrees of freedom is changed. More general initial conditions are also con-
sidered and the same result is found using as a control parameter a pseudo-Reynolds-number R:
The threshold occurs at the same critical value R, when N is varied. It turns out that a fully chaot-

ic regime (equipartition) is obtained with an ‘“‘average nonlinearity” of the system of about 3%.

I. INTRODUCTION

The relation between the Boltzmann-Ehrenfest statisti-
cal mechanics (“kinetic-dynamical” approach) and the
Gibbs-Einstein statistical mechanics (“static” approach
via ensemble theory) relies upon the ergodic hypothesis,’
i.e., the equivalence of time averages and ensemble aver-
ages. There are several general results on the equivalence
of ergodicity with other properties (e.g., metrical indecom-
posability of a system, nonexistence of prime integrals
other than energy). Unfortunately no general constructive
criterion for ergodicity exists, given the form of the Ham-
iltonian; there are some exceptions, which are—as far as
we know—the trivial case of a system with one degree of
freedom and the free particle which bounces elastically on
the walls of a billiard. ‘

For a long time, up to the 1950s, the community of
physicists has considered the problem of ergodicity sub-
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stantially solved. From a fundamental theorem of Poin-
caré (generalized by Fermi),> which proves the nonex-
istence of prime integrals independent from the energy in
generic nonlinear Hamiltonian systems (apart from some
particular cases), Fermi himself concluded (erroneously)
that a generic Hamiltonian system must be ergodic. Such
a belief fell through because of two basic results: (i) the
Kolmogorov-Arnol’d-Moser (KAM) theorem,® which
showed that even without other prime integrals the phase
space of a nonlinear Hamiltonian system can present open
invariant set bounded by nonsmooth invariant
manifolds—the set of invariant tori;* (i) the famous (at
least among physicists) numerical experiment of Fermi,
Pasta, and Ulam?® (FPU) which proved, for the first time,
that a weak nonlinearity is not sufficient to lead a Hamil-
tonian system to equipartition of the energy among the
degrees of freedom. For Hamiltonian systems with a
small number N of degrees of freedom (N ~2—5) there
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exists a huge amount of numerical simulations (beginning
with the famous Henon-Heiles model),® showing the ex-
istence of a stochasticity threshold—at a fixed value of
the nonlinear coupling constant A there is a critical energy
E, such that at E < E, we observe a prevalence of ordered
orbits, while at E >E, the trajectories with chaotic
motion are dominant. The term ‘“‘chaotic” is very vague
and usually stands for exponential divergence of initially
close orbits (or, equivalently, Kolmogorov-Sinai entropy
different from zero), the Poincaré map presenting scat-
tered “spots” of points rather than “lines,” as in periodic
or quasiperiodic motions.

The persistence of ordered motions or nearly integrabil-
ity in the thermodynamic limit (N — o) is far from being
understood: The KAM theorem holds for any finite N
but unfortunately no estimate of the dependence of E, on
N exists. One of the main problems in the foundations of
classical statistical mechanics concerns the evaluation of
limy_, ,E./N: Is it zero or finite?

There are on this fundamental question different and
diverging viewpoints. Some scholars support the impossi-
bility of a dynamical construction of ensemble theory in
statistical mechanics and therefore the irrelevance of the
ergodic problem (Landau).” Others think that an
equivalence between time and ensemble averages must
hold only for a few physically relevant functions (Khin-
chin).® In particular for any function f that can be ex-
pressed as a sum of functions f; dependent on single-
particle phase-space coordinates one can prove that, for
almost every initial condition,

. limT_*w(f)T
<f>ell$

where {f)r=(1/T) f on dt and the brackets ( )., stand
for the ensemble average. Although this result is very in-
teresting one should note that this theorem cannot be ap-
plied to many phase-space functions of some physically
interesting systems. Let us consider, for instance, a chain
of coupled particles whose Hamiltonian is

— 1, (1)

N—>ow

=3 (L4 G P14 AV (S =), @)

i=1

where ¢; are the displacements about the stable positions
of the particles and V(£) is nonquadratic [in the FPU S
model V(£)=pBE*/4).

The theorem (1) establishes the virialization of kinetic
and potential energy in the thermodynamic limit but does
not say anything about the equipartition of the total ener-
gy among the normal modes. The theorem (1) has a
scarce dynamical content being substantially a probabilis-
tic statement.

Now let us comment in more detail on the concept of
critical energy E.. One must be clear about the definition
of E.: One can introduce parameters which detect the ap-
pearance of stochastic orbits (e.g., Lyapounov exponents),
thus determining a stochastic critical energy EZ,° while in
other cases the attention may be to the equipartition criti-
cal energy EZ. !0 It is in general reasonable to think that
E; < E¢, since it is possible that the phase space is divided
in two or more regions inside which the motion is chaotic,

but clearly we have not ergodicity and equipartition. This
effect has been actually observed in the two-dimensional
Lennard-Jones model.!!

There are two distinct viewpoints with respect to the
dependence of E; (or E;) on N.

(i) limy_, ,Ef/N=0, and the KAM theorem is ir-
relevant for the thermodynamic limit (Chirikov).

(i) limy_, ,ES/N =const > 0 (Galgani).

There have also been some proposals on the dependence
of E_ on the initial conditions. For the FPU model and
for initial conditions which consist in the excitation of An
normal modes near to the normal mode n, whose wave
number is k,=2mwn/N (N is the number of particles),
Chirikov'? suggests

E, (An)'2/nA, n<<N
N T |K2Z/ANY, n~N ®
using arguments based on the application of the
Bogoliubov-Krylov technique.
On the contrary Galgani et al.!® propose
E; |
~ ~SKn) “@

where f(k, ) is a monotonically increasing function of k,,.
Galgani and collaborators have also proposed for this
model E, /N ~ ®¢y, Where w,,. is the angular frequency of
the central initially excited mode, and using this result
they put forth- a possible classical interpretation of
Planck’s law. Some indications, from numerical simula-
tions, of the fact that E. /N goes to a nonzero value as N
increases are obtained for a chain of particles interacting
with a Lennard-Jones'* potential and for the FPU
model."’

In Eq. (3) we have purposely written E, instead of E¢
(or EJ), as there is some controversy between Refs. 12 and
16; in the former paper E,=E; seem to be considered
while in the latter E,=E is probably assumed. In this
paper we will deal with the study of E as a function of N
and of the initial condition.

In Sec. IT we will introduce the model and the indicator
of equipartition, the “spectral entropy”; in Sec. III we will
discuss the numerical results on the dependence of E_ on
N and on the initial condition; Sec. IV is devoted to some
perspectives of future work.

II. THE MODEL AND THE SPECTRAL ENTROPY

In this paper we consider a model representing a chain
of N nonlinearly coupled particles, whose Hamiltonian is
given by :

N
H=3 M+ 3($i—di 1)*+ 1B —di 1 1)*], (5)
i=1

where ¢; are the displacements with respect to the stable
positions and 7;=¢; are the conjugate moments to ¢;.
This is the well known Fermi-Pasta-Ulam 8 model.> We
have integrated the equation of motion derived by the
Hamiltonian (5), which reads

bi=(i 1 1+bi_1—26)+BL($; 11— i)' (b; —b;_1)°]
=F;{¢;(1)} 6)
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by means of the leap-frog algorithm; that is,
bi(t +A)=2¢,(t)—b;(t —At)+(AL)F;{¢;()} . (D

In our numerical experiments we have chosen periodic
boundary conditions, i.e., §;=¢y 1. It is evident that the
B=0 model can be integrated by the Fourier transforma-
tion, which reduces it to a system of decoupled harmonic
oscillators in the wave-number space. Since we are in-
terested in the mechanism of energy sharing among the
many degrees .of freedom at small 3, or small nonlinear
‘energy, it is sensible to choose the Fourier basis even at
B+0.

In formula the displacements ¢;(¢) can be expanded in
Fourier components 4,(t), B,(¢) as follows:

N/2
$i(=2m~123 | 4,(t)cos 2—1’:,”(1'__1)
n=0
+ B,(t)sin 21’:,”(1’—1)’ . ®

In all our numerical experiments we take N =2" so that it
is possible to perform the Fourier transformation to com-
pute A,,B, by using the fast Fourier transformation algo-
rithm.

The quantity of interest here is the power spectrum

Wo(t)={A% (1) gm+ (B%()Dem )

where ( ), means a smoothing operation centered
around the time #:

2 1 t+AT/2
(A2 0)m=—= [,

AT Je—aT,2

We shall see that the smoothing does not change sensitive-
ly with AT if AT is much greater than the typical time of
the system which is O(1).

If the equipartition of energy between all the normal
modes is finally reached we have

Wo(t) ~ w52, (11)
t— oo

dt' AXt") . (10)

where w, =2sin(wn /N) is the pulsation of the mode with
wave vector k,=2mn /N in the limit B=0. The problem
is to find an “equipartition energy indicator” which mea-
sures the “degree” of equipartition. We are interested in
the study of the sharing of the energy among all the nor-
mal modes when at the initial time the energy is distribut-
ed only on a few of them.

We therefore need a very sensitive probe of the power-
law behavior (11) (i.e., the energy equipartition), with the
following properties.

(i) It must be very stable for a long time and indepen-
dent of the intermediate shapes assumed by the spectrum.

(ii) It must be reliable and well defined with different
choices of initial conditions. In a previous paper!’ the

" slope a(t) of the exponential spectrum W, ~e ~"**) when
only one mode was initially excited, was chosen as the
equipartition parameter. This choice is not possible any
more for excitations involving initially many modes.

(iii) It must select the inverse square law, denoting the
equipartition of energy. The fact that the “slope” of the

spectrum for initial one-mode excitations goes to zero,
while detecting correctly the onset of a generic power law,
it does not necessarily select the desired behavior (11),
which can be observed only by looking directly at the evo-
lution of the spectrum.

Let us introduce the quantity

N/2
H(t)=— 3 p,(t)lnp, () >0, (12)

n=1

where p,(t)=E,/,,E;; E, is the harmonic energy of the
normal mode with wave vector k, =2mn/N. In our prac-
tical computations we set p,(t)=w> W,,(t)/ziw,gWi(t);
this choice is possible because there is a virialization of ki-
netic and potential energies for each normal mode and
then E, < w’W,.

This spectral entropy reaches zero when p,=1,
Pn=0 Vns£s, ie., only one normal mode is excited. Its
maximum value H,,,=In(N/2), is obtained when
Pn=2/N Vn, ie., the power spectrum W, shows the
power law (11). The value of H diminishes the more the
spectrum is concentrated or lumped, while the maximum
is obtained at the equipartition of the energy per mode—
E, < wi W, =const.

There is still a drawback for the quantity just intro-
duced, i.e., its maximum depends on N which we are go-
ing to vary in our simulations. To avoid this undesired
feature we have introduced the normalized quantity

Hmax'_Heo

Hpx—H(O) '’ (13

7]:

where H , is the maximum value reached by H (¢) during
the integration of the equation of motion; in some sense it
is the “asymptotic” value of H (z), since the tendency of
the spectrum is towards a spreading of the energy among
the modes. Let us notice that 7 is bounded between zero
and one, which correspond, respectively, to the equiparti-
tion of energy and to a situation which does not differ a
great deal from the initial condition; in the latter case
there is not a substantial spreading of energy among the
modes.

III. PERSISTENCE OF THE THRESHOLD
AT LARGE N: NUMERICAL RESULTS

In this section we show our numerical results obtained
using the numerical methods previously mentioned and
the parameter 7, which measures the degree of equiparti-
tion, with different initial conditions and different num-
bers N of degrees of freedom.

The characteristic time of our system is given by the
period of the fastest mode, i.e., 7; in all our computations
we have used At=10""!, which ensures a good time sam-
pling. A relevant problem, as was discussed in Sec. I, is
the existence of the equipartition threshold and the depen-
dence of €;=E;/N on the number of degrees of freedom
N.

The numerical experiment has been performed with dif-

ferent values of N ranging from N=64 to 512

(N=2", m=6,7,8,9) and initial conditions of the type
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N/2
$:0="3 | A,cos | Z(i —1)
n=1 N
+ Bysin | 27 —1) (14)
n N b
with A4, and B, different from zero only for

n €[7, T+ An —1], where the overbars indicate a certain
fixed value of n and of a range of n. The values of k;
and Ak, do not change when N is varied and 4,, B, are
chosen so that the energy at the initial time is equally
shared in the range [#, i +An — 1]; clearly the number of
modes contained in this range grows linearly with N. We
think that this choice is a natural one to study the trend
towards the thermodynamic limit; indeed, we are consid-
ering a system which describes a gas of weakly coupled
phonons and increasing the number of initially excited
modes (“quasiparticles”) with N (which is the “volume”
of the system). This procedure resembles the limit of
N-—->w and V-—>« when the density N/V is left un-
changed. With the initial conditions (14) we perform the
numerical integration to compute H(¢) from W,(z) and
we choose the value =0.1.

We find that at t~2000 (AT ranging from 100 to
1000) 7(t) has already reached its asymptotic value, we
have followed in some cases the evolution of 7(¢) up to a
time ¢ ~10000 (AT ~100—2000) and we did not observe
any difference. In Fig. 1 7 is plotted versus the energy
density e=E /N with the above-mentioned value of N and
two different choices of 7.

We can observe that € does not change significantly
with increasing N. This suggests the relevance of the ex-
istence of an equipartition threshold also when the ther-
modynamic limit is approached.
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We remark that the experimental points lie on a
“universal curve” 7(e) within the numerical errors. This
behavior is, by the way, an indication that 7 is a good
equipartition probe. In Fig. 2 we have reported some of
the results shown in Fig. 1 together with those referring to
more general excitations, i.e., without the restriction of a
fixed Ak, and this time 7 is plotted versus the asymptotic
Reynolds number R of the system, i.e., the asymptotic
space average of the ratio between the nonlinear (NL) and
linear (L) terms in the equation of motion (6):

O(NL rG!
< 0((L))>sbace Z (¢l+l_¢’) —> R

N i=1
where  )pace stands for space average.

In the particular case of the FPU B model R
~ Ber ~Be when B is small, where ¢; is the density of the
linear energy. ‘

As usual in hydrodynamic estimates there is some arbi-
trariness in the definition of R with the constraint that it
must reproduce correctly the competition between the
nonlinear and linear term.

The dependence of 77 on R turns out to be very similar
to the previously mentioned 7(€), thus defining a critical
value R,. We have found the value R, =0.03 which is
consistent with €,=0.35 (remember that B=0.1) so we
can remark that even with only few percent of “nonlinear-
ity” one obtains the energy equipartition. This is a
relevant point. With such a small value of R it is still
meaningful to consider the energy of a single normal
mode because the total amount of the interaction energy is
only a few percent of the total energy.

It is interesting to note that H _ gives a rough estimate
of the number of the “excited” degrees of freedom, i.e.,
the number of normal modes which significantly ex-

(15)

* 64
y *128 | 5 n/3
s 256 / 2
10 4 P v 512
Le \.\\\ . 64
: s T\ o 128
o \.\\. 0 256 n=5N/32
N v512
L >,
o v
05 |- ' !‘6\'\
L "\
AY
L \
\R
N + N\
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0.0 I L Ll | f’& 1
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FIG. 1. 9 vs € k=2nii/N, Ak =27w&n /N, Bn=N/16, i=N/32; -357N; with N =64,128,256,512.

smoothing of the experimental results.

Dashed line is a free-hand
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FIG. 2. 7 vs R with different N and kind of initial conditions. O indicates N =256 and an initial condition so that the energy is
" distributed on normal modes with wave vector k, =(27/N)n with 8 <n <24 or 40 <n <56.

change their energies with the others. One can assume
that, in a first rough approximation, H _ ~In(N¢/2)
where N is the asymptotic number of the “effective”
degrees of freedom of the system. Loosely speaking we
could consider an equivalent spectrum E (k) made by a
dichotomic choice: If E(k), for any given k, is greater
than a fixed reference value the corresponding normal
mode is considered excited; on the contrary, it is “frozen.”
Considering H ,, as an information entropy, one can infer
that Ngy=2H _ is an estimate of the number of the
relevant degrees of freedom. This definition is similar to
that of the number of different .#” messages contained in
a sequence of symbols, and .4~ ~eS where S is the infor-
mation entropy of the sequence of symbols (Shannon’s
theorem).!® This is clearly a very rough estimate but it
gives us an idea of the volume of the phase space effec-
tively accessible at different energy densities.

In Fig. 3 we have plotted N versus € in the case
N =128 and N =16 in the limit e—0 corresponding to
the initial condition. Again the figure shows a threshold
effect at €=0.3.

Another relevant problem is the dependence of €, on
Wexe Where wey/2m is the frequency of the normal mode
corresponding to 7 in the limit of a very small An. As
was mentioned in the Introduction there is a disagreement
among the theoretical predictions and numerical experi-
ments. It is possible to give a naive prediction of
€. =€.(wexo) With a dimensional argument and a reason-
able hypothesis. The hypothesis is that no matter what
the initial condition is the energy equipartition occurs
when the nonlinear term is “dominant,” i.e., when R is
greater than a certain critical value R, which is indepen-
dent of we,. Since R ~ Be, it follows that €.(@ey.)~const.
We have performed numerical simulations to compute
€, =€.(Wexe). In these computations we have fixed

N =128, Ak =27 /128 changing 7; at any value of 77 we
obtained H , as a function of E and from these curves the
critical values E, are obtained (see Fig. 4 as an example).
In Fig. 5 the dependence E,=E_ (w) is reported. We
have found E,~const~128¢,.

After these results concerning the energy equipartition
threshold we wonder whether this phenomenon is really
related to the competition between the linear and non-
linear terms, or could it be due to some “hidden” symme-
try of the system which, for instance, is related to the
space-translation invariance of the model. In other words
the Broblem is to understand if the system is generic or
not.

For this reason we change the Hamiltonian (5) in

Netr
e —— — ———— ——— — — — — — — A
X
100 -
o X
50 |- X
L X
X
L « X
I X
0 1 L 1 Lol { L
0.01 01 02 03 &

FIG. 3. N vs € for N=128 and initial condition 7 =4,
An=38.
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P ¥'s ) L I A
v
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L]
30+ v
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20 *
vl L N S R |
10 £ 100

FIG. 4. H,, vs E for N=128, we.=0.4, 0.6.

N
=51+ 3 (bi—¢i  *+5Bi(di—di 1 '],

i=1
(16)

where B; are quenched random variables; B;=B+§;,
where 8; is a random variable uniformly distributed in the
interval [—0.18, 0.1], and such that (8;8;) =0 if i=j.

If some hidden conservation law exists, then the
phenomenology associated to the system described by the
Hamiltonian (12) should be very different from that ob-
served for system (5). Figure 6, where H _ versus E is
shown for both systems (5) and (16) shows evidence that
the quenched randomness of the nonlinear coupling con-
stant does not affect the phenomenology. This strongly
supports the idea that the energy equipartition threshold
is still present when we explicitly break some symmetry of
the model. All our computations have been performed on
a CDC 7600 in double precision; the overall simulation re-
.quired about 8 h of CPU time.

Ec
100
60 -
}_..%,__}__i___}_ _*——%’ — E=128 &
20+
@ max
| 1
00 10 WDexc 20

FIG. 5. E, VS Wy for N=128.

Heo
e B =const
ngxc:S{' Bv‘,:g*ai
H max
aok T T T T T e T
° v
30+ .
20F , ¢ 7
ool ) 1 o1l
10 £ 100

FIG. 6. H, vs E for N=128, (@) 8=0.1, (A) B;=0.1+38;,
8; quenched random variables uniformly distributed in
[—0.01, +0.01]. Each run is performed with different realiza-

" tions of {§;}.

1V. PERSPECTIVES AND OUTLOOKS

In this paper we have reported strong evidence in favor
of the existence of an equipartition threshold for a non-
linear Hamiltonian system with a large number of degrees
of freedom and its persistence as this number is increased.
The main result is that this threshold occurs at the same
value of the “control parameter,” i.e., the energy density,
when the number of degrees of freedom varies. This re-
sult has been worked out for large enough integration
times (~10* characteristic times) of the equation of
motion and it seems to suggest that we have actually
reached a frozen situation. For the N dependence our re-
sults seem to be unquestionable and in contrast with the
existing theoretical predictions'? but as far as the time
dependence is concerned we cannot conclude that the
threshold does not vanish as ¢ approaches . Moreover,
an N dependence could be present at much larger times.
This situation can be likened to the very slow relaxation
behavior in disordered systems, where the evolution to-
wards “equilibrium” takes place through metastable
states, approached at different time scales. Such a
phenomenology could be conjectured by applying similar
arguments to those discussed in Ref. 20. Let us suppose
that the energy transfer among the normal modes, after
the “frozen state” has been approached, can take place
only when in some part of the system the nonlinear term
is sufficiently strong so that the local Reynolds number
R (x) is such that R(x)>R,. Thus, following a standard
argument based on the central limit theorem, in the ther-
modynamic limit one could also expect that if R <R,
then there is always some time interval when in some part
of the system R (x)>R, and, therefore, energy transfer
takes place. If this were the case this energy transfer
would be highly inefficient and very slow, and therefore
difficult to detect numerically.?! In any case the equipar-
tition threshold observed for the integration time dis-
cussed in this paper is physically sensible when we are in-
terested in the behavior of a system for long but finite
times.
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