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A new integral equation in which the hypernetted-chain and Percus-Yevick approximations are
“mixed” as a function of interparticle separation is described. An adjustable parameter a in the
mixing function is used to enforce thermodynamic consistency. For simple 1/r" potential fluids, o
is constant for all densities, and the solutions of the integral equations are in very good agreement
with Monte Carlo calculations. For the one-component plasma, « is a slowly varying function of
density, but the agreement between calculated solutions and Monte Carlo is also good. This ap-
proach has definite advantages over previous thermodynamically consistent equations.

I. INTRODUCTION

A number of recent papers' > have attempted to im-
prove the theory of classical fluids by imposing thermo-
dynamic consistency on the solutions of integral equations
such as the Percus-Yevick (PY) or hypernetted chain
(HNC) equation. This is typically done by modifying the
integral equation with a function which contains an ad-
justable parameter and then by varying this parameter un-
til consistency is achieved. Consistency is obtained when
the bulk modulus calculated from the virial equation (B,)
is equal to that calculated from the compressibility equa-
tion (B,).

The advantage of this approach is that thermodynamic
consistency leads to accurate radial-distribution-function
solutions, apparently without regard to the details of the
algorithm used. The principal disadvantage of the
method is that it is computationally very time consuming.
This is because the integral equation must be solved for
each choice of the consistency parameter, and a number
of iterations with this parameter are needed in order to
achieve thermodynamic consistency. The consistency pa-
rameter must then be redetermined for each choice of
density and temperature. This problem prevents routine
use of the method for such applications as producing
tables of distribution functions or computing the proper-
ties of multicomponent fluids.

In this paper we describe a new integral equation for
which the consistency parameter is constant or slowly
varying with fluid density for a spectrum of simple fluids.
Once the parameter has been determined, the integral
equation is equivalent to an HNC equation and can be
solved very efficiently. Moreover, the solutions have been
found to be in accurate agreement with Monte Carlo cal-
culations.

In Sec. IT we describe the new equation and the method
of solution. In Sec. III we compare the solutions with
Monte Carlo data for different pair potentials. In Sec. IV
we discuss the results and possibilities for future research.

II. NEW INTEGRAL EQUATION

For purely repulsive potentials, it is known'? that the
PY and HNC equations of state bracket the ‘“exact”
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Monte Carlo or molecular-dynamics computer simulation
results. This suggests that some “mixture” of the two
equations would yield an accurate equation of state. In
addition, the bridge-diagram term which is omitted in the
HNC equation is of short range only,? which suggests that
the HNC approximation is appropriate for large interpar-
ticle distances and that the PY equation is more appropri-
ate for small interparticle distances. Our algorithm com-
bines these ideas.
The PY and HNC integral equations can be written

Yr)=h(rp)—c(rip)=p [c(ripdh(ry)dry , (1)

which defines y(r) and the direct correlation function
c(r), and

g(r)=exp[ —Bu (N][1+y(r] (PY) (2)
or
g(r)=exp[ —Bu(r)]lexp[y(r)] (HNC). (3)

The h and g functions are related by h =g —1.
The two approximations can be mixed in many ways,
but we have found that

exp[y(r)f(r)]—1
f(r)

is a satisfactory algorithm. Here 0<f(r)<1, with
f(0)=0 and f(w)=1. When r =0, f(0)=0, and Eq. 4)
reduces to the PY approximation. As r increases, f(7)
approaches 1, and Eq. (4) reduces to the HNC approxima-
tion. We have chosen the simple mixing function

f(r)=1—exp(—ar), (5)

g(r)=exp[ —Bu(r)] 1+ 4

where a is the adjustable parameter used to achieve ther-
modynamic consistency. Equations (1), (4), and (5) to-
gether constitute what we call the thermodynamically
consistent (TC) approximation. Our equation is similar in
structure to the thermodynamically self-consistent equa-
tion of Hall and Conkie.*

A more fundamental justification for Egs. (4) and (5)
can be obtained diagrammatically. For hard spheres it is
known® that the PY equation works fairly well because of
a cancellation between certain convolution diagrams and
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those bridge diagrams that are generated by adding one
Mayer f bond to a convolution diagram. The result is
that the y =exp(y) that occurs in the HNC equation is re-
duced to y =1+47v. The cancellation is due to the addi-
tional f bond being —1 inside the hard-sphere diameter
and zero outside. As not all bridge functions are canceled
the PY equation is not exact and is thermodynamically in-
consistent. For inverse n-power potentials a similar can-
cellation occurs, but it is not complete, and the resulting y
function is intermediate between PY and HNC. Thus the
mixing function f(r) should move toward 1 as n de-
creases. Also, for any given n, f(r) should approach 1 as
r increases because the bridge functions are short ranged.
The function f(r) should not in fact be zero at r =0 since
the uncanceled bridge functions make a substantial contri-
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bution at » =0. As a practical matter, however, the value
of f(r) at small r has no effect on the TC result.

The numerical procedure used to solve Egs. (1) and (4)
is the same as described by Rogers.” We use dimension-
less length units x =r/a, where a=(3/4mp)'/? is the
ion-sphere radius. For hard spheres and n =18 we used
2048 grid points and a step size Ax =0.0125. For all oth-
er potentials we used 1024 grid points and a step size
varying between 0.025 and 0.05. The extrapolation to
Ax =0 described in Ref. 7 was used to improve the accu-
racy of the hard-sphere results. The parameter a was
determined by iteration at the freezing density until the
two reduced moduli B, and B, were equal to within
0.5%. Typically, this required only two iterations.
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FIG. 1. Comparison of TC and MC g (x) for hard spheres at p/py=0.654.
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TABLE 1. Comparison of thermodynamically consistent
(P1c) and Carnahan-Starling ( Pcs) excess reduced pressures for
hard spheres. The CS pressures are a very accurate fit to
molecular-dynamics data. The freezing point occurs at

p/po=0.667.
pV/NKT —1

P/po n Pcs Pic Pyc/Pcs
0.10 0.074 0.359 0.359 1.000
0.20 0.148 0.887 0.884 0.997
0.30 0.222 1.678 1.664 0.992
0.40 0.296 2.895 2.850 0.984
0.50 0.370 4.832 4.714 0.976
0.60 0.444 8.055 7.781 0.966
0.654 0.484 10.707 10.294 0.961

III. SOLUTIONS

The fluids we have chosen for analysis include the
hard-sphere fluid, four inverse power potential fluids, and
the one-component plasma. These fluids have in common
the dependence of thermodynamic functions on only one
coupling parameter.

A. Hard spheres

For hard spheres of diameter o the appropriate cou-
pling parameter is the relative density p/p,, where
p=N/V and py=V2/0? is the number density of hard
spheres at closest packing. Another common parameter is
the packing fraction n=(mV"2/6)p/py.

The most severe test of the TC equation is to solve it at
or near the freezing point, where the particles are most

g(x =r /o) are available at p/py=0.654, which is very
close to the freezing point’ at p/p,=0.667. The con-
sistency parameter at p/py=0.654 was found to be
a=0.16. The solution of the TC equation is compared to
MC in Fig. 1. The equation of state has been computed
for several densities and is compared with the Carnahan-
Starling formula,'® which is very nearly exact, in Table I
The same value of a gives thermodynamic consistency at
all densities.

B. Inverse power potentials

The general form of the inverse power potential is

n

ulr)=e {1 , ©6)
r

where n can vary over the range 3<n < . For this

class of fluids, the coupling parameter!! is z
=(No3/V2V)(e/kT)*’*. In the dimensionless length
units x =r /a, the interparticle potential appears as
ux)=-L )
x

where ' = (4722 /3)"/3.

A very useful list of MC g (x) data at the freezing point
for the n=12, 9, 6, and 4 fluids has been published by
Hansen and Schiff,'’> and we have used these data for
direct comparison with our TC calculations. The MC
equations of state over a range of z values and the freez-
ing points for these fluids have been calculated by Hoover
et al.'»13 and by Hansen.!*

At the freezing point for the 1/r potential,
z=0.813, and a MC g(x) is available at this point. Com-

172

strongly correlated. Monte Carlo (MC) data® on parison of TC and MC g(x)’s is made in Fig. 2. The
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FIG. 2. Comparison of TC and MC g (x) for the inverse 12th-power fluid at z =0.813.
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TABLE II. Comparison of thermodynamically consistent
(Prc), Rosenfeld-Ashcroft (Pgra), and Monte Carlo (Pyc) ex-
cess reduced pressures for the inverse 12th-power fluid. The
freezing point occurs at z =0.813.

pV/NKT —1

z r Pyc Pga Prc Prc/Puc
0.10 0.123 0.448 0.449 1.002
0.20 1.970 1.121 1.121 1.000
0.30 9.975 2.101 2.109 1.004
0.40 31.52 3.557 3.547 3.536 0.994
0.50 76.96 5.641 5.562 0.986
0.60 159.6 8.460 8.392 0.992
0.70 295.7 12.469 12.36 12.283 0.985
0.813 538.0 18.7 18.360 0.982

value determined at z=0.813 is 0.374, and the equation
of state calculated with this number for lower densities is
compared with MC in Table II. We have also carried out
calculations with the thermodynamically consistent
Rosenfeld-Ashcroft (RA) procedure,® and these results are
also shown for comparison in Table II. In Table III the
bulk moduli from the virial and compressibility equations
are compared for the consistency parameter fixed at
a=0.374. The results show consistency for all z values.

In Fig. 3, TC and MC g(x)’s are compared at the freez-
ing point, z =0.943, for the 1/r° potential. The TC and
MC pressures are compared in Table IV for a=0.499.

In Fig. 4, TC and MC g(x)’s are compared at the
freezing point, z =1.54, for the 1/r° potential. The TC,
RA, and MC pressures are compared in Table V for
a=0.750. In Table VI, the bulk moduli are compared at
this a value for various densities. Once again it is evident
that consistency holds for constant a.
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TABLE III. Thermodynamic-consistency check for the in-
verse 12th-power fluid with @=0.374. B, and B, are the re-
duced- bulk moduli from the compressibility and virial equa-
tions, respectively.

z Bc BP
0.10 2.00 2.00
0.20 3.74 3.74
0.30 6.63 6.64
0.40 11.25 11.27
0.50 18.40 18.39
0.60 29.08 29.05
0.70 44.57 44.59
0.813 69.78 70.14

In Fig. 5, TC and MC g(x)’s are compared at the freez-
ing point, z=3.92, for the 1/r* potential. The TC, RA,
and MC pressures are compared in Table VII. Because of
the long range of this potential, the TC pressure must be
corrected by adding a term 2I" /x,, where x is the cutoff
distance in the TC calculation. This additional term is in-
cluded in the TC column of Table VII and amounts to a
1% correction.

The constancy of a with varying coupling parameter
was unexpected because previous papers on TC equations
have shown consistency parameters which vary. Even
more remarkable is the simple relationship between a and
n. In Fig. 6, a is plotted against 1/n, and for 4<n <12 it
is accurately linear, given by a=4.5/n. For n > 12, the
curve deviates from a straight line and goes to the hard-
sphere limit » =« at a=0.160. The a values are tabu-
lated as a function of » in Table VIII.
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FIG. 3. Comparison of TC and MC g (x) for the inverse 9th-power fluid at z =0.943.



TABLE 1V. Comparison of thermodynamically consistent
(P1c) and Monte Carlo ( Pyc) excess reduced pressures for the
inverse 9th-power fluid. The freezing point occurs at z =0.943.
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pV/NKT —1
z r Pyc Prc Prc/Puc
0.10 0.208 0.495 0.496 1.002
0.25 3.248 1.701 1.701 1.000
0.50 25.98 5.598 5.548 0.991
0.943 174.3 219 21.943 1.002

C. One-component plasma

The one-component plasma (OCP) fluid consists of ions
of charge + Ze moving in a negative neutralizing back-
ground of constant density. The OCP is nominally a 1/r
potential fluid, but it differs from the other inverse power
fluids in that a neutralizing background is needed to can-
cel the long-range Coulomb potential between the ions.
The OCP coupling parameter is I'=(Ze)?/kTa. This sys-
tem has been extensively studied, and accurate Monte
Carlo g(x) and equation-of-state data'® are available.

We have found that the consistency parameter a is not
a constant as I" changes, and that by setting

fin=[1—exp(—ar)]™, (8)

we can improve the agreement between the MC and TC
equation of state by increasing m to 10. The function
f(r) significantly affects the TC solutions only in the re-
gion 1.3 <x <2, and adjustment of the power m allows us
to change the shape of f(r) in this region. We have found
that for n >4, m =1 gives the best agreement with MC
data. Also, the consistency shown in Tables III and VI
for n =12 and 6 is best for m =1.
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TABLE V. Comparison of thermodynamically consistent
(Prc), Rosenfeld-Ashcroft ( Pra), and Monte Carlo (Pyc) ex-
cess reduced pressures for the inverse 6th-power fluid. The
freezing point occurs at z =1.54.

pV/NKT —1

z r Pyc Pga Prc Prc/Pumc
0.10 0.351 0.638 0.639 1.002
0.25 2.193 2.056 2.049 0.997
0.50 8.773 5.686 5.672 5.669 0.997
1.00 35.09 17.932 17.886 17.950 1.001
1.54 83.22 38.8 39.028 1.006

In Fig. 7, TC, RA, and MC g(x)’s are compared at
I'=170, which is close to the freezing point,’> I'=178.
The TC, RA, and MC pressures are compared in Table
IX.

One of the best procedures for obtaining thermodynam-
ic consistency is due to Rosenfeld and Ashcroft.> They
assume that to a good approximation the hard-sphere
bridge functions form a universal set and that, except for
a density shift, and PY hard-sphere bridge functions have
the same functional form as the true bridge functions. In
our TC method, by mixing the PY and HNC equations,
we have also introduced the PY bridge functions, but now
for the actual potential being treated, thus removing reli-
ance on the assumption of universality. It is therefore of
some interest to compare the bridge functions predicted
by the TC method with the RA hard-sphere function.

The exact g(r) is given in terms of the bridge functions
B(r) by

g(r)=exp[ —Bu(r)]lexply(r)—B(r)] . 9)
Using Egs. (4) and (9), we can solve for B(r):
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FIG. 4. Comparison of TC and MC g (x) for the inverse 6th-power fluid at z =1.54.
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FIG. 5. Comparison of TC and MC g (x) for the inverse 4th-power fluid at z =3.92.

exply(r)f(r)]—1 10
) . (10

In Fig. 8 we compare the TC and RA bridge functions for
hard spheres at p/py=0.5657. In the region of the first
peak the two functions are almost coincident. Beyond the
first zero in B(x), corresponding to g(x)=1, the magni-
tude of B(x) is shown amplified by a factor of 10. Even
here the two methods give similar results. Although it
has almost no effect on the thermodynamics, the tail of
B(x) does depend strongly on the potential, and the
universality assumption fails. For example, for the OCP,
the TC B(x) shows no oscillations at large x, while the
RA B(x) is constrained to show the hard-sphere oscilla-
tions. In Fig. 8 we also show y(x), and it is clear that
B (x) varies as [y(x)]? to lowest order.

IV. DISCUSSION

B(r)=y(r)—In |14

A glance at the figures shows that the solutions of the
TC equation are in good, if not excellent, agreement with
MC results. The largest discrepancies appear in g(x) at
the first peak and first minimum, and are most noticeable
for n=4. The calculated TC pressures, on the other
hand, are in worst agreement with MC for hard spheres

TABLE V1. Thermodynamic-consistency check for the in-
verse 6th-power fluid with ¢=0.750. B, and B, are the re-
duced bulk moduli from the compressibility and virial equa-
tions, respectively.

V4 Bc BP
0.10 2.39 2.39
0.25 5.85 5.85
0.50 15.55 15.48
1.00 50.51 50.19

1.54 110.96 111.04

and then improve with decreasing n, as indicated in the
tables. The reason for this apparent discrepancy is that
for large n the pressure is very sensitive to the details of
g (x) near the first peak, and small errors in g (x) there are
amplified to large errors in the pressure.

Hall and Conkie* have described a parametrized, ther-
modynamically consistent method that in the case of hard
spheres gives results superior to those of the current ap-
proach. Their method truncates the expansion of g(r) in
powers of y(r) at the quadratic term according to

g(r=exp[ —Bu(N{1+7(r)+[a(p)+bp)f (NIly(NT*} ,
(11)

where a(p) and b(p) are density-dependent parameters
determined from the requirement of thermodynamic con-
sistency and f(r)=r. It is well known that for hard

TABLE VII. Comparison of thermodynamically consistent
(Ptc), Rosenfeld-Ashcroft ( Pry ), and Monte Carlo (Pyc) ex-
cess reduced pressures for the inverse 4th-power fluid. The TC
values have been corrected for the long-range potential tail. The
freezing point occurs at z =3.92.

pV/NKT —1
z r Py Pra Prc Prc/Puc
0.10 0.498 1.225 1.222 0.998
0.25 1.688 3.467 3.455 0.996
0.50 4.254 7.889 7.897 7.895 1.001
1.00 10.72 18.640 18.631 1.000
1.50 18.40 31.120 31.075 31.161 1.001
2.00 27.01 44.947 45.070 1.003
2.50 36.36 59.853 59.866 60.113 1.004
3.00 46.38 75.853 76.155 1.004
3.50 56.96 92.747 93.064 1.003
3.92 66.25 107.7 107.879 1.002
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FIG. 6. Consistency parameter « as a function of 1/n for inverse n-power fluids

spheres, truncation of g(r) at the linear term (PY equa-
tion) gives fairly good results. The success of the Hall
and Conkie procedure is apparently due to a very accurate
approximation to the true quadratic term and to the fact
that the cubic and higher-order terms are small. Applica-

tion of this method to the inverse 12th-power potential
was less successful.* This is to be expected since the range
of r over which exp[y(r)]>>1 increases as the range of
the potential increases and the expansion used in Eq. (11)
becomes inadequate. By adding more terms to Eq. (11)
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FIG. 7. Comparison of TC, RA, and MC g(x) for the OCP at I'=170.
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TABLE VIII. Consistency parameter a for the inverse n-
power fluids.

n a
4 1.113
6 0.750
9 0.499
12 0.374
18 0.263
® 0.160

the expansion could in principle be extended to longer-
ranged potentials, but this has not yet been attempted.
The RA scheme gives better accuracy than the TC in
thermodynamic functions for hard spheres and the OCP,
and comparable accuracy for the other fluids. It deviates
from the correct hard-sphere pressure at melting by about
2% and is nearly exact for the OCP.!® The main problem
with RA is that it is very time consuming to calculate
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TABLE IX. Comparison of thermodynamically consistent
(Prc), Rosenfeld-Ashcroft ( Pry ), and Monte Carlo ( Pyc) ex-
cess reduced pressures for the one-component plasma. The
freezing point occurs at I'=178.

pV/NKT —1
r Pyc Pra Pyc Pyc/Pyuc a
20 —5.558 —5.559 —5.568 1.002 4.510
50 —14.367 —14.368 —14.365 1.000 4.225
100 —29.174 —29.175 —29.157 0.999 4.050
140 —41.033 —41.030 1.000 3.985
170 —49.999 —49.992 —49.942 0.999 3.963

solutions. A new variational parameter is needed for each
density point, and the computer time required for conver-
gence increases dramatically near the freezing point. The
RA method is thus impractical for routine calculation of
distribution functions and for multicomponent system
calculations. The present TC model is, because of the
constant or slowly varying a, about an order of magnitude

Hard spheres
plpy = 0.5657

B(x) amplified by a factor of 10 inside of box

iy

15

3.0

x=r/a

FIG. 8. Comparison of the TC and RA bridge functions for hard spheres at p/po=0.5657 (=0.4189). The RA bridge function
is calculated at ’=0.3767. The function y(x) is shown for comparison.
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faster than RA when generating tables. Preliminary stud-
ies show that it is suitable for multicomponent system cal-
culations and that it can be used for fast generation of
g(x) tables for use in fluid perturbation-theory calcula-
tions.

It is evident to us that our choice of the mixing func-
tion f(x) is arbitrary and not necessarily optimal. Other
simple functions might yield improved solutions with no
extra computational effort. Also, the constancy of a with
density and the very simple form of a as a function of n

suggest that a deeper physical explanation may be avail-
able for the success of the TC method described here.
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