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Phase separation in two-dimensional binary fluids
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Various domain-growth mechanisms in phase-separating binary fluids are discussed. A tube hy-
drodynamic instability for concentrated mixtures is studied through a linear stability analysis. A
quantitative discussion of the three-dimensional linear growth law is given. For two-dimensional
concentrated mixtures we argue that domains grow in time with a diffusive growth law t . No
crossover to a linear growth law is expected, in contrast to d= 3. This is in apparent agreement with
a molecular-dynamics simulation of a d=2 pure fluid. For two-dimensional dilute mixtures we ar-
gue that a t' diffusive behavior crosses over to a t' Lifshitz-Slyozov growth in the latter stages
of phase separation.

I. INTRODUCTION

The dynamics of a system undergoing a first-order
phase transition (spinodal decomposition or nucleation
and growth) is a complicated nonlinear problem. ' Dif-
ferent and competing physical mechanisms drive the sys-
tem to its final equilibrium state. Progress has been made
by focusing on particular processes which can dominate
the dynamics over a given time interval.

Our main interest here is phase-separating binary
fluids. ' In an analysis of three-dimensional binary
fluids, Siggia has identified several mechanisms for
domain growth, in the latter stages of phase separation.
(See also recent discussions by Kawasaki and Ohta. ' )

The scenario he proposed for three-dimensional fluids is
as follows. If the fluid mixture is far from critical con-
centration (that is, if one species domiriates), after forma-
tion of domains of size R, there is an initial growth by
diffusive droplet coalescence. This mechanism leads to a
growth law R -t', where t is time. Following this, the
evolution would be dominated by an evaporation-
condensation process, given by the classic analysis of
Lifshitz and Slyozov. * This also gives a r'~ behavior,
although the amplitude differs from that of coalescence.
On the other hand, for concentrated mixtures, spinodal
decomposition results in the initial formation of an inter-
connected structure. Growth proceeds initially by inter-
face diffusion resulting in a r'~ behavior. Siggia predict-
ed that a hydrodynamic flow effect would dominate fol-
lowing the diffusive behavior, giving rise to a growth law
R tcorresp-onding to a breakup of the interconnected
structure. Finally, there is a crossover to gravitational
coalescence in the very late stages. This hydrodynamic ef-
fect, which we will study in more detail below, involves
the "necking down" of the tubularlike interconnected
structure, which forms during spinodal decomposition,
through the viscous response of the velocity field to the
capillary pressure at an interface. We note that light
scattering experiments on binary fluids ' are in reason-
able agreement with the general picture outlined above.

In this paper, motivated by the possibility of doing ex-
periments on two-dimensional fluids, ' we reexamine

Siggia's scenario for dimension d=2. (Note, though, that
experiments would probably consider monolayers
suspended on fluids. Such monolayers could have dif-
ferent dynamical properties than the two-dimensional
fluid mixture considered here. ) We present an alternative
treatment of Siggia's argument for the tube instability in
d=3, in Sec. II, and discuss related work in the hydro-
dynamics literature due to Rayleigh" and Tomotika. ' In
particular, we argue that a nonlinear growth law can be
estimated from linear stability analysis, as explained in
the text. In Sec. III we study the analog of a tube in
d =2. We find that "strips" are stable under small pertur-
bations, in contrast to the three-dimensional result. Final-
ly, in Sec. IV we enumerate possible growth mechanisms
for two-dimensional fluids. For concentrated mixtures,
we suggest that the phase separation proceeds via a t'
interface diffusion mechanism followed by a t' droplet-
coalescence growth. On the basis of the linear stability
analysis of Sec. III, no crossover to a linear growth law is
expected. For dilute mixtures we expect behavior similar
to that given previously for d =3, except that, in d =2,
the diffusive droplet coalescence would be a t '~ behavior.
We also briefly discuss phase: separation in a d=2 pure
fluid. ' ' The predicted absence of a linear growth law is
in apparent agreement with a recent molecular-dynamics
simulation of a d=2 liquid-vapor system. ' Our analyses
of binary and pure fluids, however, do not rule out the
possibility of other growth mechanisms. Certainly, there-
fore, an experimental study would be of great interest.

II. TUBE INSTABILITY IN THREE DIMENSIONS

Before presenting the analysis for two dimensions, we
will briefly discuss the d=3 results. We attempt to clari-
fy the mechanism for the breakup of the interconnected
structure originally proposed by Siggia. The hydro-
dynamic equations for an incompressible fluid of velocity
v and density p are'

B,v(r, t)+(v V)v= — VI'(r, t)+ V v—(r, t),1 2

p p

which is the Navier-Stokes equation, where P is the pres-
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sure and g is the bulk viscosity, and

V v=0, (2.2)

which is the continuity equation. We will assume that
concentration gradients enter only through the "boundary
conditions"' ' at the interfaces between the two fluids.
That boundary condition is given by the equation of state
for the surface, i.e., the capillary pressure (in d=3) (Ref.
15)

1 1P =cr +
1 2

(2.3)

called the Laplace-Young equation, where o is the surface
tension, and R~ and R2 are the principle radii of curva-
ture at a given point on an interface.

Siggia's arguments can be paraphrased as follows (see
also the earlier work of Levich, ' and Cahn and Mold-
over' ). Let us idealize the interconnected structure as a
long fluid tube of radius R. From Eq. (2.3) the capillary
pressure will be roughly o/R. However, this must match
the pressure in the bulk fiuid given by the Navier-Stokes
equation [Eq. (2.1)], which is roughly qV v, if the viscous
term dominates. Dimensional analysis then leads to the
growth law

(2.4)

(2.5)

4 3 is a positive definite quantity, and rl is the viscosity of
the fluid surrounding the tube. The most unstable mode,
that where (1—k a )@3(g/ri', ka) is maximized for a
given g/q', is given by

A quantitative understanding of the origin of this hydro-
dynamic flow can be obtained by linear stability analysis.
Indeed, Rayleigh" and Tomotika' studied the stability of
a long cylindrical tube of fluid against long-wavelength
fluctuations. These treatments solve the linearized hydro-
dynamic equations, obtained from Eqs. (2.1)—(2.3) above,
for that geometry (see Fig. 1). (We extend Tomotika's
analysis to d=2 in Sec. III.) Tomotika found that a tube
of radius a was unstable for wave numbers k & 1/a. The
analysis gives exponential growth e ', where

FIG. 1. Geometry for linear stability analysis in Sec. III.
Fluid of density p is in the region

~
y ~

& a, surrounded by fluid
of density p. Broken lines schematically indicate a small per-
turbation. (For d=3 this figure corresponds to a cross section
of a long cylinder. )

come of linearizing a dynamical equation around some
unstable value Ro is an exponential growth characterized
by a time constant ~, i.e.,

d 5R(t) 1

dt
(2.7)

where 5R(t)=R(t) Ro. Th—is time constant is often of
the form

~(Ro) =Ro/A, (2.8)

where A, is some constant, independent of Ro. Consider
Eq. (2.7) at t=0 If R (.t =0) is proportional to Ro, then

dR A,

R" '(t =0) (2.9)

The proportionality constant is difficult to estimate since
it would correspond to fluctuations in the initial non-
equilibrium state, for our particular problem. Assuming
that Eq. (2.9) can be extrapolated to finite times, which is
a nontrivial assumption [or equivalently, that ~ is the
characteristic time scale for evolution in Eq. (2.8)], we
have

(2.10)

This procedure gives sensible results for other related
problems.

Thus, considering the most unstable mode in Eq. (2.5),
we obtain

kmaxa =
~ (2.6) (2.1 1)

where a is a function of g/g' alone. For rl/g'=1, one
finds that a=0.6. An early application of these ideas to
phase separation in polymer-polymer blends is due'to
McMaster. It is worth noting that the instability disap-
pears in the limit a~m. This is because the instability
explicitly involves the interaction of the cylindrical sur-
face with itself. Thus to describe this growth mechanism,
one must incorporate the correct geometry into an interfa-
cial dynamical approach. '

We will now argue that a growth law can be obtained
from the linear stability analysis. This is related to a pro-
cedure used earlier by Langer. ' Thus we are explicitly
assuming that all the relevant physics is present, albeit in
an approximate form, in the linear treatment. The out-

for the tube instability. Pure dimensional analysis does
not give the dependence upon the dimensionless ratio
rl/rt'. For rj/rt'=1, say, one obtains R=O 04(rr/r)).
Siggia s estimate for the amplitude was 0.1, while the ex-
perimental result of Wong and Knobler was 0.0013+7.
The crudeness of our treatment precludes an explanation
of the discrepancy between theory and experiment.

III. LINEAR STABILITY ANALYSIS
IN TWO DIMENSIONS

We will now extend Tomotika's analysis to a two-
dimensional strip. The geometry is shown in Fig. 1. As
stated earlier, our analysis is motivated by the possibility
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U„= and Uy
=—ay a@

By " Bx
' (3.1)

where v=(U„,Uy). Eliminating the pressure with (3.1),
Eq. (2.1) becomes'

(8, vV )—V P(x,y, t)=0. (3.2)

of doing experiments on two-dimensional binary fluids. '

We will find below that the strip geometry is stable under
small perturbations. Thus the R -t mechanism may be
inoperative in two-dimensional phase separation. This is,
perhaps, not too surprising if one recalls that the analog
of a two-dimensional strip in d=3 can be a thin slab, as
well ps a cylindrical tube.

Consider Eqs. (2.1) and (2.2). We will neglect the con-
vective nonlinearity in the Navier-Stokes equation, al-
though these effects could cause a subtle renormalization
of the viscosity. Then both the strip in the region

i y i (a, characterized by a density p and kinematic
viscosity v=g/p, and the surrounding fluid (of density p'
and kinematic viscosity v') satisfy linear equations.

The continuity equation (2.2) is satisfied by introducing
a potential g(x,y) such that

28'&ka sinh(ka)+282 K&a sinh(K&a)

K'
+B&kae +82KI ae ' =0 .

(ii) Continuity of Uy at y =a gives

28', cosh(ka)+282cosh(Kia)

(3.10)

I I—8&e ' —82e ' =0 . (3.11)

(iii) Continuity at y =a of the tangential stress'

BU~ BUy

ay+ a

gives

48', , k2cosh(ka)+282, (k +Ki)cosh(K, a)

(3.12)

cryy(y ~a + ) —oy„(y~a —) =P
where"

(3.14)

281k e 82[«i )'+k'le

(iv) The difference in the normal stress cryy is due to
capillary pressure P,

We look for a solution of (3.2) of the form

g(x,y, t) =pi(x,y, t)+$2(x,y, t),
where

(3.3)

BUy
oyy

———P +2g
cly

For the pressure P the normal-mode analysis implies

P P eoPt+fkx

(3.15)

(3.16)

V2$ 0

(8, —vV )g2 ——0.
A normal-mode analysis of (3.3)—(3.5) leads to

y ( t) A ky+a)t+ikx+8 ky+rot+ikx—

(3.4)

(3.5)

Substituting in (2.1) with (3.1) and (3.3) gives

P Ico d'i' iv (K2 k2) P2
(3 17)

p k By k By

To obtain an expression for the capillary pressure P we
write the interface as

y )a (3.6) y =a +g(x), (3.18)

K &y +cot +ikx —K
&
y +cot +ikx

z~»y ~~= +Bpe where g(x) is the displacement of the interface at point x
given by

where

y)a (37)
g(x)= J dtuy(x, y =a —)= g(x, y =a —) .

CO

(3.19)

(K'i ) =k + —,
V

(3.8)

The same solution is valid for y ~ —a with A&, A2, 8&,
and Bq replaced, respectively, by Ai, Az, B&, and B2.
The solution for

i y i
&a is given by (3.6) and (3.7) with

A&, A2, B&, and B2 replaced, respectively, by A&, A2,
BI, and 82 and (K& ) replaced by

The capillary pressure P, then, in d=2 is

P = —o =crkgA
Bx

(3.20)

[see Eq. (2.3) above and Eq. (3.24) below]. With (3.18)
and (3.20) the boundary condition (3.14) gives

E) ——k +—.CO

V
(3.9)

Bi 4, k sinh(ka)+2io, sinh(ka)

%'e require a symmetry property for the general solution
p(x,y, t) =g(x, y, t) This —gives . A i =8 i, A2 82, ——
B& ——A2, B2——A2, B& ——AI, and B2 ——. A2. We also re-
quire g to be finite at y = + oo, which implies
A )

——A2 ——0. The four remaining independent constants
B&, B2, Bi, and B2 are determined by boundary condi-
tions at y =a.

(i) Continuity of U at y =a gives

I
P +2I 2 —kQ+B 2I g i —ka 0 (3.21)

+ 2o 2, cosh(ka)(ka) k
Q CO'g

T

+82 4, kK&sinh(K&a)+2o 2, cosh(K&a)7l (ka) k
7l' a
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Equations (3.10), (3.11), (3.13), and (3.21) determine the
dispersion relation co(k). This is a nontrivial transcenden-
tal equation for ~. Following Tomotika we take the large
viscosity limit. Effectively, this means we will not obtain
the standard results of capillary wave dispersion or capil-
lary wave damping. Straightforward algebra gives as a fi-

nal result

where

(3.22)

C&z
' ——— 1+,tanh(ka)/ '

ka
1 1—

cosh (ka) ~, cosh (ka)+sinh(ka)cosh(ka)+ka
(3.23)

The function @z is positive definite. Thus, there are no
wave numbers for which the system becomes unstable
under an infinitesimal perturbation. The main difference
between Eq. (3.22) and the corresponding d=3 result [Eq.
(2.5)] involves the factor (1 —k a ). This can be traced
back to the expression for the capillary pressure [Eqs.
(2.3) and (3.20)j: for a cylinder,

P~= g'(k a —1) .
a

(3.24)

The k a term comes from the circular cross section of
the tube which is absent in d=2. In three dimensions, it
is the competition between the two terms enclosed in the
parentheses in Eq. (3.24) which leads to the instability. In
two dimensions, fluctuations in the linear boundaries in-
crease the curvature (and thus the interfacial free energy).
Therefore there is no instability.

IV. GROWTH MECHANISMS
IN TWO-DIMENSIONAL PHASE SEPARATION

Having obtained the result for the strip geometry, we
now speculate on possible mechanisms for phase separa-
tion in two-dimensional binary fluids. %'e first consider
dilute mixtures. After formation of domains, they grow
initially by droplet coalescence. From dimensional
analysis, the analog of Stoke's formula' in d=2 for the
"bare" diffusion constant gives ' D-k~T/g, where kz
is Boltzmann's constant and T is temperature, which
leads to

R -(k~T/g)t, (4.1)

i.e., R-t'~ Equation (4. .1) should give the dominant
time behavior, up to possible. logarithmic corrections.
This will be followed by an evaporation-condensation
mechanism. The analog of the d=3 Lifshitz-Slyozov re-
sult for two dimensions in somewhat difficult to obtain.
For example, one requires the solution for the concentra-
tion c given by V c=0. A consistent treatment of the log-
arithmic solution of this equation requires the introduc-
tion of a large length scale cutoff. A detailed analysis has
been given recently by Marqusee. In any case, the time
dependence of the evaporation-condensation process
remains R -t' in two dimensions. This picture for
d =2 dilute mixtures is quantitatively different from

d=3, where both diffusive coalescence and evaporation
condensation follow a t ' behavior.

For concentrated mixtures, we expect a qualitative
difference from d=3 phase separation. The linear stabili-
ty analysis of Sec. III suggests that the tubular necking-
down mechanism is inoperative in two dimensions. Thus
it appears that the interconnected structure will coarsen
initially and break up by interfacial diffusion, which fol-
lows a t'~ mechanism as in Eq. (4.1). Subsequently, evo-
lution proceeds by droplet coalescence, which would again
follow a t'~ behavior as in Eq. (4.1). (We would expect
d=2 geometries to be chosen so that gravity plays no
role. ) Of course, the presence of large-amplitude fluctua-
tions in the interconnected structure, due to the amplifica-
tion of thermal fluctuations following the quench, could
have unforseen effects, and other growth mechanisms
could become important. Also, experiments would prob-
ably involve suspended monolayers, which could have dif-
ferent properties than the d=2 binary fluid we have dis-
cussed. In any case, the scenario we have described above
should be a useful guide to experimentalists.

These results should also be vahd for a liquid-vapor
transition under certain conditions. In the late stages of
evolution the system has reached local thermal equilibri-
um and the density has relaxed to near-equilibrium values
in well-defined domains. Our analysis of the velocity field
of an incompressible fluid again seems appropriate.
Koch, Desai, and Abraham'" have conducted a
molecular-dynamics simulation of phase separation in a
liquid-vapor system, at its critical concentration. Their
simulations find no crossover to R -t behavior, which is
consistent with the scenario we have outlined above. A
discussion of other growth mechanisms applicable to a
liquid-vapor system is given in their paper.
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