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Electron-ion recombination in a weakly ionized molecular gas has been studied by the application
of molecular-dynamics and Monte Carlo simulations. Plasma screening effects have been investigat-
ed for electron densities exceeding 10'* cm™3. Screening can reduce the recombination rate coeffi-
cient a by as much as one half, for n,=10' cm~3, before a increases again with n, due to electron-
stabilized three-body collisional radiative recombination. In a plasma with an applied electric field,
a is found to decrease approximately proportional to (E/N)~! for E/N greater than a threshold

value.

I. INTRODUCTION

Recent experimental' > and theoretical*~® research on
electron-ion recombination has shown that, in the pres-
ence of a dense ambient molecular gas, rate coefficients
approaching 10™* cm’/sec are feasible. This is due to
enhancement of the recombination rate by inelastic col-
lisions between the recombining electron and the ambient
molecules. What constitutes a dense gas depends on the
nature of the molecule. For instance, for H,O, Warman
et al.! have measured at 294 K and a density of 6.6 10"’
ecm~3 a recombination rate coefficient of 2.2x107°
cm3/sec that increases linearly with density. Calculations
by Morgan® show that the rate coefficient can be expected
to peak at about 1.3 10" cm™? with a value of approxi-
mately 7 10~ cm>®/sec. These rate coefficients reach a
peak with increasing pressure and then decline as particle
transport in the dense gas becomes the rate-limiting step
in recombination. Recombination in NH; behaves simi-
larly>” reaching its peak value at a pressure near 1 atm at
300 K. In both of these gases recombination is enhanced
by the large electron collision frequency due to the dipole
rotational cross sections at nearly thermal energy. In CO,
the rate coefficient reaches a peak value>’ of approxi-
mately 10~* cm?/sec at about 8 atm pressure, and in CH,
the peak rate’ is about 8 X 10~3 cm/sec at 200 atm. Vi-
brational excitation processes enhance recombination in
these gases. In this paper the phrase “low pressure” will
refer to the pressure range below the peak where the rate
coefficient a, is proportional to pressure P. Similarly, the
phrase “high pressure” will refer to the pressure range
above the peak, where «a is inversely proportional to P.

During the recombination process an electron is ac-
celerated toward a positive ion by their mutual Coulombic
attraction, gaining enough energy to excite the rotational
or vibrational modes of the ambient molecular gas, so that
in a single collision it can lose a large fraction of its kinet-
ic energy. If the electron is close enough to the ion that
its total energy becomes negative by several kT or more
upon colliding with a neutral molecule, then it can be con-
sidered to have recombined. We will call this three-body
recombination and denote the rate coefficient for this pro-
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cess by a;. In the monatomic gases, where the electron
loses energy by elastic collisions only, the recombination
rate coefficient is several orders of magnitude lower than
the values quoted above.” '

If the positive ion is a molecule that can undergo disso-
ciative recombination then this becomes a competing
channel with three-body recombination. The rate coeffi-
cient for this ostensibly two-body process is denoted by
a,. It has been suggested by Bates’® that the presence of
an ambient gas enhances dissociative recombination, in
much the same manner as in ion-ion mutual neutraliza-
tion,!~13 so that a, is not equal to a3, the zero-pressure
dissociative recombination rate coefficient. Hence, the to-
tal rate coefficient @ =a,+a3#a3+as. The Monte Carlo
simulations’”® of electron recombination have shown such
an enhancement using an absorbing sphere model for dis-
sociative recombination. Details are given in Ref. 7. At
low pressure a increases with pressure as collisions are in-
creasingly effective in promoting both two- and three-
body recombination. At high pressure a is limited by the
rate1 of approach of electrons and ions and decreases as
P

Studies of recombination in weakly ionized plasmas
have been pursued by numerous researchers for the whole
of this century. An early measurement of a, the recom-
bination rate coefficient, was performed by Thomson and
Rutherford!* in 1896. Early theories, which are still very
useful today, were presented by Langevin'® and by Thom-
son'® for the high- and low-pressure limits, respectively.
An excellent review of recombination theories has been
written by Flannery.!” Until relatively recent times the
plasmas of interest were low pressure (P <10 Torr) and
very weakly ionized (N, < 10'® cm™3) gas discharges. The
development of lasers'® and of discharge switches'*?® has
raised the pressure of interest to atmospheres and the elec-
tron and ion densities to 10'*— 10" cm ™3 or greater. At
such pressures the three-body effects on recombination, as
discussed above, become important. In addition, at such
plasma densities Debye-Hiickel screening may affect the
recombination process. The effects of such screening on
ion-ion recombination rates in a plasma environment have
been investigated by numerical simulation by Morgan
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et al.?»? and theoretically by Bates.?> In this paper the
molecular-dynamics method of simulating a system of
many interacting particles is used to investigate electron-
ion recombination in a weakly ionized plasma. The ef-
fects of plasma density and ambient gas pressure are in-
vestigated. In addition, the problem of recombination in
the presence of an electric field, such as in the positive
column of an electric discharge, is studied.

II. METHODS OF SIMULATING RECOMBINATION

Past numerical studies of ion-ion recombination have
been made using Monte Carlo?"?*?% (MC) simulations
and molecular-dynamics?? (MD) simulations. Recently,
as mentioned above, the MC method has been applied to
electron-ion recombination”® and in this paper the MD
method is used to investigate aspects of the problem not
amenable to a two-particle simulation.

The MC simulations treat only a two-particle interac-
tion within a boundary and use transport theory to estab-
lish boundary conditions. The MD method, on the other
hand, includes collective effects (many-particle interac-
tions) and avoids the ad hoc use of transport theory to
connect microscopic and macroscopic physics. Hence
such phenomena as plasma screening and non-Maxwellian
particle distributions can be directly studied by the MD
simulation. A description of each similation technique
follows.

A. Monte Carlo simulation

The recombination process can be modeled!’ by treating
the positive ion as a stationary sink toward which elec-
trons diffuse due to both the Coulombic attraction and
the density gradient set up around the sink by recombina-
tion. The principles involved in modeling this process by
MC techniques are described in Refs. 24 and 25. The pro-
cedure involves two calculations: (1) the calculation, us-
ing a MC simulation, of the recombination probability for
two ions starting at a distance r apart with speeds select-
ed from a thermal distribution and interacting through
some force law; and (2) the calculation, using Fick’s law,
of the flux of ions crossing the surface of the sphere of di-
ameter 7o from r >r,. This flux is given by

dn,(r) de(r)
dr (r) dr ’ ()

where D is the diffusion coefficient, p, is the mobility,
and ¢(r) is the average electric potential at a distance 7
from the positive ion. The first term in (1) describes the
diffusion down the density gradient in the vicinity of the
sink and the second term describes the electron drift in
the electron field of the ion.

In these simulations the motion of the ions is neglected
and the electrons are assumed to follow Coulomb trajec-
tories between collisions. For each collision a set of ran-
dom numbers is generated to determine the time at which
the collision occurs, the state of the neutral molecule in-
volved in the collision, and the change in energy and
direction of the scattered electron. These determinations
are simplified by use of the null-collision method,?® which

j(r)=—D +u.en,

involves the use of fictitious null collisions in which the
velocity of the electron is unchanged. The cross section
for these events is chosen to make the total collision rate
independent of velocity, yielding a constant collision fre-
quency. In this way momentum-transfer, rotational, and
vibrational processes are included in the calculations.

In the application of MC to electron recombination,
dissociative recombination of a molecular ion is modeled
by the introduction of an absorbing sphere around the
positive ion. The radius of this sphere is chosen so that
the simulation yields the experimentally measured dissoci-
ative recombination rate coefficient aJ at zero pressure.

The MC simulations are performed by starting the elec-
tron in each experiment a distance ry from the positive
ion and following each trajectory, as described above. An
experiment is terminated if (i) separation r( is again ex-
ceeded, (ii) the electron passes within the absorbing
sphere, or (iii) the relative energy of the electron and ion
becomes less than —12k7. Case (ii) is what we normally
call two-body recombination and (iii) is called three-body
recombination. Their rate coefficients are denoted by a,
and a3, respectively. More details on the MC simulation
of charged-particle recombination are given in Refs. 7 and
25.

B. Molecular-dynamics simulation

A comprehensive review of the method of molecular
dynamics has been written by Kushick and Berne.”’
Briefly, the classical equations of motion of a number of
particles in a unit cell with periodic boundary conditions
are integrated in time. Nearest images?® of the particles
are used in the calculation of interparticle forces. For the
integration of equations of motion for the system of ions
we have used the algorithm of Scofield:?’

r(t+dt)=r(t)+v(t)dt +[4a(t)—a(t —dt)]dt? /6,
v(t +dt)=v(t)+[2a(t +dt)+5a(t)—a(t —dt)]dt /6 .

As described above, the null-collision method allows a
constant time step to be used while accurately simulating
inelastic and superelastic collisions between electrons and
neutral molecules. We need only follow the ions and elec-
trons in the calculation and not the neutral particles. This
simulation represents a constant (7,V,N) canonical en-
semble in that the neutral atoms function as a thermal
reservoir which maintains a constant temperature. Addi-
tionally, as ions disappear from the volume due to recom-
bination, new ion pairs are created in the unit cell with
uniform spatial distribution and random Maxwellian
thermal velocities. Hence the ion density is held constant
in time. The molecular-dynamics simulation gives us a
means of studying steady-state but nonequilibrium pro-
cesses.

During the course of the MD simulation a variety of
quantities are computed. The radial distribution function
or pair correlation function g(r) is obtained directly by
counting the number of ion pairs with separation close to
r. Diffusion coefficients for the positive and negative
ions in the neutral gas can be computed from the mean-
square displacement of the ions as a function of time.*° If
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there is an applied electric field a drift velocity in the
direction of the field can also be calculated. Finally, the
particle velocity distributions can be obtained by appropri-
ate sampling.

These molecular-dynamics simulations of electron-ion
recombination use 100 charged particles (50 of each type)
in a cubic cell with sides of length 32314 a,, 15000a,,
and 6962a, corresponding to ion densities of n,=n;
=10"3, 10", and 10'° cm ™3, respectively. A typical time
step used in this simulation is approximately 10007,
where 7o=2.42%10"!7 sec is the atomic unit of time.
The time step used in these calculations is determined by
the electron—neutral-molecule collision frequency. This
is, typically, at least several orders of magnitude faster
than the frequency of recombination. Because recombina-
tion is a relatively infrequent event, a great number of
time steps are required for any reasonable statistical accu-
racy, with low electron density and high pressure
representing the most severe case. In the calculations
described below, for example, the number of time steps
used ranges from 3 %X 10* to 2 X 10° for n; =10" cm 3.

If an electron and ion approach to within a distance r,
of each other, the integration is stopped and the two-
particle MC simulation described above is performed to
determine if recombination takes place. This is done be-
cause the MD integration algorithm cannot accurately
compute the trajectory of a rapidly moving electron in an
orbit very near a positive ion. It is assumed that the two-
body interaction, for which the trajectory can be described
analytically, is dominant for small ry (500a, in these cal-
culations). We see then that the ad hoc application of
Fick’s law to determine the flux of electrons and ions to-
ward each other is eliminated and the charged-particle
transport is simulated by MD.

III. RESULTS
A. Recombination in CO,

1. Low pressure

Molecular-dynamics simulations have been performed
for electrons and ions in CO, and in CHy. The results of
the CO, calculations are shown in Fig. 1 along with the
total recombination rate coefficient calculated by Morgan
and Bardsley’ and that measured by Armstrong et al.?
The cross-section data of Hake and Phelps®! for elastic
collisions and vibrational excitation have been used in
these calculations. Looking first at the lower-pressure
MD calculation we see that plasma screening reduces a by
approximately a factor of 2 as the electron and ion densi-
ties are increased from 10" to 10'° cm™3. The Debye
lengths corresponding to the three densities shown are at
300 K, 50504y, 1600ay, and 505a,.

More direct evidence of screening can be seen in Fig. 2
which shows the computed radial distribution functions
for electron densities of 10'* and 10'5 cm~>. The radial
distribution function (RDF) or ion-pair correlation func-
tion is defined as

gr)=n(r)/n, , (2)
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FIG. 1. Total recombination rate coefficient vs pressure for
electrons in CO, at 300 K. The symobls A are the Monte Carlo
results from Ref. 7 and @, W, ¢ are the present molecular-
dynamics results for n,=10%, 10", 10" cm™? respectively.
The open symbols [ represent the experimental data of Ref. 3.
The line —-— is the Langevin rate coefficient a; =4meu,.

where n (r) is the number density of electrons a distance
from a positive ion and n, =n(r = ) is the average elec-
tron density. For a plasma in local thermodynamic
equilibrium (LTE) at temperature T with a Debye length

4re? i
Ap= | = (mitne) ) 3)
the RDF is given by
g(r)=exp(e_r/;"" e?/rkT) . (4)

The RDF’s for Ap= w0, 50504, and 5054, are shown as
the smooth curves in Fig. 2. The Debye-Hiickel screening
is seen to reduce the ion-electron correlation distance as

RADIAL DISTRIBUTION FUNCTION, g(r)

0 |o|oo 2oloo 3<;oo 4000
R (uo)

FIG. 2. Radial distribution functions for electron-ion pairs in
CO,. The dashed curve and the solid curves are g (r) for n,=0,
10", and 10" cm~3. The calculated points are ®, n,=10",
p =4 atm; X, n,=10'%, p =4 atm; O, n,=10", p =32 atm; W,
n.=10", p =32 atm.
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Ap becomes smaller. We see that the RDF’s computed
for electron densities of 10'3 and 10" cm~3 and a CO,
pressure of 4 atm show approximately the same degree of
plasma screening as the Debye-Hiickel results.

2. High pressure

The MD results for recombination at a pressure of 32
atm, where the rate is limited by electron mobility, are
shown in Fig. 1. Here we see that the rate coefficient for
n, =10'> cm~3 exceeds that of the lower electron density.
Although the statistics are not very good, the radial distri-
bution functions in Fig. 2 show evidence of this also. As
had been found in the previous study of ion-ion recom-
bination in a plasma,?? g (#) is less than unity and becomes
smaller as r—rj. The effect of raising the plasma density
is to decrease the average separation between charged par-
ticles and move g(r) toward unity, thus increasing the
correlation function in the neighborhood of r,. This, of
course, leads to an increase in the recombination rate.
The increase, however, is small so that the Langevin for-
mula,'>%? a; =4meu,, for the mobility (u,) limited rate
coefficient is fairly accurate.

B. Recombination in CH,

Several calculations of the recombination rate coeffi-
cient in methane are shown in Fig. 3. The Monte Carlo
results shown are revisions of the calculations presented in
Ref. 7, for which the excitation energy of the lowest vi-
brational mode of CH, was in error in the program. Us-
ing the correct energy, 0.17 eV, and the same calculational
procedure and cross-section data’ as described in Ref. 7,
the two-body (a,) and three-body (a;) rate coefficients
have been computed. The values of a shown are several
times larger than those reported in Ref. 7. Note, though,
that a is still smaller than the CO, recombination rates.
The rate coefficient is not enhanced as much in CH, as in
CO, because the excitation energy is higher. Of interest
in this discussion, however, is the effect of plasma density
upon a. These calculations, performed using molecular
dynamics, are also shown in Fig. 3. At 1 atm we see that
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FIG. 3. Total recombination rate coefficient vs pressure for
electrons in CH4 at 300 K. The shaded symbols are Monte Car-
lo results: W, a,; ®, a3; and A, a=a,+a;. The open symbols
are molecular-dynamics calculations of a for n,=10" cm—3
(0), 10"* cm~3 (O), and 10** cm—3 ({).

the rate coefficient decreases slightly when 7, is increased
from 10" to 10 cm~3, but then for n, =105 cm~3, « is
substantially greater than that for 103 cm 3. The recom-
bination rate due to collisions of the electron with neutral
molecules,

e +CH,* +CHy— products ,

is small enough that recombination is now stabilized by
electrons, i.e.,

e +CH," +e—>products .

The rate coefficient for this process, known as collisional
radiative recombination, is3*3°

aCRR=3.8 X 10_9T_9/2ne

which equals 2.71X 1073 cm?/sec for n, =1x 10" cm—3
and T =300 K. This lies within the uncertainty limits of
the MD calculation. Bates*® has pointed out in a discus-
sion of ion-ion recombination in plasmas that a reduction
of a due to plasma screening would, at some ion density,
be masked by reactions having other ions as third bodies.
This is just what we see here.

C. Remarks on nonequilibrium effects

Looking at the computed g () for P =4 atm in Fig. 2
we can see another effect. The computed and theoretical
RDF agree well for n, =10" cm~3 but not nearly so well
for the small electron density, n,=10' cm~3 and for
small compared to the average electron-ion separations.
This is due to the non-LTE nature of this problem. At
the higher electron density the electron-energy distribu-
tion function f(€) is nearly a Maxwellian, whereas at the
lower density it is not. This can be seen in Fig. 4 which
plots f(e), obtained by sampling electrons at a radius
r =500a, from positive ions, versus energy € for two elec-
tron densities of interest. Here f (¢) is defined such that

fowf(e)€1/2d6=1 )

On the semilogarithmic graph a Maxwellian distribution,

105 T T T T T T

103

ELECTRON DISTRIBUTION FUNCTION (Ry'3/2)

10!+ i
1 1 1 1 1 1
00 004 0.08 0.12
ENERGY (eV)
FIG. 4. The electron-energy distribution function vs energy
at r =500a, from a positive ion. The dashed curve — — — is

3 and the solid curve

for n,=10" cm is for n,=10"

cm™3,
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f(e)ocexp(—e/kT)=exp(—mv2/2kT), is a straight line.
We see that f(€) is nearly Maxwellian for 7, = 10> cm 3
but is quite non-Maxwellian for n, =10'* cm~>. This ef-
fect is well known®”3® and is due to the removal of elec-
trons from the tail of the distribution by inelastic col-
lisions with the vibrational modes of CO,. In the presence
of an externally applied electric field even the bulk of the
electrons, which are far from positive ions, are non-
Maxwellian. As the electron density is increased f (€) ap-
proaches a Maxwellian due to the thermalizing effects of
electron-electron collisions.

For a system in LTE the Boltzmann equation has as a
solution®® the distribution function

f(?,—‘-;)zfo(—‘-;)e —$(T)V/kT

for a conservative force given by F=—V¢(F). The velo-
city distribution function is the usual Maxwellian. Now
¢(T), the potential of mean force,* is related to the radial
distribution function by just the relation

g(T)=e TV, (5)
The charge density at T is p(T)=n,g(T). Poisson’s equa-
tion is solved using this p(T) and the linearization
g(T)~1—¢(T)/kT. The Debye-Hiickel RDF, Eq. (4), is
then obtained along with the definition, Eq. (3), of the De-
bye length. The separation of the solution f(T,V) of the
Boltzmann equation into a simple product fo(V)g(T) de-
pends upon fo(V) being Maxwellian. If fo(V) is not
Maxwellian the problem becomes substantially more com-
plicated and g(T) is, in general, not given by (4). A de-
tailed discussion of the expansion of the distribution func-
tion and solution of the Boltzmann equation in nonequili-
brium, weakly ionized plasmas is given by Kumar et al.¥!

We see from the foregoing that just as temperature is
not a well-defined quantity for non-Maxwellian distribu-
tions, the Debye length itself is not well defined. More
general definitions and formulations are needed for the
steady state, non-LTE problem. The general formulation
of nonequilibrium plasma physics*? involves the dynamic
structure factor S (k,w) defined by

! |2f0def(‘\7)8(a)——f-V), (6a)

S(K,o)=———
| e(k,w)

where (K, ) is the dielectric response function

-

2
— (0] © 1 — a
ek,w)=14+—=2 [ dV———k-—f(F).  (6b)
k? fo w—kV aVv
In (6b), w, is the plasma frequency. Now the electron
velocity distribution and the radial distribution function
are related, in a more general sense, through the static

structure factor S (k) by
— 0 — o g -+ o — .
S(K)=1+n, [ “explik-Plg(Pdr= [ s(K,0)do .
(7

This is the formalism that relates the nonequilibrium
velocity distribution and pair correlation function without
appealing to equilbrium concepts such as temperature and
Debye length.

Non-Maxwellian distributions, it should be noted, may
have observable effects on spectral line profiles.*=*
These are related to the local electric field by

I(@)= [ P(E)(0,E)E , (8)

where P(E) is the microfield distribution and J(w,E) is a
profile function containing all the dynamic perturbations.
J(w,E) is a function of the dynamic structure factor
S(K,w») defined by Egs. (6a) and (6b). We see that the
structure factor is a fundamental function defining the re-
lationships among a variety of plasma properties.

IV. RECOMBINATION IN A DISCHARGE

As mentioned in the Introduction, we can use the
molecular-dynamics method to simulate recombination in
a discharge, i.e., with an externally applied electric field.
Such calculations have been performed for recombination
in CO,, and in CH,. The results of both sets of calcula-
tions for an electron density of 10'* cm™3 are shown in
Fig. 5. In these simulations the electric field is included
in the equations of motion only for the MD part of the
calculation. In the MC simulation, performed for elec-
trons and ions that are within a distance 7y of each other,
the usual central-force motion is assumed. The success of
this approximation depends upon the Coulomb force be-
tween electron and ion being stronger than the external
force for separations less than ro. In a discharge E/N,
the electric field divided by the total gas number density,
is the parameter of importance. The criterion for the use
of this approximation is then

1 _E
r(z)N"’N'

The value of 1/(r3N) for a pressure of 1 atm at 300 K
and ro=>500a, is 7.6 10~!® Vcm?. As a historical note,
the classical mechanics problem of the effect of an exter-
nal field on central-force motion has an analytic solution
in parabolic coordinates and was the model for the hydro-
gen Stark effect in the era before quantum mechanics.***’
As an alternative to performing the Monte Carlo simula-
tion in parabolic coordinates we have the option of reduc-
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FIG. 5. Total rate coefficient for recombination of electrons
and ions in a discharge as a function of E/N for CO, (O) and
CH, (O). The experimental results for CO, of Ref. 49 are
denoted by the symbol X.
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ing rq in order to satisfy the above criterion. For CO,,
test calculations varying ro, were performed for the largest
value of E/N shown and the computed a was found to
vary within the error limits shown, although this is likely
to be about the maximum E /N for which trustworthy re-
sults would be obtained.

Since the mean electron energy (€), the diffusion coeffi-
cient (D), and the mobility (u,.) can be computed as func-
tions of E /N, some approximate proportionalities can be
found between a and these quantities. An experimentally
measurable quantity is the characteristic energy*® D /u,
which is frequently known even if the mean energy is not.
For a Maxwellian electron distribution, kT = —§-€=
D /u,. Electron-energy distributions in discharges, how-
ever, are usually non-Maxwellian.’>3? Curves of drift
velocity (u.E) and characteristic energy versus E/N for
electrons in CO, and in CH, are given in Refs. 31 and 42,
respectively. These data yield the following approximate
dependencies for a in CH, at 1 atm:

ax<(E/N)"'<(D/p,) " <ce 12

For CO,, unlike CH,, the curve of D/u, versus E/N
does not have a simple power-law dependence over the
range of E /N above 5 Td. So, we have only very approx-
imately, for CO, at 1 atm,

ax<(E/N)"'«(D/u,)"%% .

In this E/N range the mean energy goes from approxi-
mately a quadradic E/N dependence to a linear depen-
dence so that no simple relation between a and € can be
found.

These calculations are in good agreement with the re-
cent experimental measurements by Littlewood et al.*’ of
the recombination rate of ions in CO, at near-atmospheric
pressure. These data are also shown in Fig. 5. They also
found that the pressure dependence of a diminishes with
increasing E/N. In their experiments the three-body
recombination rate declines precipitously with E /N while
the two-body rate decreases more slowly. At the highest
field strengths in the experiments, 13—20 Td, a appears
to have no pressure dependence up to 600 Torr. This is
consistent with the model presented here. At high fields
a3 is very small and @, goes to the zero-pressure limit.
This is because the two-body process is modeled by an ab-

sorbing sphere of fixed radius. In reality, however, the
zero-pressure dissociative recombination rate coefficient is
temperature dependent and, thus, the absorbing-sphere
model should have an energy-dependent cross section.

V. SUMMARY

The molecular-dynamics method has been used to
simulate electron-ion recombination in a weakly ionized
plasma. For low pressures of ambient neutral molecules,
where a « P, screening has been found to reduce the
recombination rate by about a factor of 2 at most for elec-
tron densities of 10'° cm™3. For molecules such as CH,
that do not enhance the neutral-stabilized rate as much as
does CO,, the electron-stabilized collisional radiative rate
becomes dominant. Clearly, for large enough n,,
electron-stabilized recombination will dominate in any
molecular gas. In the high-pressure region, where
a « 1/P, the rate coefficient is found to increase with elec-
tron density although the effect is small; a actually devi-
ates little from the Langevin mobility limit.

Recombination in an external field, such as in an elec-
tric discharge, has also been studied. The rate coefficient
is found to decrease with applied field approximately pro-
portional to (E/N)~!, in good agreement with very recent
experimental measurements.

The molecular-dynamics simulation is a robust method
of studying the microscopic physics of such nonequilibri-
um systems as the weakly ionized plasmas discussed
above. Much information can be obtained by simulating
the particle dynamics and calculating transport coeffi-
cients, distribution functions, and correlation functions.
Hopefully the method will, in the future, find wider appli-
cation to other problems in gaseous electronics.
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