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We have made power-spectral measurements in both laboratory and rotating reference frames on
fluid flow between rotating concentric cylinders. The oscillating modes identified in previous experi-
ments were traveling azimuthal waves; in contrast, three of the oscillatory modes observed in the
present experiment were found to be nonpropagating. One of the modes gives an instrumentally
sharp component in the spectra, while the other two produce broad spectral components; hence the

latter two flows are nonperiodic.

Previous studies of fluid flows in circularly symmetric
systems have revealed a variety of states with traveling az-
imuthal waves. The best known example is wavy vortex
flow between concentric rotating cylinders (the circular
Couette system), studied extensively by Coles' and more
recently by many others.>~* In this flow there are travel-
ing azimuthal waves on the toroidal (‘“Taylor”) vortices
that encircle the inner cylinder. Other examples of travel-
ing waves in the circular Couette system include waves on
the Taylor vortex-flow outflow boundaries,” waves on the
Taylor vortex-flow inflow boundaries,” waves that appear
as twists inside Taylor vortices which have stationary in-
flow and outflow boundaries,’ laminar spiral flow,® and
spiral turbulence.! Traveling azimuthal waves have also
been observed in other circularly symmetric systems in-
cluding a rigidly rotating annulus with a radial tempera-
ture gradient’ and concentric rotating spheres.® We have
found three examples of spectral components for Couette
flow that do not correspond to traveling azimuthal waves.
To our knowledge these are the first examples for circu-

larly symmetric rotating fluids of oscillations that do not -

arise from traveling waves.

These nonpropagating modes occur over large ranges in
Reynolds number R, axial wavelengths A, and aspect ra-
tios I 3<R/R,<10;2.0<A/d <3.6; and 10<TI. (T
is the ratio of the fluid height to the gap d between the
cylinders; R =2madF., /v, where a is the inner cylinder
radius, Fy the rotational frequency of the inner cylinder,
and v the kinematic viscosity; R, is the Reynolds number
corresponding to the onset of Taylor vortex flow.) We will
now describe the apparatus and experimental methods,
and then we will present and discuss the results.

Our concentric cylinder system, described in detail else-
where,? has a radius ratio of 0.883 and an aspect ratio that
can be adjusted from O to 50. The working fluid for these
experiments was water with polymeric flakes (Kalliro-
scope AQ1000, 2% concentration) added for flow visuali-
zation and for the scattering intensity measurements.
Most measurements were made with I'=20, the exact
value being determined by the desired value of A; a few
measurements were made for I' as small as 10 and as
large as 50. The lower fluid boundary was formed by a
Teflon ring attached to the outer cylinder. For ease in ad-
justment of A, the upper surface was left free in most
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measurements, but some measurements were made using a
Teflon ring as the upper boundary; no qualitative differ-
ence was found for the two cases. The intensity of laser
light scattered from a small volume of the flow was
recorded in a computer and then Fourier transformed to
obtain power spectra.

For flows with spectra that consist of a single funda-
mental frequency and its harmonics it is easy to identify
that fundamental with visually observed waves. However,

‘when the spectra contain more than one fundamental fre-

quency component, the character of the modes giving rise
to the spectral components cannot in general be deter-
mined from time-series measurements at a single spatial
point or from qualitative flow-visualization measure-
ments. '

We have identified the character of the modes giving
rise to different spectral components by making measure-
ments in both laboratory and rotating frames. The mea-
surements in the rotating frame were made by mounting
the apparatus on a rotating table® that is coaxial with the
Couette system. The speeds of the Couette cylinder and
the rotating table are controlled entirely independently.

For traveling azimuthal waves the measurements in a
rotating reference frame readily yield both the number of
waves around the annulus and the rotation frequency of
the waves. We will illustrate this with data obtained for a
flow in which there are both stationary oscillatory modes
and a traveling azimuthal wave. Consider a traveling
wave with a phase angle 0 in the laboratory reference
frame and phase 0’ in a reference frame that rotates with
frequency F,. Then

0'=0—-27F,t . (1)

Hence the frequency f observed in spectra of the scattered
light intensity obtained in the laboratory reference frame
and f’ observed in spectra obtained in the rotating frame
are related by

f ! =f —mbF, ro @)
where m is the number of waves around the annulus.

Graphs of f’ versus F, then yield m from the slope and
the wave speed f/m from the f’'=0 intercept.
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FIG. 1. Frequencies of two of the observed spectral com-
ponents are shown as a function of the reference-frame rotation
frequency F,: f; corresponds to a traveling azimuthal wave
with five waves around the annulus and f;, to a stationary oscil-
latory mode. . The frequencies are expressed relative to the
cylinder frequency. Some of the spectra used to determine these
frequencies are shown in Fig. 2.

The observed frequencies of the two spectral com-
ponents are graphed in Fig. 1 as a function of the
reference-frame rotation frequency. For f; the observed
frequency decreases linearly with F,, indicating that f,
corresponds to a traveling wave which rotates in the same
direction as the rotating reference frame. The slope of the
line is —4.9997+0.0004; hence there are five waves
around the annulus. The f’'=0 intercept yields the wave
rotation frequency f;/m =0.3591+0.0002.

The behavior of the second frequency plotted in Fig. 1.,
fs1, is quite different—it is independent of F,. The differ-
ence in the behavior of f; and f;, is clear from Fig. 2,
which shows power spectra obtained in the laboratory and
rotating reference frames. In Fig. 2 there are two funda-
mental frequencies that correspond to stationary modes:
fs1, which is sharp, and f;,, which is broad. Although f;,
and f;, appear to be centered at about the same frequency
in Fig. 2, measurements for a large range of control pa-
rameters have made it clear that f;; and f;, correspond to
distinct modes.” For example, in Fig. 3(a), f, is clearly
centered at a higher frequency than f;;. In Fig. 3(b), f§;
is fairly intense and f, is not observed, but another broad
spectral component, f;3, corresponding to another station-
ary mode, is present.

The spectral components called fi;, fsy, and f;3 were
examined over large ranges in R, A, and T, and for dif-
ferent positions of the laser-beam probe in the fluid. In
all cases the observed frequencies were found to be in-
dependent of the rotation frequency of the reference
frame. Thus these frequencies are stationary oscillations,
not traveling azimuthal waves.

The intensity of the nonpropagating modes varies
strongly with axial position. These modes were not ob-
servable in spectra obtained at or very near a vortex in-
flow boundary, but the modes were observable at all other
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FIG. 2. Four spectra obtained for different reference-frame
rotation frequencies for the same flow: (a) F, =0 (the laboratory
reference frame), (b) F,=0.050, (c) F,=0.10, and (d) F,=0.359
(the co-moving frame for f;). One component (f) and its har-
monics correspond to a traveling azimuthal wave. Two com-
ponents, one sharp (f5;) and one broad (f;,), correspond to sta-
tionary oscillatory modes. The components at F, and F.y
[Fen=1; see (¢) and (d)] are instrumental artifacts arising from
variations in the reflectivity of the inner cylinder and imperfec-
tions on the outer wall of the glass outer cylinder (not the wall in
contact with the fluid).” The spectra were obtained at
R/R.=7.0 with A/d =2.95 and I'=22.1.

positions in the vortices, including the vortex outflow
boundaries. The intensity was greatest near the center of
the vortices.

Oscillations in the flow pattern at frequencies f;; or f;,
and at f3; were observed visually in the co-rotating frame
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FIG. 3. (a) A power spectrum in which the frequency com-
ponents f;; and f;, are centered at different frequencies. The
component f;3; is weak or absent. (F,=0, R/R,=7.0,
A/d =2.4, and '=20.0.) (b) A power spectrum containing fs;
and f;3; fs2 is weak or absent. The spectrum was obtained at a
point near the stability boundary in Fig. 5. (F,=0.35,
R/R.,=6.5,A/d =2.1,and I'=22.1.)

of the azimuthal wave f;. The oscillations are rather
weak, as Fig. 4 illustrates. The different modes were iden-
tified by comparing the periods measured with a
stopwatch in visual observations with the frequencies in
the spectra. The oscillations in successive Taylor vortex
pairs appear to be in phase.

The amplitudes and frequencies of the stationary modes
fs1 and f;, were examined as a function of aspect ratio at
R/R,=7.0 and A/d =3.1. When I' was reduced below

FIG. 4. These photographs, obtained in the co-moving refer-
ence frame of the azimuthal wave f;, show the nonpropagating
oscillatory mode fs3. The time difference between the photo-
graphs is 0.43/f;3. The flow pattern in the region marked by
the arrows has a sharp bright line in (a) which becomes diffuse
in(b). (m=5, R/R.,=8.5,A/d =2.4,and I'=22.9.)
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FIG. 5. The domain of stationary oscillatory modes for a
wavy-vortex-flow state with five waves. (I" was adjusted within
the range 19.0 < T <23.4 to obtain the desired A.) The mode f;;
is stable inside all the regions I-IV, the mode f;, inside I, and
the mode f;3 inside regions I, II, and III. The upper and lower
dashed boundaries mark transitions in the number of waves; the

. dotted curve marks transitions at which the number of vortices

increases. Error bars are shown for a few representative points.

17, the amplitude of f;, became very small and finally,
for I" < 10, unobservable; f;, remained observable even for
I’ <10. When I' was increased from 20 to more than 40,
no significant change in the amplitudes of f;; and f;, was
observed. The frequencies f;; and f;, were independent
of T.

Figure 5 shows the domains of stability of the station-
ary oscillatory modes. The stability boundaries were
determined by holding A (i.e., I') fixed and increasing or
decreasing R until a state lost stability.!° At the left-hand
boundary the amplitude of f;, goes to zero continuously,
while the amplitudes of f; and f;3 remain large until the
stability boundary is reached. At the right-hand stability
boundary there is a transition at which another vortex
pair forms within the annulus. At the part of the upper
boundary marked by the dashed line there is a transition
from an m =5 to an m =4 state; similarly, the stationary
modes disappear at the lower boundary, at which there is
a transition from an m =5 to an m =6 state. The transi-
tions at the upper, lower, and right-hand boundaries of
the stability region for the stationary oscillatory modes all
exhibit hysteresis. The modes f;; and f;, were always
present in the regions indicated in Fig. S, while f;; was
not as reproducible—it was sometimes absent under the
same conditions in which it was usually observed.

These stationary oscillatory modes occur at low Rey-
nolds numbers where accurate numerical simulations are
possible.!! A simulation of the nonperiodic stationary
modes would be particularly interesting. The stationary
modes could exhibit an infinite period-doubling sequence
(Feigenbaum cascade), which is not possible for traveling
waves, at least not by means of sequential halving of the
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number of azimuthal waves; such a period-doubling se-
quence has in fact been recently observed by Pfister'? in a
Couette-Taylor system with a radius ratio of 0.5 and a
very small aspect ratio (0.5).

There are many unanswered questions about the sta-
tionary modes that should be examined in future studies.
For example, is this flow described by a low dimensional
strange attractor? How do the dimension and Lyapunov
exponents vary with R, A, and o
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FIG. 4. These photographs, obtained in the co-moving refer-
ence frame of the azimuthal wave [, show the nonpropagating
oscillatory mode f;;. The time difference between the photo-
graphs is 0.43/f,;. The flow pattern in the region marked by
the arrows has a sharp bright line in (a) which becomes diffuse
in(b). (m=5, R/R.=8.5,A/d =2.4,and '=22.9.)



