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Initial decay rate of the dynamical-scattering factor for dilute polymer solutions
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The initial decay rate of the dynamical-scattering factor for dilute polymer solutions is calculated
with the aid of the renormalization-group theory, which has given reasonable results for transport
coefficients. The fundamental kinetic equation for a polymer chain is reconsidered critically and the
necessity of the e expansion is explained.

I. INTRODUCTION

Dynamical light scattering experiments in dilute poly-
mer solutions give not only the translational diffusion
constant, but also information on the internal chain
motion. However, it is not easy to theoretically calculate
the dynamical-scattering factor I(k, t), where I(k, t) is

normalized so that I(0,0)= 1. Akcasu have shown that
the initial decay rate

dlnI(k, t)
dt t 0

can be analytically calculated when excluded-volume ef-

dP
dt (1.2)

where P is the distribution function for the conformation
I c(r), 0&r&Npj with Np being the total contour length
of the chain and c (r) is the position of the chain
parametrized by the contour variable r. The operator W~
is given by

fects are ignored. Even with excluded-volume interac-
tions, Q(k) can be obtained neatly with the aid of the
thermal blob argument. ' '

The dynamics of the chain are described by the follow-
ing (so-called) full-diffusion equation:

wF f dr f——
0 0 5c( )

kgT ~ p k~T~
5(r—r')I + T(c(r)—c(r'))

ko rlo 5c(r')
5A

5 c (r')
(1.3)

where gp is the (bare) friction coefficient of the chain unit,
go is the viscosity of the solvent, kz T is the absolute tem-

perature in energy units, p is the density of the solvent, T
is the Oseen tensor

T(r r ')=(277) f d k
gok k

i k.(r —r ') (1.4)

and A is the Edwards Hamiltonian

A = —,
' f dr[c(r)) dr

Q 0 0+ f dr f do. 5( c(r) —c(o)) (1.5)

with vp being the (bare) excluded-volume parameter. It is
understood that cutoffs must be imposed on the hydro-
dynamic and on the self-avoiding interactions to eliminate
the unphysical self-interactions of chain units.

An important feature of Akcasu's theory is that the hy-
drodynamic interaction described by the Oseen tensor can

I

be studied without any preaveraging approximation.
Thus, apparently, the hydrodynamic interaction can be
exactly taken into account in the case of Q. On the other
hand, we know that the hydrodynamic interaction
described by the Oseen tensor must be renormalized. Un-
fortunately, we cannot exactly renormalize the Oseen ten-
sor except for perturbatively. Therefore, there is an ap-
parent conceptual contradiction.

The main purpose of the present paper is to resolve this
contradiction and to give the calculation of Q(k) using
renormalization-group theory. We reconsider from the
fundamental point of view the so-called full-diffusion
equation (1.2), and show that it is justifiable only up to or-
der e (=4—d, d being the spatial dimensionality). Fur-
thermore, the full-diffusion equation cannot be justified
without the renormalization-group approach (e-expansion
method). This implies that the e-expansion method is the
only theoretically consistent method to study the full-
diffusion equation. Of course, one might be able to treat
the full-diffusion equation exactly, but there is no theoret-
ical reason to believe the exact results are more accurate
than the e-expansion results; the e expansion may give
better results since the full-diffusion equation is a result
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correct up to order e.
Even if we suppose that the full-diffision equation is

exact, almost the only method to treat the excluded-
volume effect without an arbitrary approximation is the
e-expansion method. We must therefore study the prob-
lem in (4—e)-space. Apparently, there are two possibili-
ties; to use the hydrodynamic interaction of (4—e)-space,
or to use the 3-space form of hydrodynamic interaction
without any modification, as has been proposed by Adler
and Freed. However, one notes that the 3-space form of
the hydrodynamic interaction is not renormalizable.
More intuitively, this implies that we cannot properly ex-
tract macroscopic phenomenological laws insensitive to
the microscopic details. Hence we have only one theoreti-
cal possibility; to calculate everything in (4—e)-space.

In Sec. II the formula for Q based on the full-diffusion
equation is briefly reviewed and conceptual problems are
stated. In Sec. III, after introducing the kinetic-level
description of the dilute-solution system, the full-diffusion
equation is derived. The derivation clearly shows that the
full-diffusion equation is not a reliable starting point. In
Sec. IV the initial decay rate 0 is calculated in order e in
both the Gaussian and the self-avoiding-walk limits. In
Sec. V our result is compared with experiments. Section
VI is a summary.

II. FORMULA FOR THE INITIAL DECAY RATE
OF THE DYNAMICAL-SCATTERING FACTOR

where f,g are functionals on the set of conformations.
Thus we have

5c(cr) 5c(cr) 5c(r)

(2.6)

S~(k, t) = (p(k, O) e p(k, O) ) (2.7)

or

Sg(k, t)= g (p(k, O)W~p(k, O))t" .
n=0

Since Sz(k, O) is the static scattering factor Sz(k),

(2.8)

where

k~T p kgT~
D(~, (r) =5(r—(T) + T( c(r) —c((r))

0o

with T being the Oseen tensor defined by (1.4).
Using the standard theory of Markov processes, we

know that this generator (of the Kolmogorov backward
equation) governs the observables; that is, for the two
time-dependent observables A (t) and B(t)

(A(t)B(0))=((e 'A)B) .

Thus we have from (3)

I.et p(r, t) be the (instantaneous) monomer density field
at the space-time point (r, t). In the continuum scheme
we have

No

p(r, t) = dr 5(r —c (~,t)),
0

(2.1)

where [c(r,t): re[0,No]I is the conformation of the
chain at time t parametrized by the contour variable z.
The Fourier transform of (2.1) is given by

No

p(k, t)—:f p(r, t)e'" 'd"r= f 'dre'"'"'" . (2.2)

The (bare) dynamical-scattering factor Sz(k, t) is defined

by

S~(k,O) =Sg(k) .

From (2.9) we have

S~(k, t) (p(k, O)~Fp(k, O) )
ln + 0 0 ~

Sg(k) S (k)

Thus from the definition (1.1)

Qg(k) = Lg(k)/Sg(k—),
where

L~(k)=(p(k)&Fp(k))~ .

(2.9)

(2.10)

(2.11)

(2.12)

S~(k, t) = (p(k, t)p( —k, O) ), (2.3)

I~ =S~(k, t)/S~(0, 0), (2.4)

is directly observable.
The full-diffusion equation (1.2) which is supposed, in

general, to be a convenient starting point of almost all the
theories of polymer dynamics, determines a Markov pro-
cess whose generator W~ is the adjoint operator of WF
with respect to the following scalar product:

(f g)= f fg~[c] (2.5)

where ( ) denotes the average with respect to P. Note
that p is not directly observable, since we do not know
anything about the unit of the chain. The unit need not
be identical to the synthetic or structural unit. Hence Sz
is not directly observable. However, the normalized
scattering function Iz,

In (2.12) p(k, O) is denoted by p(k). Thus 0 can be calcu-
lated with the knowledge of equilibrium statistics of the
chain as has been first pointed out by Akcasu "in the
context of the polymer solution theory. As is mentioned

by Akcasu the operator WF need not be the one we have
chosen but can be any time-dependent dynamical opera-
tor. This approach has been extended to various situa-
tions, e.g., branched polymers. '

We know p(k):
No

P(k) f duvet k'c(T) (2.13)
0

Thus at least for the Gaussian case (i.e., without the
excluded-volume interaction) (2.12) can be analytically
calculated in 3-space.

In the calculation of transport properties such as the
translational diffusion constant we know that, even in the
Kirkwood-Riseman scheme, " the hydrodynamic effect
can be systematically taken into account only by the per-
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turbation approach. ' Thus there is a question whether
the straightforward calculation in 3-space is exact or not.

We wish to calculate L~(k) [or A(k) defined by (2.11)]
with the definition of the Fokker-Planck operator given

by (1.2). If the problem is merely computational, then the
Akcasu calculation is exact and rigorously corect. How-
ever, we must consider the meaning of the full-diffusion
equation, especially the Oseen tensor in this equation.
Everyone knows that this description cannot be correct
truly microscopically (cf. Ref. 8).

The reason why we can use such a model is because we
are interested in the phenomenology of the solution.
Many different models in a class (called the universality
class} can give the same phenomenology. The
phenomenology is extracted with the aid of the
renormalization-group theory. The model described by
the full-diffusion equation is (supposedly) in this univer-
sality class (see Ref. 13 for more details). Thus the model
we are using presupposes some kind of renormalization
procedure. Consequently, we must renormalize the hy-
drodynamic interaction. These considerations do not
necessarily imply that we must use the e expansion, '

which is a method to implement the renormalization phi-
losophy. Unfortunately, however, this is almost the only
existing systematic analytical procedure applicable. Thus,
at present, the only logically self-consistent analytical ap-

proach to Q(k ) is the e-expansion method.
As we will see in Sec. III, the full-diffusion equation is

not a fundamentally reliable starting point of the theory.
This equation is justifiable only with the aid of the @-

expansion method from a logically sounder description of
the dynamics of the polymer solution. Thus, a fortiori, we

have to use the e-expansion method to calculate 0( k ).

III. DERIVATION OF THE FULL-DIFFUSION
EQUATION

In the full-diffusion equation the chain is described
semimicroscopically; i.e., the description of the chain is at
the kinetic level. The solvent is assumed to be a continu-
um and its description is at the hydrodynamic level. (For
the levels of description, see, e.g., Ref. 15.) Thus there is
an inconsistency. One might argue that a polymer chain
is very long, so that in comparison to the chain the sol-
vent molecules are sufficiently tiny. Then there would
seem to be no inconsistency. This argument is, however,
completely wrong.

We have not ignored the thermal fluctuation of the
chain and so have the Fokker-Planck (or, more precisely,
Smoluchowsky) type equation. The stochastic driving
force acting on each chain unit is assumed to be statisti-
cally independent. Hence, even if the chain is very long,
the size of the unit for its dynamical description has the
same order of magnitude as that for the description of the
solvent. However, we have ignored the solvent velocity
field fluctuation. Hence, there is an inconsistency in the
very description of the polymer solution by the full-
diffusion equation. Nobody adopts such a starting point
in the theory of critical dynamics, " it is well known that
the fluctuation of the fluid velocity field is crucially im-
portant in the critical dynamics of binary mixtures. '

The correct consistent description of a polymer chain,
which has been proposed in Ref. 17 by one of the present
authors (Y.O.), and very recently extended to semidefinite
solutions by Shiwa, ' employs the kinetic-level description
of both the chain and the solvent:

c (r, t) = u( c (r, t), t }— + 8(r, t),8 1 5@
0 5c(r, t)

p u(r, t) = — dr 5(r —c (r, t)}
5m

Bt 5 c (1r, t)

(3.1}

+potu(r, t) —Vp(r, t)+ f(r, t),
(3.2)

where u(r, t) is the solvent velocity field, p is the solvent

density, p is the pressure, and 8, f are independent Gauss-
ian white noises with mean zero and

(8(r, t)8(r', t') }=2/, '5(t t')5(r—r')I—, (3.3)

p u(r, t)= —f—dr 5(r —c(r, t))
5c(r, t)

+7}0hu+ f (3.2')

where l is the result obtained by operating in the large
parenthesis with a projection operator which selects the
transversal components. It is more convenient to rewrite
(3.2') in terms of the Fourier transform of u defined by

u-(t) = f u(r, t)e' " '' d r .
k

We have

p —u-(t)a-
k

(3.5)

kk
k

N 0
d7 ei k ~ c (~, t)

5c(r, t)

where

( f '-„(t)f '-„,(t'))

—gok u- + f -(t),
k k

(3.6)

kk'
=k'r), 7—,5(k+k ')5(t t') . (3.7)—

k

( f ( r, t) f ( r ', t ') }= 2rtob 5(—t —t') 5( r —r ')1, (3.4)

I being the d )&d unit tensor, and 6 the Laplacian. These
noises satisfy the fluctuation-dissipation theorem. We
have chosen the energy units so that k~ T=1. The simul-
taneous equations (3.1) and (3.2) are very similar to that
for the binary fluid critical dynamics (e.g., Refs. 15, 16,
and 18) (the so-called model H).

We are interested in the low-frequency behavior of the
system, so we may ignore the longitudinal velocity corn-
ponent and assume that the solvent is incompressible. As
is well known, we can eliminate the pressure. Then (3.2)
can be rewritten as' '
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The corresponding Fokker-Planck equation is given by

P=WP,
dt

(3.8)

5 5A

5c(r) ko 5c(r) 5c(r)

where P is the simultaneous distribution function of c
and u. The operators are defined as

W =Wp+W;„t,

Oseen tensor, i.e., the full-diffusion equation. This is well
known in critical dynamics as was demonstrated by
Kawasaki long ago. ' If we insist on having terms to
higher order in e, the equation is very complicated, and
does not look tractable. In any case, if we take into ac-
count O(e ) terms, then we must abandon the full-
diffusion equation. The effect of O(e ) terms is more
drastic if there is a macroscopic flow field; we cannot
even use the Markovian approximation as is pointed out
in Ref. 19.

+f (kI —kk)
k 5u

k

+u~
5u —k

~tnt PO~O f~ f dr
5c(r)

g f fd r5 5~ ik c(1')

5u- 5c(r}
k

where

(3.9)

IV. THE e-EXPANSION CALCULATION
OF THE INITIAL DECAY RATE

As has been discussed in Sec. II, if we want to be logi-
cally self-consistent, it is almost mandatory to use the
renormalization-group theories. Then, if we want to
study the universal functions, we are forced to use the e-
expansion method. In our present problem of calculating
the initial decay rate of the structure factor, the equation
which we start from is correct only up to 0 (e) as we have
seen in Sec. II. Hence the e-expansion method is, at
present, the only consistent way to study the problem.

and the mode-coupling constant A,o is added for the sake
of "tracing the order. " After renormalization in (4—e}-
space ))(,o becomes of order e'~ .'

What we want to do is to eliminate the variable u from
(3.8) in order to write down an effective Fokker-Planck
equation for the conformation. There is a standard way
to do this with the aid of the projection operator. ' The
details are explained in Appendix A. The essence of the
argument is that to order e we have only to take into ac-
count the mode-coupling terms to the lowest nontrivial
order; the result is the description of the fluid by the

I

A. Bare perturbation calculation

First, we evaluate Li)(k) defined by (2.12). Using
(2.13) we rewrite it as

No
(k) d& d ( i k c(cr)~—ei .k c(~))

0 0
No=k k: dr do(D(r, o.)e'"' '" ' '))

0 0

(4.1)

Explicitly writing D given in (2.6},we get

No No
tccc(k)=k k: f dc f dc kr5(c —c)l + T(c(c)—c(c)) e'"'('" '' ')) .

0 0 90
(4.2)

t

ward 1, showing that I (y) goes as 3m /2y for y small.
Finally, we can evaluate (4.1) as follows:

No No
(ki)T) 'Lg(k)= f dr f dof( ~r —o

~

)

No
=2 f dy(Np —y)f (y) (4.5)

where f is given by (4.3). The small-y behavior of I(y)
shows that the last integral has a logarithmic divergence,
and so we must impose a cutoff a where necessary so that
y=/r o[ &a. —

We write 8p ——,' k Np and find (A—ppendix C)

The rest of the calculation of order e is performed in 4-
space with an explicit cutoff or in (4—e)-space without
any cutoff depending on the renormalization-group
schemes. Here we will use the former scheme, as in Ref.
22.

We find (Appendix B)

(4.3)

where

(k T)—)
g k k. ( D(~ (T)e ( k '( c (t') —c (~)) )

k 2p 2/2
=k 5(r —o)+ 4 I(r o'), —

(2m) qo

3 1 — y
I(y) =

2y k'y/2

e
—k y/2 $+g2y/2

yk/8 (4.4)

In the small-y limit we can see in (4.4) that both terms in
parenthesis and hence the term in square brackets tend to-

2kit T 3 go a
Li) (k) = 8() 1 — i ln

go 16m' gp

+, V(8p)
3 0o

8m g0
where

V(8())= ——,
' ——,

'
8o(Ii3(8o)

and

(4.6)

(4.7)
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1 —8()z+(Hpz) /2 —e
(I'3(Hp) = dz

0 (8()z) /6

g 2 2 0 4
. ———'lng + -80 (X) Z

2
—f dz e 'ln 1+

g2 p gp
(4.8)

Equation (4.7) shows the small- and large-Hp behavior of V(Hp) clearly. Note that %3(Hp)~1 as Hp —+0.
Next we calculate Sii(k). The following quantity has been given in a previous paper as

Nof ~[c]f d f d~ei k.[c(~)—c(rr)]e —P
0 0

1=Np
gp

1 e
—80

g2 g2

~0 2 1 Np
No

4~ 8() a
1—1

gp

—80
e

gp

—80 —80e e+
g

+ 1
ln

go

Np
~ g (Hp)N() + . (4.9)

4m

We know

f N[c]e =1—
T

—1 —ln
a a

+ ~ ~ ~

(4.10)

u LZ„—1 ln —+
a

(4.15)

Since the decay rate 0 is a directly observable quantity, so
Q =Qii. From the calculation in Ref. 17, we know

Then, dividing (4.9) by (4.10), we obtain u LZ —1+ ln —+ .
4m'

(4.16)

2 up N()up ()f(Hp) NpSa(k)= N() f (8p) 1 — + 2 Hp4~ 4~2 aHp a

Qp 2,g (8())Np+
4m

(4.11)

where

1 1 ef(Hp)= —,+
gp gp gp

(4.12)

the Debye function. Thus the bare perturbation result is
given by the ratio of (4.6) and (4.11). We see the result de-
pends on the cutoff a, which has to be absorbed into the
renormalization constants to extract phenomenological
consequences.

Using these constants, we find that the choice
r

Zg ——1 — ln
u L

4~2 a
3 L

, g ln —+ (4.17)
16~2

eliminates a completely from the bare perturbation result:

k~Tk'
Q(k)=

gN

1

4m' f(8)

X exp g V(8)+
8 4m

3g'/16m

L

g(8)
f(8)

(4.18)

where H=Nk (N/L)"i /2 and we have already ex-
ponentiated the O(e) terms.

B. Renormalization

We introduce the phenomenological length scale L and
rewrite

C. Renormalization-group equation
and universal form for 0

The renormalization-group equation for Q can be ob-
tained in a quite standard way as

ln(Np/a) =ln(Np/L) —ln(a /L) .

Next let us introduce the renormalization constants

(4.13) La a a aL ~)H„+P& +yN Q(k) =0, (4.19)

N =Z~Np,

k=zgkp

Q =ZgQ0,

(4.14)

where

P„(u)=—u—Q + ~ ~ ~

m2
(4.20)

where up ——UpL', gp=(gp/np)L'i and Ngu are
phenomenological counterparts of Np, g„,up, respectively.

3 1
Pg(u, g) =g —— g — u +

16m 4m.
(4.21)
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Qy(u)= +".
(2m. )

(4.22)

The fixed-point parameters can be obtained from

P„=P~——0. We have four fixed points, they are

This implies that the dynamical exponent z =d. Equation
(4.29) tells us that a natural variable is proportional to
+2vk 2

Equation (4.18) yields

(a} u*=O, g =0;
(b) u*=n e/2, g =0;
(c) u*=O, /*=8m e/3;
(d) u'=y/ E/2, g =2&a

L +y*N Q(k}=0,
BL BN

(4.23)

where y =y(u'). The general solution to this is

The fixed points (a) and (b) represent the free-draining
cases and (c) and (d) the nondraining cases. The fixed
points with u*=0 correspond approximately to the theta
state, and those with u' =sr e/2 to the self-avoiding limit.
Since the free-draining cases are meaningless for solution
theories, we consider only (c}and (d).

At the fixed points P and Pg vanish, so that (4.19) be-
comes

21oQ(k)

kgT
26 u*/4' dv —2+a/2e

geN(4 —E)v

X exp g V(8)+3 u' g(8)
F(g) 8m' 4m' f(g)

21o«k)

AT
N

N
L

2( v—1/2) —d /2
u+/4H

g f(&)

)&exp — g V(8)+3 u* g(8)
8m 4m f(8)

where v= —, at (c) and v=
2 ( I+e/8) at (d).

V. COMPARISON WITH EXPERIMENTS

Simple algebra shows that we may also write this as

(4.30)

(4.31)

Q=f(LN ' y, k}, (4.24)

where f is a well behaved but, as yet unspecified function.
Let us find the reparametrization symmetry of our

model. The Edwards Hamiltonian (1.5) is invariant under
the reparametrization derived from the following dimen-

sional analysis:

[ c l=C'" [N]=[y]=C [Uol=C '". (4.25)

[k c ]= 1 implies [k ]=C '/, so that the Oseen tensor

(1.5) has [T]=[k] =C' )/ . From (2.6) we get
[5/g] =[T] or [g]=C '/ (this is the reason why the e-
expansion method works for the hydrodynamic interac-
tion as well). Since [5/5c(y}]=C /, the dimension of
the operator Wz is [W~]=[y] [5/ 5c] [5/g]=C
Hence the time scale Tp of the system behaves like

[To]=C /. This implies that the decay rate Q must
behave as [Q]=C "/ . Any observable quantity must be
invariant under the reparametrization of the model, so we
must have

2)pQ(k)

kg Tkd
3V 2 1/2 1 1 1 f'(y)

(5.1)

Q(k) 1

k'D 2f (y) 2 4 f (y)

In the self-avoiding limit (d) we have

(5.2)

We would like to obtain from Eq. (4.31) dimensionless
functions which may be directly compared with experi-
mental results. Thus we calculate ylpQ/k "kz T and
Q/k Dp as functions of kRG. Here RG ——((RG) )'
is the mean-square radius of gyration of the polymer and

Dp is a constant such that Q(k)/k Do~1 as kRG~O.
These functional relations are universal; i.e., free from
chemical details of the system.

We have the following results. In the Gaussian limit

(c),

f(~' '" LN '" & '"k)=S ""f(LN "y-' k)--ylpQ(k)

k~ Tkd
—)/2 1 3 1 g(y)

2 y exp —V(y) +—1+

If S is chosen so that

S' /~ LN

then we get

Q(k) = (LN 1/y')(2 —~/2)y /(1 —y )—
)(f((LN —1/y )y /2(y* —1)k)

(4.26)

(4.27)

(4.28)

Q(k)
k DD

n 1+yf—y
f (y)

1 3 1 1 g(y)
2f(y) 4 2 8 f(y)

exp ——+ V(y) +.—1+

f'(y)
f (y)

(5.3)

(5.4)

Q(k)=N '4 '"f(N"k) . (4.29)

Since y* = 1 —1/2v, absorbing L into the definition of f,
we gei In the above y =

4 k E.G, d =3, and n =0.156.
It is unfortunate that there is little experimental data

with which we can compare our results. In Figs. 1—3 we
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G

FIG. 1. Universal plot t)OQ(k)/k&Tk vs k(RG)' in the
Gaussian limit [Eq. (5.1)]. Solid curve is our result to order e
(@=1},and dashed curve is the result of Akcasu and Gurol
[Ref. 2(a)]. Experimental points are taken from Akcasu and
Han (Ref. 23).

have superimposed our curves [Eqs. (S.l)—(5.3)] on data
from a paper by Akcasu and Han and from Tsunashima
et al. Although our curves for goQ/kttTk lie below
the data, we observe that at the L9 point the curve matches
the data extremely well if the curves are scaled (as has
been suggested in Akcasu and Han ). In the good solvent
limit, our asymptotic estimate of goQ/ksTk seems to
agree with the result of Tsunashima et al. Moreover

2the graph of Q/k Do versus kRG (Fig. 3) shows excellent
agreement with experiment, especially since Akcasu and
Han have not used a Do such that Q/k DO~1 as k~O.
If they had done so, their data would be shifted slightly
upwards, precisely overlapping our curve.

By noting the value of kRG at which our curves have
the sharpest change in slope one may also remark that the
data points in all three of the graphs (Figs. 1—3) are shift-
ed to the right slightly in comparison to our theoretical
calculations. Yet this is consistent with the tendency that

I I

O. I 0,2
I

2.0
I

5.0

FIG. 3. U»versal plot Q(k)/k2DO vs k(R2)' in the
Gaussian limit [Eq. (5.2)]. Solid curve is our result to order e
(6= 1). By definition Q(k)/k Dp must be unity in the sma
k/R2 x1/2 ~

&RG & lj.mit. If we properly normalize the experimental
data (0 ) taken from Akcasu and Han (Ref. 23), the agreement
of our result with experiments is satisfactory. However, we
have a discrepancy with the data (~) taken from Tsunashima
et al. [Ref. 24(a)].

experimental values of kRG are overestimated in compar-
ison to their true physical values.

As a final comment concerning Fig. 3 (Q/k Do versus
kRG) we mention that the Akcasu and Han calculation
for large kRG yields Q/k Do ——', V m.kRG. This curve, if
plotted, would lie parallel to, although well below the
data, making our theoretical calculation a more reliable
one.

Since, generally, the radius of gyration is obtained from
the static scattering function S ( k) as

S(k) X2I(k)= =1+ (RG)k +
S(0) 2d

i.e., from the k —+0 limit behavior of S(k). This extrapo-
lation is technically not very easy. For example, there is a
tendency for RG to be estimated too large. Since S(k) or

0. I 6— 0.30

O. I 2—

0.08—

~O

0.04—

~ ~ P~ ~ ~
~ aI ~ + ~ ~ + ~ ~

CP
w

~ ~ ~
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O. I5—

O

O. I 0—

0 I

6 8

k(R )
G

I

IO
I

l2

FIG. 2. Universal plot goQ(k)/ksTk~ vs k(RG)' in the
self-avoiding limit [Eq. (5.3)]. Solid curve is our result to order
e (e'=1), and the broken curve is the result of Akcasu and Ben-
mouna [Ref. 2(b)]. Experimental points are o, Akcasu and Han
(Ref. 23); ~ Nemato et al. [Ref. 24(b)]. Solid curve exhibits a
minimum, but this may be due to our approximation.

I

0.2
I

0.8
00 0.4 0.6 I.O

S(k)/S(o)

FIG. 4. Universal plot gpQ/k~Tk vs S(k)/S(0) in the
Gaussian limit. Theoretical curve is given. This does not re-
quire the determination of the radius of gyration, which may
cause an extra experimental error. However, the estimate of
S(k)/S(0) is not very satisfactory, so that curves given in Figs.
4—7 exhibit only qualitative features.
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FIG. 5. Universal plot goQ/k&Tk vs S(k)/S(0) in the
self-avoiding limit. Theoretical curve is given.

FIG. 7. Universal plot A/k Bo vs S(k)/S(0) in the self-

avoiding limit. Theoretical curve is given.

I(k) is a monotonically decreasing function of kRG, we

can replace kRG with I(k) to have universal curves more
directly accessible experimentally. I(k) is given as fol-
lows:

I ( k, N) =2f (y)exp —y
f'(y)

4 y
(5.5)

is the Gaussian form, and

2.5—

C3
o 20

N

I.O—

0.5—

I( k, N) =2f (y)exp ——1+ y + y"g (y) 37 f'(y)
f(y») 96 f(y)

(5.6)

the SAW, where again y =3k RG /4.
The four plots are given in Figs. 4—7. Again it should

be emphasized that these plots for polymer solution de-

pend only on the quality of solvent. We do not have ex-
perimental data with which to compare these plots.

Specifically, the two plots gpQ/k&Tk versus I are
equivalent if we scale the figures by an appropriate
amount. This indicates that at any strength of excluded-
volume parameter we have the relation

Q 0
kP Tk kP Tk G jaII

(5.7)

where f is a monotonic increasing function of Z, the pa-
rameter proportional to uN'~ appearing in the study of
crossover behaviors. ' The relative scaling of the curve
can then be used to isolate solvent effects. The tempera-
ture dependence will be published elsewhere.

One also notices that the two plots of 0/k Dp versus I
are virtually indistinguishable. This interesting result in-

dicates that such a curve should be a universal one for
long unbranched polymers in dilute solutions.

VI. SUMMARY

We can summarize the contents of the paper as follows.
(1) The full-diffusion equation, which is supposed to be

the convenient starting point of the polymer dynamics, is
justifiable only to order e (=4—d) from a more funda-
mental kinetic description of the polymer solution. The
latter is quite analogous to the description accepted with
theory of dynamical critical phenomena.

(2) Thus the results derived from the full-diffusion
equation is reliable up to order e; the e expansion is the
only way to study the full-diffusion equation in a way
that is consistent with the foundation of this equation.

(3) We have performed an e-expansion calculation of
the initial decay rate Q(k) of the dynamical scattering

factor. Our calculation of 0( k )lk Dp, where

Dp=limk pQ(k)/k in kRG appears to be in satisfactory

agreement with experiments. About the universal ratio
limk Qqp/kiiTk there seem to be discrepancies be-
tween our results and experimental results. We do not
claim that our theory is quantitatively highly reliable, but
we must point out the overall semiquantitative success of
the renormalization-group theory in previous publications
of our' ' and other groups.

00
I

0.2
I I

0.4 0.6
s(k)rs(o)

I
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APPENDIX A: DERIVATION OF THE
FULL-DIFFUSION EQUATION

f W(1 —H)= f W;„,(I—R) .

Then the second term in (A9) becomes

& W;„„(I —H )(5—W) '(1 —H )W;„,&

(A12)

(A13)

(ii) As will be justified later, W;„,is of order e'~ . So in
our order-e calculation we may replace W by Wp in
(A13).

(iii) We now break W;„,into two parts:
This appendix describes how to derive an effective

operator W,« for the Fokker-Planck equation, where the
effects of the solvent velocity field have been averaged
out. We write f f dr ~ i c—(r) k

5c(r)

(A14)

(A15)

W=Wp+W;„, (Al)

W W({ c ],{uj)=0. (A2)

If there is no systematic macroscopic flow, we may factor
8' as

as in (3.8) and (3.9). We denote the normalized equilibri-
um distribution function by W({ c I, {u]), which satisfies

k 5uk . 5c(r)
(A16)

However, integration by parts shows that if we replace the
first W;„,in Eq. (A13) by W2 we get zero. Thus using (ii)
and (iii) Eq. (A13) becomes

& W, (1—H)(5 —W, ) '(1 —H)W, &

W({c I, {uI)=W', ({c I)8'„({uI).
By examining (3.8) we see then that

WpW=O,

(A3)

(A4)

+ & W)(1 —H)(5 —Wp) '(1 —H)W2& . (A17)

To proceed further we note that the correlation time of
the velocity field is much smaller than that for the confor-
mation, so that

which implies

W;„,8'=0 . (A5)

Here we introduce the projection operator H by

H= W„{uIf (A6)

f = f d {u J is a functional integral over
the velocity field. Following a derivation very similar to
that in Onuki and Kawasaki' we find that

(5—Wp) '= f dte '= f dte

where W„is the second term of Wp. Since

'--„,& = &--(t)--„,(0) &

and

f dt& u-(t)u-„,(0) & =5(k+ k ')T -„,

(A18)

(A19)

(A20)

P({cj,t)= f p({c I, {uj,t) (A7)
where T - is the Fourier transform of the Oseen tensor,

k

we find that the first term of (A17) becomes
obeys the equation

dP({c]~t)~({
dt

with

(A8)

Ap f dr f dr T(r, r')
5c (r) 5c (r')

and the second term of (A17)

(A21)

~.«= &~&„+&~(1—~)(5—~)-'(I —~ u'& „,
(A9)

Z', f dr f dr T(r, r') 5A E

5c(r) 5c(r')
(A22)

where 5 is a positive infinitesimal number and

&g&„=f gW„({u)). (A10)

We wish to evaluate W,« to order e. The first term of
(A9) is

We now add (All), (A21), and (A22) together to obtain
the order-e result for W,«in Eq. (A9):

2',«= f dr f dr' D(r, r') $~E
5c(r) 5c(r') 5c(v')

f d 5 1, 5 5AE
5c(r) kp 5c(r) 5c(r)

(Al 1) (A23)

Since W„decays rapidly as u ~ ce, and & u - & =0.
k

The second term of (A9) may be simplified as follows.
(i) We first note that

where D is given in (2.6). Equation (4.1) then follows im-
mediately from (A23). Again, however, we stress that
(A23) is correct only to order e.
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and

f d3 1 e
—a! (~/a)3/2 (B1)

APPENDIX B: DERIVATION OF EQS. (4.3) AND (4.4)

We wi11 need

where we have performed the Gaussian average over

chain conformations. Let q=(1,r) where 1 is a three-

vector and ( 1,0) k =0. By comparing (B3) and (4.3) we

get
I2

I(y)= f d 1 dr expI ——,
' [I +(r+k)2]y j

dv e (a—u~+2bu+c) (~/&)1/2e —(c b —/a)

The left-hand side of (4.3) is quickly seen to be

k
~( )

1 fd4 1 k2 (qk)
gp (2m) rip q q'

(B2) (B4)

2

=k f d udv expt —I(. [u +(v+1) ]j,(uz+ v2)2

(B5)

X exp[ ——,(k+ q) y], (B3)
I

where K= —,'k y.

I (y) =k u v 2 2exp —E u + v+11

xu +v
(B6)

=Ek2 u v &exp —ag xu +U —E u + v+1 (B7)

Now we can use (Bl) and (B2) to get
2

We can rewrite (Cl) using (812) as

I (y) = —Ek2

I 3

L ( k) Nok 2k'
+ 4 dy (N() y)—

o (2m) qp 2y

1
&(exp —K 1—

1+(x
(B8)

X f dp2pe "»/2-
0

(C2)

(B9)

APPENDIX C: DERIVATION OF
EQS. (4.7) AND (4.8)

From (4.3)—(4.5) we have

Now let p= 1 —I/( I+a), and

I (y) = f dP (2Pe ~!'),3H
2y

from which (4.4) follows immediately using & = —,
' k2y.

Let y =NpZ and 8=k Np/2. Then we obtain

L(k) 28 38 ' 1

ka T gp 8m'gp '/~o z

1

X f dP2Pexp( —P8z) .

L ( k) Npk' 2k )vo

+ f dy(No y)I(y) . (Cl)—
k~T 0o (2~) r!o

We can subtract off the divergent part and then set
a=0,

L(k)
AT

28 30
&o 8~'go

r

a ' 1—In —1+ ——1
Xp o z

d 2 e-~' —I
0

(C4)

If we rearrange terms, we find

L(k)=2k T 1 — ln
gp 16m. gp Np 8m r!p

1 0 ' 1dz3 ——1
2 y o z

1 —f dP2Pe

0
(C5)

This is exactly (4.7), where the last integral in (C5) is easily evaluated to yield qI3(8) as given in Eq. (4.8).



978 A. LEE, P. R. BALDWIN, AND Y. OONO 30

B. J. Berne and R. Pecora, Dynamical Light Scattering (Wiley,
New York, 1976).

(a) A. Z. Akcasu and H. Gurol, J. Polym. Sci. Polym. Phys. Ed.
14, 1 (1976); (b) M. Benmouna and A. Z. Akcasu, Macro-
molecules 11, 1187 (1978).

J. G. Kirkwood, J. Polym. Sci. 12, 1 (1954); M. Fixman, J.
Chem. Phys. 42, 3831 (1965); R. B. Bird, O. Hassager, R. C.
Armstrong, and C. F. Curtiss, Dynamics of Polymeric Liquids

(Wiley, New York, 1976), Vol. 2.
4S. F. Edwards, Proc. Phys. Soc. London 85, 613 (1965).
sIn a previous paper [Y. Oono and M. Kohmoto, J. Chem. Phys.

7$, 520 (1983)] this point was not properly appreciated. Y.O.
apologizes to Professor Akcasu.

D. Jasnow and M. A. Moore, J. Phys. (Paris) Lett. 38, L467
(1978); G. F. Al-Noaimi, G. C. Martinez-Mekler, and C. A.
Wilson, J. Phys. (Paris) Lett. 39, L373 (1978).

R. S. Adler and K. F. Freed, J. Chem. Phys. 72, 4186 {1980).
M. Bixon, Annu. Rev. Phys. Chem. 27, 65 (1976).
E. B. Dynkin, Markov Processes (Springer, New York, 1965).
W. Burchard, M. Schmidt, and W. H. Stockmayer, Macro-
molecules 13, 1265 (1980).
J. G. Kirkwood and J. Riseman, J. Chem. Phys. 16, 565
(1948).
Y. Oono and M. Kohmoto, J. Chem. Phys. 78, 520 (1983).
Y. Oono, J. Chem. Phys. 79, 4629 (1983); Adv. Chem. Phys.
(to be published).

~K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 38, 240
(1972).

~5K. Kawasaki and J. D. Gunton, in Progress in Liquid Physics,
edited by C. A. Croxton {Wiley, New York, 1978). We use

the word "kinetic" in the sense used in this reference.
See, for example, T. Ohta and K. Kawasaki, Prog. Theor.
Phys. 55, 1384 (1976).
Y. Oono and K. F. Freed, J. Chem. Phys. 75, 1009 (1981)~

SY. Shiwa, Phys. Lett. A (to be published).
' A. Onuki and K. Kawasaki, Ann. Phys. (N.Y.) 121, 456

(1979).
OP. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435

(1977).
K. Kawasaki, in Synergetics, edited by H. Haken (Teubner,
Stuttgart, 1973); see also R. Kapral, D. Ng, and S. G. Whit-
tington, J. Chem. Phys. 64, 538 (1976); R. S. Adler, J. Chem.
Phys. 69, 2849 (1978). Note that there is no justification of
truncating mode-coupling terms in the conventional ap-
proaches. So far the best justification of the lowest nontrivial
order mode-coupling approach is the e expansion.
T. Ohta, Y. Oono, and K. F. Freed, Phys. Rev. A 25, 2801
(1982).

~A. Z. Akcasu and C. C. Han, Macromolecules 12, 276 (1979).
(a) Y. Tsunashima, N. Nemoto, and M. Kurata, Macro-
molecules 16, 1184 (1983); (b) N. Nemoto, Y. Makita, Y.
Tsunashima, and M. Kurata, ibid. 17, 425 (1984).

~5Since I( k, N) to order e is not very reliable, these figures only
give qualitative features. More reliable curves will be pub-
lished elsewhere.
P. R. Baldwin and A. Lee {unpublished).

7T. Ohta and Y. Oono, Phys. Lett. 89A, 460 (1982).
8L. Schafer, Macromolecules 15, 652 (1982); Macromolecules

(to be published).


