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The freezing process has been studied by means of quasielastic light scattering at the solid-liquid
interface of growing salol crystals. In the range of the investigated growth velocities, 0.2
pum/s <vp <0.8 um/s, we observe two different dynamical processes at the interface, which can be
distinguished by the scattered light. In a first process intense Rayleigh scattering sets in if a critical
growth velocity is exceeded, which for growth along the [010] axis is in the range of 0.2
pm/s <vei <0.8 um/s. Intensity measurements suggest that the scattering arises from fluctuations
in an interface layer of a thickness of the order of 1 um. The spectrum of the scattered light can be
fitted by a single Lorenzian with a linewidth I'=D;q? (q is the scattering vector). The thus ob-
tained value of the diffusion constant, D;=(1.040.25)X 10~ cm?s~, is by 6 orders of magnitude
smaller than the thermal diffusivity of liquid salol. In a second process the light is scattered by a
propagating line-grating-like structure, which we interpret in terms of almost equidistant steps of
growth spirals originating at screw dislocations. The step spacing d was determined from the angu-
lar distribution of the scattered intensity, and the step velocity v; from the Doppler shift. For a
growth velocity vx=0.5 pm/s perpendicular to the (001) facet typical values are d =0.4 um and
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v; =40 pum/s. For the step height h =v,d /v; we obtain values of the order of 2.5 lattice constants.

The product v,d is independent of v; and has a value of (1.8+0.4)X 107 cm?s

251, whereas v, is

proportional to the square root of v;. An interpretation of the data is presented.

I. INTRODUCTION

The dynamics of crystal growth from the melt are
determined by two processes: the diffusion of latent heat
and the ordering of molecules. For example, in theory of
dendritic growth! the interaction of the temperature field
with the processes occurring at the advancing crystal
front is crucial. However, at the comparatively low rates
at which large single crystals grow the growth kinetics are
dominated by the lattice formation. This process is little
understood because the solid-liquid interface is not in
thermodynamic equilibrium.

In the well-known phenomenological theories of crystal
growth due to the Wilson,? Frenkel,® Becker and Déring,”
and Burton, Cabrera, and Frank® a sharp phase boundary
is assumed. Molecular dynamics simulations of crystal
growth from the melt at nonequilibrium conditions
(Landman et al.®) yield a stratified interface layer with a
thickness of about five lattice spacings.

Light scattering experiments at the solid-liquid inter-
face of growing ice crystals’ have shown that a dynamical
structure giving rise to intense light scattering builds up at
the interface if a critical growth velocity is exceeded.
Subsequent experiments® have shown that the light
scattering arises from density fluctuations in an interface
layer of a few pm thickness. These fluctuations decay
about 5 orders of magnitude slower than density fluctua-
tions in bulk water. In order to check whether the ob-
served phenomenon is an anomaly of the ice-water system
we performed similar experiments on salol crystals. Al-
ready the early experiments revealed® that, in addition to
diffusively decaying inhomogeneities, propagating struc-
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tures are present at the solid-liquid interface. Cummins
and co-workers!® recently reported on results of their light
scattering experiments at the phase boundary of salol.
Their results agree in most points with ours. The propa-
gating structure was interpreted in terms of growth steps
originating from screw dislocations.

The present work is a detailed account of our light
scattering experiments. We find that the propagating
structure scatters like an imperfect moving line grating.
We were able to measure in situ simultaneously the propa-
gation velocity and the grating period. Interpreting this
structure as growth spirals emanating from screw disloca-
tions we have compared our results with calculations
based on ideas developed in Ref. 5. We also measured in-
tensity and linewidth of the light scattered by the dif-
fusive fluctuations. The results support the view that the
scattered light originates from an interface layer of a
thickness of at least 1 pum in which density fluctuations
decay at a rate which is by 6 orders of magnitude smaller
than in the bulk liquid. A tentative interpretation of this
slow decay is given inspired by the theory of critical phe-
nomena.

II. THE SUBSTANCE

A. Crystal preparation

Light scattering experiments at the solid-liquid inter-
face are done in situ on crystals growing in a zone-
refining apparatus (Fig. 1). The salol single crystals (the
structure is shown in Fig. 2) used in the experiment are
enclosed in an evacuated zone-refining tube of 15 mm
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FIG. 1. Zone melting apparatus.

inner diameter. The length of the crystal is about 150
mm. Two types of samples were prepared, one with the
[001] axis and one with the [010] axis parallel to the
cylinder axis. Frequent zone refining of the crystals is
necessary to assure a good quality of the solid-liquid inter-
face. It has been found that an interval of more than two
months between two successive zone-refining passes of a
given crystal results in an increase of the concentration of
inhomogeneities at the solid-liquid interface that are
detectable by light scattering. On the other hand, we ob-
served an increasing tendency for strain cracks to appear
in the crystals with each zone-refining pass. Details about
the sample preparation and the crystal structure are
described in Ref. 11.
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FIG. 2. Molecular and crystalline structure of salol. The di-
mensions of the unit cell are (20°C) 8.0 A [100], 11.3 A [010],
23.8 A [001].

TABLE 1. Refractive index of liquid salol (20°C < T <50°C,
A is the wavelength of the light). n(T)=ny+aT.

A (nm) no a (°CTY
488 1.6167 —0.00046
514.5 1.6104 —0.00045
632.8 1.5926 —0.00043

B. Optical properties

Crystalline salol is strongly birefringent. The refractive
indices of the crystalline and the liquid salol are such that
a light beam appropriately polarized coming from the
solid or the liquid side can be totally reflected at the
phase boundary. We have measured by means of a
temperature-controlled Abbé refractometer (Zeiss) the re-
fractive index of liquid salol. In the temperature range
20°C < T < 50°C the measured values can be fitted with a
relative error of 10~* by

n(A,T)=no(M)+a(M)T . (2.1)

The values of ny and a for different wavelengths of the
light are listed in Table I. The principal refractive indices
of the crystal are'” (A=488 nm) npoo1]=1.552, nyoy0;
=1.663, n[g11=1.827 (see Fig. 2 for the nomenclature of
the axes).

III. EXPERIMENTAL SETUP

The ampoule containing the crystal under investigation
is lowered into the cooling bath of the zone-refining ap-
paratus at a constant velocity v, (Fig. 1). A steady state
develops in which the growth velocity of the crystal is
equal to vy, the position of the solid-liquid interface being
at rest in the laboratory system.

The interface is illuminated from the crystal side by a
laser beam. We use an argon laser (Spectra Physics Model
165) at 488 nm and a krypton laser (Spectra Physics
Model 171) at 647.1 nm simultaneously (Fig. 3). The two
beams merge in a beam splitting cube. They then pass
through the same spatial filter (L 1,4 1) and expansion
lens (L 2, achromat f=30 mm). By these means the two
beams are made perfectly collinear. Radiation of either
wavelength is selected by opening a shutter in front of the
appropriate laser. The light focused by the lens L3
(f=500 nm) passes through the crystal onto the chosen
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FIG. 3. Experimental setup.
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area of the interface plane. The polarization and the an-
gle of incidence ¥ are chosen such that the beam is totally
reflected at the interface. Owing to the total reflection of
the laser beam an evanescent wave results on the liquid
side of the interface. This evanescent wave acts as pri-
mary beam. We did not use the inverse light pass where
the laser beam enters from the liquid side since the strong
Rayleigh scattering from the liquid would make the ob-
servation of the interface difficult.

The scattered light is observed from the liquid side
under an inclination @ of about 5° with respect to the
facet plane. 0 is the angle between the projection on the
interface plane of the incident laser beam and the direc-
tion of observation. The detection system (Fig. 4) for the
scattered light is almost the same as the one described by
Haller.!? It can be rotated around the axis of the growth
tube. The interface is imaged by the lenses L1 (f=100
mm) and L2 (f=40 mm) on the circular aperture A2
(¢=0.25 mm) which determines the scattering volume.
The aperture A1 limits the range of accepted scattering
angles and thus determines the size of the coherence
speckles. The effective scattering volume can be inspected
by eye using the removable mirror M2 and the corre-
sponding eyepiece. A much larger surface area can be
looked at using the mirror M1. The lens L3 (f=30 mm)
focuses the light onto the sensitive area (approximately 5
mm?) on the photocathode of the magnetically defocused
photomultiplier tube (EMI 9813KB). The discriminator-
preamplifier is described in Ref. 13. The photon counts
are autocorrelated by a 128 channel multibit correlator
(Malvern 7025) interfaced to a minicomputer (Mincll,
Digital Equipment Corporation).

IV. EXPERIMENTAL RESULTS

We investigated the solid-liquid interface of crystals
growing at velocities v; between 0.2 and 0.8 um/s along
the [001] and [010] axes. Two different types of scatter-
ing have been observed at the interface. One shows a dis-
tinct anisotropy of the scattered intensity and an oscillat-
ing intensity autocorrelation function, the other is charac-
terized by an isotropic scattered intensity and an exponen-
tially decaying autocorrelation function. In the following
the two types are named “Doppler scattering” and “dif-
fusive scattering.”

A. Doppler scattering

On the (001) and (010) facet of a growing salol crystal
regions of about 0.5 mm? are found, where light is scat-
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FIG. 4. Optics in front of the photomultiplier (dimensions in
mm) L, lenses; M, mirrors; A, apertures.

tered by a surface structure. Since the normal com-
ponents of the deviations from the ideally flat surface are
negligible on the scale of the laser wavelength, the scatter-
ing may be treated as arising from a two-dimensional
structure. As a consequence the projection of the scatter-
ing vector on the facet plane, q|, is the relevant param-
eter in the scattering experiment. By virtue of the gen-
eralized Patterson theorem the intensity measured at q| is
proportional to the Fourier transform of the spatial auto-
correlation function of the scattering density. Our experi-
ments show that the structure giving rise to the light
scattering at the interface acts similarly to a moving im-
perfect line grating.

1. Scattered intensity

We have observed diffraction peaks up to fourth order
at low growth rates vy =0.2 um/s, whereas at v, =0.8
pm/s only the first-order peak was found. The width of
the peaks, arising from the imperfect spatial periodicity of
the scattering system, corresponds to an angular variation
of q| of about 5°. With increasing growth velocity the
diffraction peaks become less intense and their width in-
creases slightly. Width and intensity of the diffraction
peaks are not sufficiently reproducible to justify an
analysis of the line shapes. A typical result for a crystal
growing parallel to the [001] axis is shown in Fig. 5 where
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FIG. 5. Proof of Bragg reflection. Peak intensities vs g,.
Wavelength of the incident light: 488 nm (solid lines) and 647.1
nm (dashed lines). The horizontal bars mark the approximate
width of the peaks.
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FIG. 6. Probability for the observation of nonzero scattering
intensity for different orientations of q;. (a) Growth parallel to
the [010] axis. (b) Growth parallel to the [001] axis.

the peak intensity is plotted versus g, (=|d)|) for dif-
ferent growth velocities. We also find a substantial scat-
tered intensity for q’s of arbitrary length provided the
orientation is the same as for the diffraction peaks. This
intensity, which is evidently due to deviations from the
periodicity of the “line grating,” increases with growth
velocity. At v, =0.2 um/s it is hardly detectable whereas
it can be of the order of the peak intensity at v, =0.8
um/s.

The angular distribution of the s for which scatter-
ing has been observed has a maximum along the [110] and
[001] directions for growth parallel to the [001] and [010]
axis, respectively (Fig. 6).

2. Autocorrelation function

The intensity autocorrelation function contains two
contributions. One is oscillatory, the frequency of the os-
cillations being of the order of 100 Hz; the other, larger in
amplitude, shows a bell-shape-like dependence on the
correlation time 7. The amplitude of the nonoscillatory
component is proportional to 1—a7? for 7<0.3 s and it is
half its initial value for correlation times around typically
0.5 s (Fig. 7). We have not found a significant deviation
from the behavior sketched above either upon changing
growth velocity, growth direction, and scattering angle, or
upon changing the wavelength of the incident laser beam.
The oscillatory part in the autocorrelation function is due
to the beat of a Doppler-shifted component of the scat-
tered light with the unshifted component. This was veri-
fied by measuring the dependence of the oscillation fre-
quency on the length of q); which was changed by vary-
ing the scattering angle and the wavelength of the laser
light. The frequency shift turned out to be proportional
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FIG. 7. Typical intensity autocorrelation function g®(r) in
the case of Doppler scattering. (a) The nonoscillatory contribu-
tion. (b) Inset of (a) on an expanded scale showing the oscilla-
tions due to the Doppler-shifted component of the scattered
light.

to q) (Fig. 8). We thus conclude that the surface struc-
ture propagates parallel to G| at a velocity v, that is given
by the ratio of the Doppler shift Q to the length of the
scattering vector g (v; <<¢)

c
2w;ngcos¥sin(6/2)

vs=ﬂ/q“=9 4.1)
w; is the frequency of the illuminating laser beam and ng
(=~1.6) is the refractive index of the crystal (for the
geometry see Fig. 3). The experimentally determined ve-
locities v, are about 100 times larger than the growth
velocity v of the crystal.

3. Summary and results

On the [010] and [001] facet of a growing salol crystal
we found areas where light is scattered by a propagating
line-grating-like surface structure. The observed diffrac-
tion peaks, which are more pronounced at low growth ve-
locities than at high ones, permit the determination of the
period d of the grating. Simultaneously we obtain the
propagation velocity v, of the structure from measure-
ments of the Doppler shift.

Experimentally we found relations between v, d, and
vi (the growth velocity of the crystal). For growth along
the (001) axis the dependence of d on v, can be fitted by
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FIG. 8. Proof of Doppler shift. (a) Doppler shift Q vs g|;.
The magnitude of ¢ was varied with the scattering angle 6
(wavelength of the incident light, 488 nm, growth parallel to the
[001] axis at 0.5 um/s). (b) Doppler shift Q¢47.; measured at a
wavelength of the incident laser beam of 647.1 nm vs the
Doppler shift 453 measured at a wavelength of 488 nm. The
slope of the solid line is equal to the wavelength ratio (488
nm)/(647.1 nm) [crystal and growth velocity are the same as in
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FIG. 9. Period d vs propagation velocity v, of the line-
grating-like structure for growth of the crystal parallel to the
[001] axis. The solid line represents the fit d =C/v, with
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FIG. 10. Growth velocity v; vs propagation velocity v, for
growth parallel to the (001) axis. Solid line: vg=av? (a=3
cm~!s).

d=C/v, 4.2)

with C=(1.8+0.5)x 1077 cm?s~! (Fig. 9). The depen-
dence of v on v can be fitted by

v =Rov}? (4.3)

with R =3+0.5 cm~'s (Fig. 10). Typical values for d
and v; are 0.4 um and 40 um/s, respectively, at a growth
rate of 0.5 um/s.

Experiments on crystals growing along the (010) axis
are more difficult because of the less favorable optical
conditions. The available experimental data do not permit
us to establish relations analogous to (4.2) and (4.3).
Nevertheless, we can say that for a given growth velocity
the period d is about the same as for growth along the
(001) axis, whereas the propagation velocity v, is about
double.

B. Diffusive scattering

In the range of the investigated growth velocities
v <0.8 um/s diffusive scattering has only been observed
on the (010) facet of the salol crystals. After the initiation
of growth Doppler scattering is seen at first. If a critical
growth velocity, which varies in different experiments be-
tween 0.2 and 0.8 um/s, is exceeded intense light scatter-
ing is observed in an area of a few mm? near the center of
the facet. The scattered intensity shows a hysteretic
behavior as a function of growth velocity. This diffusive
scattering persists even if the growth velocity is reduced
below the critical velocity for the onset of scattering and
it does not disappear unless the facet begins to melt. With
the onset of scattering the intensity increases with time
(the growth velocity is kept constant) until a steady state
is reached after about 30 min. No correlation between the
scattered intensity and the growth velocity has been
found.

We measured the dependence of the scattered intensity
on the angle of incidence ¥ of the laser beam on the inter-
face (see Fig. 3). The intensity rises rapidly as ¥ ap-
proaches the critical angle of total reflection (Fig. 11).
This indicates that the scattering does not arise from fluc-
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FIG. 11. Scattered intensity vs angle of incidence ¥ (¥, is
the critical angle of total reflection; scattering angle 6=60°).
The solid line is a guide to the eye.

tuations in the crystalline phase. (If it would, the laser
beam reflected at the interface would act as the incident
wave and not the evanescent wave on the liquid side.
Thus the illumination of the scattering volume would be
almost independent of ¥ and no increase would be expect-
ed at the approach of the critical angle.) As a rule we also
found an increase of the scattered intensity with decreas-
ing length of the scattering vector.

The intensity autocorrelation function can be fitted by a
single exponential. The linewidth I is proportional to the
square of the scattering vector g (Fig. 12) which was
nearly parallel to the interface in all experiments (taking
the evanescent wave as the incident wave). The measured
values of the § independent quantity I'/ sin%(6/2) are
subjected to a large scatter. Data obtained from five dif-
ferent crystals yield an averaged I'/sin%(0/2) of 160+40
rad/s. No statistically significant dependence either on
the growth velocity or on the orientation of q in the facet
plane has been found.

V. DISCUSSION OF THE DIFFUSIVE SCATTERING

In the paper by Boni et al.? it has been shown that an
interface layer of thickness of the order of a few microme-
ters builds up at the solid-liquid interface of a growing ice
crystal. In this layer Rayleigh scattering is more than 2
orders of magnitude more intense than in bulk water at
0°C. The diffusion constant D; describing the decay of
density fluctuations in the layer is 10° times smaller than
the thermal diffusivity in water, and the fluctuations giv-
ing rise to scattering are isotropic. It has been suggested
that D; might describe Frenkel’s “structure diffusion.”

A. Interface layer

In Ref. 8 the existence of an interface layer is inferred
from two observations.

(1) The diffusion constant D; is independent of the
orientation of the scattering vector. Therefore, it can be
concluded that the thickness of the layer is at least
2m/qm, Where g, is the shortest scattering vector realiz-
able in the experiment.

(2) The measured intensity of the scattered light can be
interpreted assuming that the scattering originates in a
three-dimensional interface layer which acts like a leaky
wave guide for the incident laser beam.

Unfortunately the salol data are not sufficiently complete
to permit an interpretation along the same lines.
Nevertheless, the measurement of the scattered intensity
as a function of the angle of incidence ¥ of the illuminat-
ing laser beam (see Sec. IVB and Fig. 11) suggests that
the scattering at the solid-liquid interface of salol also
arises from fluctuations in a layer of finite thickness.

For the sake of argument we consider first a model in
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FIG. 12. Linewidth I" (circles) and g-independent quantity I"/sin%(8/2) (triangles) vs the square of the scattering vector. (n is the

refractive index of the crystal.)
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which the light is scattered off a sharp corrugated inter-
face that fluctuates about a mean plane with amplitudes
small compared to the wavelength of light (corrugated in-
terface model of Giittinger et al.”). This model yields a
q? dependence of the linewidth and also predicts the right
order of magnitude of the diffusion constant D; (Ref. 7)
as long as the scattering vector is parallel to the interface.
As shown in Ref. 8 the intensity scattered by a corrugated
interface is roughly proportional to the square of the elec-
tric field of the evanescent wave at the interface.

In a second model (interface layer model) we assume a
statistically homogeneous interface layer in which the
evanescent wave propagates. The thickness of the layer
shall be larger than the wavelength of the incident light.
One expects that the scattered intensity due to density
fluctuations in the layer is proportional to the integral
over the scattering volume of the Poynting vector associ-
ated with the evanescent wave.

In order to calculate the electric field Ee of the evanes-
cent wave we make for either model three assumptions.

(1) The boundary between the crystal and the noncrys-
talline phase (melt or interface layer) is sharp.

(2) The refractive index of the noncrystalline phase at
the interface is equal to the refractive index of liquid salol
at the melting temperature.

(3) The interface is flat on the scale of the laser wave-
length.

With these assumptions Ee can be determined using the
Fresnel equations. Taking into account that in the experi-
ment the polarization of the reflected laser beam is paral-
lel to the plane of incidence we obtain

E.(x,y,2,t) =¢,Eqexplik,x —iwt —k,z) , (5.1)
2n sin¥ E, . (5.2)

0= "3
n2sin¥ + (n2— cos?W¥)1/2

The z axis has been chosen perpendicular to the interface
plane with the corresponding unit vector €, pointing into
the liquid, and the x axis points along the propagation
direction of the evanescent wave. E; is the electric field
strength of the incident wave, n is the ratio of the refrac-
tion index of the melt to the refractive index of the crys-
tal, and W is the angle of incidence as defined in Fig. 3.
With k, we denote the projection of the incident wave
vector k; on the interface plane

ky=k;sin¥ , (5.3)
where k; is given by
2
k= T”ns ) (5.4)

A is the vacuum wavelength of the incident light and n, is
the refractive index of the crystal. The imaginary part k,
of the wave vector of the evanescent wave is equal to

k,=k;(cos?¥ —n?)1/2 (5.5

For the corrugated interface model we now obtain for
the scattered intensity (in the case cosW¥ > n)

I, fﬂdx dyE,(z=0)E*(z =0)

4n%sin®V¥
= dxdy |E;|?
("4—1)sin2‘ll—(n2—1) fﬂ ,VI i I
2ei2
i 4n “sin“V , 56

(n*—1)sin®¥ —(n2—1)

Q is the interface area which is imaged onto the photo-
cathode of the detector. Since in the experiment the aper-
ture A, in the image plane of the optical system in front
of the detector (Fig. 4) was chosen sufficiently large to ac-
cept the whole illuminated interface area the integral in
Eq. (5.6) is independent of ¥ and we can replace it by a
constant K.

For the scattered intensity for the interface layer model
one can write

Lo [ dxdy [dz]S(2)] . (5.7)
Maxwell’s equations yield for the Poynting vector S(z)

1 ki

§(z)=€x§7;;-cosWEoE3exp(—2kzz) (z>0). (5.8)

Dropping all factors in (5.8) that are independent of W
and z we finally have
4n%sin®*¥
I, cos¥V
7 (n*—1)sin®W —(n2—1)

X [ dz exp(—2k,2) fndxdy |E;|2. (5.9)

The integration over z extends over the thickness 8 of the
interface layer. As long as 1/k, is smaller than 8 we can
extend the integration to infinity without introducing
large errors. Writing again K for the integral over Q we
obtain

4n2sin*V cosW
I, <K . (5.10)
T (nt=1)sin®W—(n?—1) 2k,

In order to decide which model applies we plot the
measured intensity for the angle ¥ versus the calculated
intensity for the same angle W. The points in the plot
based on the “correct” model should lie on a straight line
through the origin. The result is shown in Fig. 13. Clear-
ly the layer model is to be preferred. Even for the largest
angle of incidence W¥,,,,=14.1° (see Fig. 11) for which the
intensity was measured relation (5.10) can be applied.
Therefore, one can conclude that the condition 1/k, <5
holds for all angles ¥ <14.1°. Thus we obtain a lower
limit for the layer thickness

1 1
8> = .
ki(cos®W,, —n?)1/2

- kz(wmax)

With the wavelength of the incident light A =488 nm, the
refractive index of the salol crystal n;~1.6 and
n?=cos?W,;, where W, —14.3° is the critical angle for
total reflection, we obtain a lower limit for § of 1 um,
This value is of the same order of magnitude as the lower
limit of the interface layer thickness measured in the ice-
water experiment.®

(5.11)
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FIG. 13. Measured intensity for different angles W vs calculated intensity for the same angles. (a) Interface layer model (the
straight line serves as a guide to the eye). (b) Corrugated interface model.

B. The linewidth of the scattered light

We assume that the light is scattered in a layer of a
thickness of a few um. Models of this layer must be com-
patible with the observation that the spectrum of the scat-
tered light is a single Lorenzian with a linewidth " pro-
portional to the square of the scattering vector. We con-
sider first a model where we assume that salol crystallites
are suspended in the melt close to the interface. In a
second model we assume that the layer may be interpreted
as a liquidlike continuum in which the light is scattered
by density fluctuations.

1. Suspended crystallites

The linewidth T of light scattered from noninteracting
particles undergoing Brownian motion in a liquid is given
by (see, e.g., Ref. 14)

'=Dg?, (5.12)

where D is the diffusion constant of the particles in the
liquid. D can be related to the so-called hydrodynamic
radius r;, of the particles by virtue of the Stokes-Einstein
equation (7 is the viscosity of the liquid)
kgT
~ 6myr,

(5.13)

Since the measured intensity autocorrelation function can
be fitted by a single exponential the particles are mono-
disperse. Thus we rule out that the light scattering arises
from contaminations accumulated in front of the interface
during zone refining.

With Eq. (5.12) and

g =2k,sin(6/2) (5.14)
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we obtain from the measured values of I'/sin%(0/2) (see
Sec. IVB) a diffusion constant D of (1.0+0.25)x10~°
cm?s~! corresponding to a hydrodynamic radius 7, of
275 nm. This value of r, happens to be equal to the criti-
cal radius r, of a spherical salol crystallite that is in
equilibrium with the melt at an undercooling AT of ~0.4
K. The undercooling of the liquid salol at the interface is
of the same order of magnitude in our experiments and
one is tempted to assume that small crystal nuclei of ra-
dius r, are spontaneously created in the interface layer.
However, the formation probability of such a nucleus is
vanishingly small since the required energy is, according
to classical nucleation theory, 6 orders of magnitude
larger than the energy of thermal fluctuations. Further-
more, it is difficult to see why nuclei of the critical size
should persist in this layer. Therefore, we reject the
model of diffusing nuclei.

2. Continuum model

We assume that at the solid-liquid interface of a grow-
ing salol crystal a liquidlike interface layer builds up
where the density fluctuations have a correlation length £
which is very large compared to the mean distance be-
tween the molecules. Hence Rayleigh scattering is by or-
ders of magnitude more intense in this layer than in the
bulk liquid as is borne out by the experiment. In the hy-
drodynamic limit, ¢§ << 1 (q is the scattering vector) the
linewidth of the scattered light is given by

'=D;q*. (5.15)
D;, which for simple fluids is equal to the thermal dif-
fusivity, is now a diffusion constant describing the decay
of entropy fluctuations.!> Our measured value, D; ~10~°
cm?s~!, is 6 orders of magnitude smaller than the
thermal diffusivity of liquid salol. According to ideas of
Bilgram'® the formation of “bonds” between molecules in
the layer could account for the slowing down of the decay
of the fluctuations.

Tentatively we assume that the interface layer consists
of a hypothetical “bonded” phase and that this phase can
continuously transform into the liquid phase. We further
assume that the energy required to break a “bond” is so
small that fluctuations of the thermal energy give rise to
large fluctuations in the degree of “bonding” to which one
can assign an order parameter. Assuming an Ornstein-
Zernike form for the correlation function of the order pa-
rameter fluctuations Kawasaki has shown!’ that in the
hydrodynamic limit the correlation length £ and the dif-
fusion constant D; describing the decay of the fluctua-
tions are related according to the Stokes-Einstein equation

kgT
T emtE ]
where 1* is an effective viscosity which is about 1.3 times
the macroscopic shear viscosity 7.!® Inserting our mea-
sured D; and the effective viscosity of liquid salol 7} we
obtain a correlation length £ of ~200 nm. Hence we have
gé>1 in our experiments, and therefore the equations

valid in the hydrodynamic limit become meaningless.
Theory of critical fluctuations!” predicts that in the limit

(5.16)

i

g€ >>1 the linewidth is proportional to ¢°, the departures
from the g2 dependence becoming already noticeable at
gé~1. Since experimentally the g> dependence of the
linewidth is well established critical fluctuation theory
cannot be used to interpret the measured linewidth, unless
one assumes an effective viscosity %* in the layer which is
at least an order of magnitude larger than 7}.

VI. DISCUSSION OF THE DOPPLER SCATTERING

We interpret the line-grating-like structure, giving rise
to the observed Doppler shifted light scattering (see Sec.
IV A) in terms of roughly equidistant growth steps mov-
ing across the facet. We assume that the source of these
steps are screw dislocations intersecting the interface. The
step originating at the screw dislocation spirals around the
screw axis during crystal growth. Far from the center of
the spiral the radial step velocity and the step spacing are
constant so that an equidistant propagating step pattern is
established. According to this picture we have measured
in situ the propagation velocity v, and the spacing d of
these growth steps. During a time d /v, the crystal facet
advances by a step height h. Using the macroscopic
growth velocity vy one therefore has

h=—%q .

Us

(6.1)

Our simultaneous measurements of vy, v;, and d yield for
the height of the growth steps on the (001) facet # =6+2
nm. This value is about 2.5 lattice constants and indepen-
dent of the growth velocity.

Growth spirals on facets of crystals growing from the
vapor phase, from the solution, or from the melt have
been observed by many authors. In the earliest experi-
ments the crystal facets were investigated by means of
standard microscopy. For example, growth spirals on
solution-grown salol crystals were found by Amelinckx.!®
Facets of vapor-grown crystals are usually investigated
under the electron microscope. Bethge,”® using a gold
decoration technique, studied the dynamics of growth
spirals on NaCl crystals. He found that the step velocity
increases with the step spacing as long as the velocity is
below a certain limit. Recently optical phase contrast mi-
croscopy was applied by Tsukamoto?®! to study in situ the
growth patterns of CdI, crystals grown from solution.
The phase contrast technique allows a direct measurement
of the step height. Tsukamoto showed that growth spirals
with a step height of molecular dimensions comprising
more than 10 turns can evolve from isolated screw dislo-
cations.

As early as 1949 Frank?? pointed out that the observed
high growth rates at low supersaturations cannot be ex-
plained by standard nucleation theory (e.g., Ref. 4) and
proposed that screw dislocations intersecting the interface
would provide a permanent source of growth steps. As a
consequence the growth rate is determined by the velocity
at which steps advance on the facet and not by the nu-
cleation rate of new steps. Burton, Cabrera, and Frank®
treated the microscopic structure as well as the advance
rate of growth steps. They assumed that the molecules ar-
rive at the step by surface diffusion only. In a recent
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more general theory?® Van der Eerden solved the coupled
surface and volume diffusion problem in order to calcu-
late the advance rate of the steps.

For the discussion of our measurements of the dynam-
ics of growth steps on the [001] facet of salol crystals we
follow ideas developed in Ref. 5. Our calculation of the
step spacing and the step velocity is based on the follow-
ing assumptions.

(1) The origin of the steps are screw dislocations. The
component of the Burgers vector perpendicular to the
facet is of the same length as the measured step height.

(2) The solid-liquid surface tension o depends upon the
indices of the crystal face. It has a minimum for (11/)
faces. Therefore, the steps are perpendicular to these
directions [as suggested by Fig. 6(b)] and the growth spiral
has a parallelogramlike shape (Fig. 14).

(3) The diffusion of the latent heat generated at the
steps is so fast that it does not limit the growth velocity.
Taking typical values for the step spacing (500 nm), the
step velocity (40 um/s), and the thermal diffusivity (1073
cm?/s) it can be shown that by the time a heat pulse has
spread over a distance of one step spacing the steps them-
selves have advanced by less than 1 A. Therefore, we can
assume that the temperature field in the rest frame of a
step is static.

(4) Since we are interested in crystal growth from the
melt and not from the vapor phase, we assume that the
molecules enter the step directly from the melt and
neglect the contribution due to surface diffusion.

(5) We assume that the molecules attach at each lattice
site of the step with equal probability thus producing a
rough step. According to Wilson® and Frenkel® the prop-
agation velocity of the steps is then determined by the
difference of the rate of molecules arriving at the step due
to self-diffusion in the melt and the rate of molecules
leaving the step due to thermal activation. Hillig and
Turnbull®* used a similar approach and arrived at a
square law dependence of the macroscopic growth veloci-
ty v of the crystal on the undercooling AT of the melt
for growth by the screw dislocation mechanism.

(6) For further simplification we use the Kossel model
to describe the salol crystal. The molecules are considered
to be cubes. Accordingly we assume that the (100) and
(010) axes of the unit cell are of equal length.

First, we write down the net rate g, at which the mole-
cules are incorporated into the crystal lattice at a straight

100 /110
/

//vs

d

’
010

AN

FIG. 14. Schematic representation of a growth spiral on the
(001) facet.

step of infinite length (the system is assumed to be in local
equilibrium, see, e.g., Ref. 25)

L

1—Bexp |— ﬁ . (6.2)
B

do="7

®_ is the activation energy to bring a molecule from the
crystalline state into the liquid state. (Following Wilson
and Frenkel @ is equal to the latent heat of fusion per
molecule.) T is the temperature of the melt at the step, D
is the self-diffusion constant in the melt, and a is the cor-
responding jump length which we identify with a mean
molecular distance by setting

1/3
m

— (6.3)
pIN

a=

With m, p;, and N we denote the molecular weight, the
density of the liquid, and the Avogadro number, respec-
tively. S is the ratio of the jump frequency of the mole-
cules in the solid to the jump frequency in the liquid. Its
value is determined by the equilibrium condition g, =0
at the melting temperature T,

B=exp(® /kpTy,) . (6.4)

Next one considers steps of a length / which form the
boundary of a square nucleus of height 4. In this case the
crystallization rate g; is smaller than g, for a given un-
dercooling AT =T,, — T since, at the same time a step ad-
vances by a distance Ax, the edge surface of the nucleus is
increased by the amount 2 Ax . Therefore, the activation
energy is reduced by the additional surface energy divided
by the number of added molecules, and one has to replace
@ in Eq. (6.2) by the expression

3
0514
—l .

a,, the mean distance between the molecules in the crys-
tal, can be calculated according to Eq. (6.3) by exchanging
the density of the liquid, p;, by the density of the solid.
Since the density difference is small we put a; equal to a.
Finally one obtains for the crystallization rate g;

o _AT Losit
kgTT, | 1

;=0 -2 (6.5)

D

Q=" ll—exp ] . (6.6
a

I.s: 18 given by

Og
S;AT

leip=2 6.7)

In (6.7) we equated the entropy of fusion S, with
®_ /(T,a3). From Eq. (6.6) it can be seen that the steps
cannot propagate unless their length exceeds [ ;.

Equation (6.6) and the requirement that the steps are
perpendicular to the directions of the minimum surface
tension together determine the dynamics of the growth
spiral. We do not attempt to solve the problem rigorously
and restrict ourselves to calculate the step velocity v, far
away from the screw dislocation and to estimate the dis-
tance between two successive steps.
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We first consider a facet at zero undercooling of the
melt intersected by a single screw dislocation intersecting.
The free energy is minimized by a configuration where a
single straight step originates at the intersection point.
Upon lowering the temperature this step advances at a
velocity v, equal to the product of the rate g, and the
mean distance by which a surface element a? of the step
advances upon attachment of one molecular cube. Up to
first order in AT one obtains

D AT

_2 . 6.8
T kpTT,, (68)

During the time the first step advances a second straight
step is created linking the first one with the step source
(Fig. 15). After a time /5, /v, the second step has reached
the critical length and starts itself to advance at a velocity
v; which now depends on the length of the step

l crit

] (6.9)

1—

V=V

As a consequence a third step is created. This procedure
perpetuates ad infinitum thereby creating the characteris-
tic growth spiral.

For an approximate calculation of the distance between
two parallel successive steps of the spiral we use instead of
(6.9)

0 forl<l
vV =

vy forl>Iy - (6.10)
The step spacing is then four times the critical length. A
more accurate calculation (see Appendix A) yields for the
step spacing far from the center of the spiral

(a) AT =0
(b) aT >0

ledtl

‘Vs

Q

tvs

FIG. 15. (a) Screw dislocation (dashed line) intersecting the
facet. At zero undercooling AT of the melt it gives rise to an in-
finitely extended straight step. (b) Schematic representation of
the evolution of a growth spiral.

d ~8.6]_;, ~8.6X 105 cm K"—AI—T .
In our experiments the undercooling of the melt at the in-
terface is of the order of 0.5 K. Thus the agreement be-
tween the calculated and the measured step spacing is sa-
tisfactory.

So far we have neglected the influence of the stress field
in the vicinity of the screw dislocation. It can be shown?®
that the effect of this field can be taken into account by
substituting the bracket in the exponential of equation
(6.6) by

(6.11)

lcrit . /‘g 2lcrit
l 8mlogr?

u is the shear modulus, b the Burgers vector, and 7 the
distance from the dislocation. We can define a radius of
influence rp of the stress field by

172

1— (6.12)

'u,g 2lcrit

5 ~3.7x10"%cm .
870y

rp= (6.13)

Inserting for | b| the measured step height we find that
rp is an order of magnitude smaller than the measured
step spacing. Hence for our purposes we may neglect the
corrections due to the stress close to the screw dislocation.

From Eqgs. (6.7), (6.8), and (6.11) it follows that the
product C =v,d does not depend upon the undercooling
AT. Thus one expects that it does not depend upon the
growth rate vy either. This is in agreement with experi-
ment. The above calculations yield

asla2

kT

Since the constant of self-diffusion D of liquid salol is not
known reliably we calculate it by means of the Stokes-
Einstein equation. Inserting a molecular radius a/2 and
the macroscopic shear viscosity 7 we obtain

C =8.6v,1,;, =17.2D (6.14)

oga _5 2. —1
C=17.2—-=2.92X10"> cm?s™" . (6.15)

3mm
This value is 2 orders of magnitude larger than the one
obtained from the experiment (Fig. 9). In order to explain
this discrepancy one has to scrutinize the crucial points
(4) and (5) of the assumptions underlying the calculation
of the growth rate v;.

(1) The assumption that the step surface is rough may
be wrong. However, even if the steps were facets, the
growth rate would not be reduced by a factor of 160. The
steps of the observed height contain about 8—10 molecu-
lar layers. Therefore, there is always an edge nearby that
can act as a nucleation site, and one would expect the
growth rate to be lower by a factor of 8—10 at most.

(2) The dynamics of the transport of the molecules to-
wards the steps are assumed to be determined by the con-
stant of self-diffusion in the liquid. However, they could
be much slower. One might consider a model in which
the advancing steps are surrounded by an interface layer
similar to the one discussed in Sec. V. If we naively insert
for D the measured D; we calculate a constant C of
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3.6X10~% cm?s~!, which is only five times smaller than
the experimental value. However, if the transport kinetics
at the solid-liquid interface are much slower than in the
bulk liquid one would also have to consider the current of
molecules entering the step by surface diffusion. The fact
that this contribution was neglected might account for the
underestimation of the constant C.

VII. CONCLUSIONS

At the solid-liquid interface of a growing salol crystal
two dynamical processes are observed which can be dis-
tinguished by the scattered light.

(1) For the first process the light scattering can be inter-
preted as arising from density fluctuations in an interface
layer of a thickness of the order of 1 um. This process is
similar to the one observed at the ice-water interface.”®
The measured Rayleigh linewidths yield a diffusion con-
stant for the decay of fluctuations in the layer, D;, of
~10~° cm®s~!. This value is 6 orders of magnitude
smaller than the thermal diffusivity of liquid salol, which
determines the decay of entropy fluctuations in the bulk
melt. One is tempted to explain the observed slow kinet-
ics in this interface layer in terms of a critical
phenomenon. However, theoretical predictions and exper-
imental results disagree unless one assumes that the effec-
tive viscosity 7* in the Stokes-Einstein equation, relating
D; and the correlation length & of the fluctuations, is at
least 10 times larger than the shear viscosity of liquid
salol.

(2) In the second process which has not been observed
at the ice-water interface light is scattered by a line-
grating-like surface structure. We interpret this structure
in terms of almost equidistant growth steps advancing on
the crystal facet. In the experiments we measure in situ
simultaneously the step velocity v, and the step spacing d
at fixed values of the growth velocity v, of the crystal.
We find that the product v,d =C has a value of
(1.840.4)x 10~7 cm?s~! which is independent of v;. For
the step height A =v,d /v; we obtain values of the order
of 2.5 lattice constants. If we assume that the steps
originate from growth spirals, which emanate from the in-
tersection points of screw dislocations with the crystal
facet, the measured step spacing is in agreement with cal-
culations based on ideas of Burton, Cabrera, and Frank.’
These calculations predict that C is independent of the
undercooling of the melt and thus one expects that C does
not depend on growth rate v, either. However, the mea-
sured value of the constant C is 2 orders of magnitude
smaller than the value calculated under the assumption
that the molecules reach the steps by self-diffusion in the
melt. This discrepancy is a hint that the advancing steps
border at an interface layer in which the transport of the
molecules towards the steps is much slower than in the
melt. Whether this layer is identical with the one dis-
cussed under (1) is an open question.
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APPENDIX A: ESTIMATE OF THE STEP SPACING
FAR FROM THE CENTER OF THE SPIRAL

We consider a rectangular growth spiral (Fig. 16). First
we calculate the time lag Ar between the onset of the
propagation of the nth step and the (n + 4)th step (i.e.,
the next step propagating in the same direction as the
nth). At a time ¢, the nth step shall have reached the
critical length /. It then begins to propagate at a velo-
city v, thereby creating the (n + 1)th step. According to
Eq. (6.9) v,(2) is

1 l crit

oalt)=0s |1 1,(t)

(t>t,). (A1)

The length of the nth step, /,(1), is given by
t
1,(t)= fl Up_(2)dt" (<t <tyiq) . (A2)
At the time ¢, , |, defined by I, , (¢, 1) =1l or

t
lee= [, va(t")dr’ (A3)
the (n + 1)th step starts to advance. For an approximate
calculation of ¢,,; we replace in (A2) the propagation
velocity of the (n —1)th step v, _; by its maximum value
vs. Hence [,(¢) can be written down explicitly:

()=l +vs(t —t,) (8, <t <ty 1) . (A4)
Inserting (A4) into (A1) we obtain
lcritzvs(tn-f—l_tn)
vg(t, L1 —1y)
—lcmlﬂ 1+M (AS)
lcrit
(a) O<vVp <Vg
l P
Y ___ s S
In+t _S_I_c_ritl
Vn+|-o’ In-y VYn-1=Vs
Y
(b) nf ™ !
| ‘o In+a ! "
T » :
Vn+1 |dn+1 dn-1 _V—n_|

FIG. 16. (a) Center of the model growth spiral. (b) Steps far
from the center.
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TABLE II. Some physical constants of solid and liquid salol.
Solid
density ps=1.321 gem ™ (25°C) Ref. 27
thermal conductivity ky=2.51%x10* ergecm~!K~1s~! Ref. 28
specific heat cps=1.15x10" ergg~'K~! Ref. 28
thermal diffusivity s =k /(cpsps)=1.65X1072 cm?s~!
sound velocity [measured by Brillouin spectroscopy (Ref. 29), 40°C]
longitudinal wave c~3.2%10° cms™!
transverse wave Cs~6.810* cms™!
compression modulus E =cfp;~1.3x10" ergem™3
shear modulus p=cip;~6.0x10° ergcm—3
melting temperature T,=41.8°C Ref. 30
T, —41.6°C Ref. 31
heat of fusion L =9.08%10° ergg™! Ref. 31
solid-liquid surface tension og=€L (Mp?/N)"*~20 ergcm™? Ref. 32
€~0.3
M, molar weight =214.22 gmol ™!
N, Avogadro number
Liquid
density p1=1.181 gem™? (42.5°C) Ref. 33
thermal conductivity k;=1.80%10* ergcm—'K~!s™! Ref. 28
specific heat c=1.58%x10" ergg~'K~' (40°C) Ref. 28
thermal diffusivity a;=9.65%10"* cm?s~!
shear viscosity 7,=8.4X10"% gem™!s~! Ref. 28
kgT
constant of self-diffusion D=—2" 82%10"7 cm?s~"*
6mnsa /2
173
a=|—-| =6.7x10"% cm
2In Ref. 34 one finds D;=7.5X10~% cm?s~! but it is not specified how this value is obtained.
Solving Eq. (A5) numerically for (¢, ;—1,) we find L, (t)~2v,(t —tg) —lo¢ln L , (A11)

1.
by 1 —tg=2.15— (A6)

s

For the time lag At =t, . 4—t,, one then obtains

I I
AtdX2.15-25 —8 624 (A7)

Us Us

Next we calculate the length [,(z) of the nth step now as-
sumed to be far from the center of the spiral

L(t)= f [Vn —1(2) 40, 41(2)]dt’ (A8)

v, _1 and v, are the propagation velocities of the adja-
cent steps. According to Fig. 16 one can put

Uy _1(8) v, 41 (8)=20,(2) . (A9)

Inserting for v,(#) the expression (A1) one has

lcri
L(=~2v; [ [1_1 T3

dt' . (A10)

For steps far from the center of the spiral the integral
equation (A 10) can be solved approximately by replacing
I,(¢') in the integral by the asymptotic solution for
t'— w0, namely [,(¢')=const+2v¢’. One obtains

0

where t, is an integration constant. The spacing d, be-
tween the nth and the (n + 4)th step is approximately
given by (see Fig. 16)

dp (D)7 [dy_1(1)+dy 41(D)]

=+[L(6) =1, 14(D] . (A12)
Since in the steady state of the growth of the spiral
Iy 1 4(8)=1,(t —At) (A13)
one obtains
d, ()=, At — Jori 1 l ! ’ . (A14)
2 t—At

Inserting for At the expression (A7) and taking the limit
t— oo one finds

d~8.6] . (A15)

APPENDIX B: PROPERTIES OF SALOL

Some physical constants of solid and liquid salol are
given in Table II.
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