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A model is presented for the melting and freezing behavior of finite clusters. The model has the

property —and suggests that some real clusters may so behave —that the rigid, solidlike form is the

only thermodynamically stable form below a "freezing" temperature Tf, that the solidlike form may

coexist with a nonrigid, liquidlike form within a sharply-bounded range of temperatures between Tf
and a higher "melting" temperature T, and that above T, only the liquidlike form of cluster is

thermodynamically stable. The temperatures Tf and T are functions of N, the number of parti-

cles in the cluster; it is suggested that the traditional melting point is the common temperature to
which Tf(N) and T (N) converge as N —+oo.

I. INTRODUCTION

Computer simulations of small, free clusters make it
entirely plausible that these species can exist in solidlike
and in fluidlike forms. ' The weight of the computation-
al evidence suggests that these forms are sharply distin-
guishable, like the solid and fluid phases of bulk matter,
rather than merging continuously into each other. This
behavior was interpreted in quantum statistical-
mechanical terms by means of simplifying assumptions
regarding the spectral distributions for the rotation-
vibration states of the rigid, solidlike and nonrigid, fluid-
like forms. The spectral distributions were used to con-
struct approximate partition functions and free energies
for nearly rigid and very nonrigid clusters of fixed num-
bers N of particles. The nearly rigid cluster, with small-
amplitude vibrations and rigid body rotations can be iden-
tified with the solid; the nonrigid cluster, modeled by a
Gartenhaus-Schwartz Hamiltonian with pairwide har-
monic attractions between particles, can be identified with
the fluid cluster. Moreover, it was assumed that the solid
and fiuid forms are each stable at least locally, with
respect to a parameter y measuring their degree of nonri-
gidity. Each form of an N-particle cluster (N-cluster) has
its own effective Hamiltonian, partition function Z(T)
and free energy F(T); the latter two vary with tempera-
ture. The conclusions of the analysis were the following.
(a) There is a temperature T,q(N) for which

F„i;d(N, T)=Fg„;d(N, T), which can be identified as the
thermodynamic equilibrium temperature (called, in Ref. 3,
the melting temperature T ). (b) The two forms coexist
not only at this temperature but at other temperatures as
well, with the equilibrium ratio of their concentrations
given by a chemical equilibrium constant
K= exp( ~lkT), determined by the difference ~ in
the Helmholtz free energies of the two forms. (c) The
simple quantum-statistical model is capable of giving a
reasonably accurate quantitative replication of the results
of the classical molecular dynamics and Monte Carlo
simulations with regard to the dependence of T,q on X, to
the temperature range of observable coexistence and to the

appearance of effective surface free energy and surface
tension. In effect, the conclusion of the analysis is that
only quite modest assumptions about the physics of clus-
ters are required to rationalize the computer simulations
and justify the notion that clusters, even as small as
seven-atom clusters of argon, can exhibit a liquidlike-to-
solidlike phase change. This change must be dis-

tinguished from a traditional phase transition.
The crucial assumption of the quantum-statistical

model was the supposition of local stability of the two
forins. This point was made explicit, thus: ".. .one ques-
tion remains unanswered, namely, 'What are necessary
and sufficient conditions that, on a scale measuring the
degree of rigidity, the free energy of an N-body cluster
has two local minima, one near the rigid limit and one
near the nonrigid limit?'" We have now addressed this
question. In so doing, we have discovered a property of
finite clusters which seems remarkable to us, and which
suggests a fresh way to approach the general problem of
first-order phase transitions. The approach is based on a
picture much like the Landau model and also shares
some common features with the descriptions by Lipkin,
Meshkov, and Glick and especially by Gilmore and

Feng of phase transitions in nuclei. However, the Hamil-
tonians are quite different, the "order parameter" has
quite a different meaning, and the conclusions we reach
differ from those for the nuclear problem, without being
inconsistent with them. The following discussion presents
the argument that supports this statement: A finite N-
cluster in thermal equilibrium has a sharply bounded tem-

perature range, limited below by a "freezing temperature"

Tf and above by a "melting temperature" T, within
which the cluster may exhibit either liquidlike or solidlike
forms. For T & T~, only the liquidlike form may exist as
an equilibrium form, and for T & Tf, only the solidlike
form may exist in equilibrium. With T and Tf so de-

fined, these two temperatures are not the same for finite
N—at least for small, finite N. Naturally we do not
claim that clusters of all substances exhibit this property;
the discussion will make clear that at least one class of
substance, exemplified by He, would not. The obvious

30 919 1984 The American Physical Society



920 BERRY, JELLINEK, AND NATANSON 30

application of this finding to solid-liquid phase transitions
is expressed by the question (which we do not yet address
here) "How does the finite coexistence range b, T«
=T —T~ go to zero as X~oc~"

We present the argument in four steps. In Sec. II we
review the description of an N-cluster which allows its
properties to be treated as functions of the degree of non-
rigidity and present the equations governing the stability
of the solid and liquid forms. In Sec. III we show that for
typical substances only a solid form can exist in thermal
equilibrium at sufficiently low temperatures. In Sec. IV
we show that a liquid form may be present in equilibrium
with the solid form if the temperature is above a precisely
defined freezing temperature Tf. In Sec. V we show that
at sufficiently high temperatures no solid form may exist
in equilibrium with the stable liquid, which implies the
existence of an upper bound T~ for the coexistence range
of temperature. The last three steps are illustrated by
computations described in Sec. VI based on a cluster of
five argonlike atoms and estimates are given for Tf and,
much less precisely, for T~.

II. THE BASIC FORMULATION
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FIG. 1. Correlation diagram for a cluster of five atoms in-
tended to simulate Ars at least in the rigid trigonal-bipyramidal
limit. Normal-mode frequencies and rotational constant are
given in the text. For graphic purposes, the scale of the rota-
tional spacings has been expanded by a factor of 4.46.

p(y, E)= y gj&(E EJ(y ))— (2.1)

(or a smoothed version thereof), where gj is the degenera-
cy of the jth level and the cumulative density of states is

E
R(y,E)= f p(y, E')dE' . (2.2)

Both p(y, E) and R(y, E) can be constructed from the
correlation diagram; they play central roles in the
development of our argument.

The parameter y is defined in a manner analogous to
the quantity that characterizes the nonrigidity of a dia-
tomic molecule, the ratio of the rotational constant B, to

The formulation has its roots in the concept of an ener-

gy level correlation diagram, which links the states of a
nearly rigid cluster with those of a very nonrigid clus-
ter. " The nearly rigid model is most naturally taken as
a conventional moleculelike structure with small-
amplitude vibrations and nearly rigid rotations; this may
be simplified by taking all the normal-mode frequencies
the same, or made more realistic by using empirical
rotation-vibration levels extrapolated from the lowest ex-
citations. The nonrigid model has been taken, as men-
tioned, to have pairwise harmonic attractions among the
N identical particles, yielding a U(3N —3) Hamiltonian.
This model may be made more realistic by taking into ac-
count the splittings of the U(3N —3) representations aris-
ing from short-range core interactions. " These correla-
tion diagrams have been constructed (originally, to aid the
interpretation of high-resolution vibration-rotation spec-
tra) for N = 3, 4, 5, ' and for XY5-like 6-clusters. '

To illustrate, Fig. 1 shows a correlation diagram for the
energy levels of the kind of cluster used in Sec. VI to ex-
emplify our findings. This cluster is parametrized to be
like Ar5, at least in the solidlike limit or near y=0. Its
construction is described in Refs. 10 and 11. The density
of states is the distribution

the vibrational frequency co, . For an ¹luster we define

y =2E, /E„, (2.3)

and the Helmholtz free energy

F(y, T ) = —T lnZ(y, T ) . (2.5)

The information contained in F(y, T) is the core of the

where E, is the interval between the ground state and the
excited state which becomes the first rigid-rotor excited
state in the rigid limit, and E„ is the excitation energy to
that state which becomes the first rotationless, vibration-
ally excited state in the rigid limit. In the most extreme
rigid limit, E, would become infinite so y~O at that lim-
it. As the system approaches the nonrigid limit, E, ap-
proaches the energy of the first excited state of the
U(3N —3) harmonic ladder, and E„approaches the ener-

gy of the second excited state of the same ladder, so y~ 1

at the nonrigid limit. Clearly, y plays a role precisely
analogous to the order parameter of the Landau formula-
tion.

The correlation diagrams contain the densities of
states —the level spacings and their degeneracies —for the
idealized limiting cases that are at the extremities. They
contain the intermediate densities of states as well, at least
in very approximate fashion, insofar as they catalog the
way degenerate levels of the limiting cases split and con-
nect with one another. Without actually solving any
equations to find them, we can index the states according
to either limit and write their energies as E~(y), continu-
ous and smooth functions of y. [All energies are given
henceforth in (reduced) units of degrees Kelvin (i.e., units
in which k = 1).]

The partition function is, of course,

Z(y, T)= ggje (2.4)
J
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following discussion.
The condition that a form of the N-cluster be relatively

stable for some value y =y, is that Z(y, T) be a max-
imum or, equivalently, that F(y, T) be a minimum for
y=y, . (We omit reference to N until later. ) If F(y, T)
has only one minimum as a function of y for some fixed
T, then only that one form is stable; if two forms are to be
able to coexist, then there must be two local minima

F(y„T) and F(y&, T). It might be tempting to look for
these minima, but one realizes immediately that the
minimum or minima of F(y, T) might easily be boundary
minima, for which (BF(y, T)/By)r&0. This is indeed
the case with the model used here, so it is more useful to
express the conditions for one or for two phases as condi-
tions on the nonexistence or existence of an interior max-
imum in F(y, T), as a function of y. Thus, if F(y, T) is a
monotonic function of y (for fixed T) or if F(y, T) has
one interior minimum in 0 & y & 1, then only one "phase"
of the cluster may exist in equilibrium. If and only if
F(y, T) has an interior maximum in 0 & y & 1, then two
"phases" of the cluster exhibit local stability and will

coexist in equilibrium in relative amounts determined by
the difference in the free energies (strictly, the Gibbs free
energies) of the two forms.

III. THE LOW- TEMPERATURE REGION

dZ(y, T)
~r

1= ——ggJ expJ
EJ(y) dEJ(y)

(3.1)

is everywhere negative, so that Z(y, T) has a single boun-
dary maximum at low temperature, and only the solidlike
cluster is thermodynamically stable if the system is cold

For almost all substances —He is one exception —the
rotational constant of the rigid N-cluster is significantly
smaller than any vibrational frequency of the rigid or
nonrigid form. Moreover, all the 3X—3 internal degrees
of freedom of the nonrigid form are vibrationlike. Hence
the first excited state of the rigid limit, E„ is a pure
rigid-body rotation, an odd-parity level with J=1. It
seems that E] always correlates with the first excited level
of the nonrigid limit and hence that E

&
(rigid)

&E&(nonrigid) even if the ground-state energies in the
two limits are equal, as assumed here. One might expect
Eo(rigid) to be lower in general than Eo(nonrigid); that
would make the inequality even stronger. It implies that
dE~(y)/dy &0 for any y if we assume that the energy of
the first excited state like almost all the energies E/(y)
changes monotonically with y. This assumption cannot
hold for all E/, " but it is reasonable to expect, and we

postulate here, that it does hold for most levels.
In fact, not only E~ but, in general, all of the low-lying

pure rotor levels of the rigid limit exhibit positive slope
with y; this is the only way they can correlate with levels
at the nonrigid limit. Figure 1 illustrates the assertion for
the five-particle model. Hence at any temperature low
compared with the lowest vibrational excitation energy of
the rigid limit, all the levels making significant contribu-
tions to Z( y, T ) have positive slope everywhere from

y =0 to 1. This means that

enough. Corresponding to this, the Helmholtz free energy
F(y, T) has a single minimum, at or near y=O, as illus-
trated in the lowest-temperature curve of Fig. 2.

IV. THE TWO-PHASE REGION

Let us look first at a highly simplified representation of
the argument and then turn to a more precisely stated ver-
sion. The simplest idealized extremes of the rigid and
nonrigid cluster are, respectively, the Einstein vibrator
with spherical-top symmetry and the pure Einstein vibra-
tor. These models yield Hamiltonians with symmetries of
SO(3)XSO(3)XU(3N —6) and U(3N —3), which illus-
trate how the densities of states of the two extreme cases
vary with energy. At very low energies in this simple
model the rigid form has levels at EP =BJ(J+I). If
particle spins and statistics are neglected the Jth level has
degeneracy g ~ ——(2J+ 1) . At higher energies, with vibra-
tional and rotational excitation, EP„=neo„g+BJ(J+1).
Without consideration of particle statistics the degeneracy
of this level is (2J+1) [(3N —7+n)!]/[n!(3N —7)!]. If
particle spins and statistics are considered this figure must
be multiplied by the spin factor (2s+1) (where s is the
particle spin) and divided by the symmetry number cr~
for the n, J level. We use g's to indicate no particle
statistics and g's for proper degeneracies with spin and
statistics included.

The ath level of the nonrigid form has degeneracy

g ~'"" = (3N —4+a)!/[a!(3N—4)!]with no consideration
of spin or statistics and, with spin and statistics, the same
number multiplied by (2s+ 1) /o~. For the nonrigid sys-
tem cr is simply N .. The statistics of course require that
some levels be deleted.

The consequence is that at low energies the degeneracies
are higher, the level spacings are smaller, and the density
of states is greater for the rigid-limit case, but at high en-

ergies the density of states of the nonrigid form is larger
than that of the rigid form because g"'"" (E) grows much
faster with increasing E than g" (E). This in turn leads
to the result that, for T large enough but not too large,
Z(y, T) and F(y, T) are not monotonic functions of y.
More specifically, there is a temperature Tf(N), the
lowest temperature for which [BZ(y, T)/By]r r ——0 and

[BF(y,T)/By]r r ——0 at at least one value of y. Atf
temperatures above Tf(N) we find an interior minimum
of Z(y, T) and an interior maximum of F(y, T) with
respect to y. This phenomenon is shown in Fig. 2 for
T)Tf, that is, for 2.00 K.

Now we can make the argument somewhat more pre-
cise, but we reserve some of the mathematical details for
Appendix A. In that appendix we prove that the cumula-
tiue density of states R(y, E) as well as the density of
states p(y, E) of the nonrigid cluster (y=l) increase faster
with E and become larger than those for the rigid cluster,
R(O,E) and p(O, E). We make the plausible assumption
that most of the energies E/(y) are monotonic functions
of y. This assumption, together with the inference that
R(O,E) «R(1,E) for high E, imply that most of the
lines EJ(y) on the correlation diagram must have negative
slope for energies higher than some value E. [We
reiterate that not all the levels EJ(y) can be monotonic
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FIG. 2. Partition functions Z(y, T) and Helmholtz free energies F(y, T) as functions of y for co,"'=3 K and three values of T.
These were only computed for y's near 1 and with the use of five states in the nonrigid limit.

functions of y."]
The partition function Z(y, T) and the free energy

F(y, T) are completely dominated at low temperatures by
the energy levels with positive slopes dEI(y)/dy. As the
temperature is increased the levels with negative slopes
make larger contributions to Z(y, T) and F(y, T), partic-
ularly in the region of y=l, where they are populated
more heavily at low to moderate temperatures. The in-
creasing importance of these levels with negative slopes
makes the slope [BZ(y, T)/By] of Z(y, T) become less
negative and the slope [BF(y,T)IBy] become less positive
as the temperature is raised, and this effect is more and
more marked as y —+1. A temperature Tf(N) occurs, the
lowest temperature for which there is a y at which

Z(y, T) and F(y, T) have slopes of zero. In the simplest
case, corresponding to strictly monotonic E~(y)'s, this
first point of zero slope occurs at the boundary where

y =1, but it is possible to create models in which the point
of zero slope occurs at some y near but not equal to 1. At
temperatures just above Tf the role of the negatively
sloped energy levels becomes greater: The slope
BZ(y, T)/By becomes positive and the slope BF(y,T)/By
becomes negative in the vicinity of y=1 so that Z
develops an interior minimum and F an interior max-
imum, with respect to y, at fixed T & Tf. This in turn
means that the system has two points of stability along
the y axis for fixed T & Tf. In the simplest model these

are at the boundaries y =0 and 1, but they need not be in
more general situations. In fact, more than two maxima
in Z(y, T) or minima in F(y, T) could occur, but at
present we have no positive evidence for such a case. Sup-
pose there are only two stable forms and call the values of
y at the solidlike and liquidlike stable points yo and y&.

The equilibrium concentration of the liquidlike
cluster is zero for T & Tf. Above Tf, the ratio of number
of liquid to solid ¹lusters is given by the equilibrium
constant

E(N, T)= exp[~/T],
where ~=F(yo, T) F(yi, T). For T—slightly above Tf
the solid form dominates; at some T=T,q the two free
energies are equal and the ratio of concentrations is unity.
For T& T,q the liquid form is predominant. A striking
point that may be observable is the sharp change in the ra-
tio at Tf, from zero to a finite, nonzero value. In Sec. V
we show that a corresponding sharp change is expected at
a melting temperature Tm, above which no solidlike clus-
ters can exist in equilibrium.

V. THE HIGH- TEMPERATURE REGION

We now proceed to show the existence of an upper
bound temperature T, the melting temperature for the
two-phase region, such that above T only the fluid phase
of the cluster has any thermodynamic stability. The
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essence of the argument is that the cumulative density of
states of the nonrigid species increases faster with energy
than the cumulative density of states of the rigid form so
that at sufficiently high energies the overwhelming pro-
portion of energy levels Ej(y) must have negative slope
merely to preserve the cumulative density of states. At
temperatures high enough, the states with dEj(y)/dy & 0
must completely dominate the partition function so that
(BZ(y, T)/By)z becomes positive and (r)F(y, T)/r)y )r be-
comes negative for all y.

We make the argument in terms of the constant-slope
model. To reach our inference we break the partition
function into partial sums and show that the contribution
from the low-lying states with positive dEj(y)/dy is
dominated by the contribution from higher states with
negative dEj(y)/dy. Again, define dEj(y)!dy= cj. W—e
choose some T& Ty such that for all y the term XI in

=—Xl — ~ gc expJ J
i=m+1

can be approximated as

E,(y)
T

(5.1)

XL, = g gjcj exp[ —Ej(y)/T] g gjcj.
j=0

(5.2)

We let gj be the degeneracy of the jth energy level due to
rotation-permutational symmetry. Relation (5.2) means
that with T large enough the first m+1 levels are popu-
lated approximately according to their degeneracies. We
must first, however, choose m so that XI contains the
contributions to Z from the levels that make the solid N
cluster the stable form at low temperatures. Thus XL

may be positive. In addition, the number m is taken large
enough that for j& m the contributions to the derivative
of Z from lines with a positive slope are overwhelmed by
all those with negative slope.

Now we raise T to a value high enough that a new set
of levels, from m+ 1 to n, is populated approximately as
if T were infinite. The choice of m assures that the levels
of the new set almost all have negative slopes in order to
conserve the density of states. Consequently, for suffi-
ciently high T we can write

Z(y, &) &0
a

r)y
(5.5)

for all y. This implies that for such a high temperature
only the fluid cluster is stable.

There must be a lowest temperature for which Z(y, T)
is monotonically increasing with y. The temperature T
at which the interior minimum of Z(y, T) disappears is
called the melting temperature. We have thus seen that
T is really the temperature above which the solid cluster
becomes unstable.

VI. RESULTS FOR A FIVE-BODY CLUSTER

where the constant a =0.472. '

The cumulative densities of states R(E,y), y=0, 1,
were computed exactly taking into account the full
permutation-rotation symmetry. The symmetry-allowed
lr levels of the rigid-limit rotor were selected using
Weber's tables. ' Figure 3 shows how R(E, y=1), al-

though smaller than R(E, y=0} at low energies, over-
takes the latter as the energy increases. The changes in
curvature of R(E, y =0) are due to the manifolds of rota-

(0—

(0

For an explicit illustration of the concept presented in
the foregoing sections we turn to the system of five identi-
cal bosons. The parameters of the system have been
chosen to simulate an Ar& cluster. The calculation of the
normal modes of the trigonal-bipyramidal rigid form (the
stable "solid phase" of the cluster) from realistic pair po-
tentials and the construction of the energy correlation dia-

gram was given in Ref. 11(b}. The six different normal-
mode frequencies (in K) are co

&

——31.65, co2 ——56. 11,
c03—27.58, co4 ——38.99, cu5 ——5 1.22, and co6 ——37.98. Figure
1 shows the correlation diagram for the case of vibrational
spacing co, =4 K in the nonrigid limit and rotational con-
stant B,=0.028 K in the rigid limit. This value of the
rotational constant was obtained using the relation'

(6.1)

aZ(y, r)
ay

= —XL, —XH —& g c.expJ J
n+1

E, (y)
T

cn ~0&

where

XH Q gjcj
m+1

(5.3)

(5.4)

— t0

IQ

C)

f0

In (5.3) XI is a constant which may be positive. On the
contrary XH approaches a negative constant which grows
more negative with increasing n because we can expect
that, for almost all j,

~
cj ~

is nondecreasing with j and

cj &0. Therefore
~
XH

~

can be made larger than
~
XL L.

Moreover, the remainder g. „+,gjcj exp[ Ej(y )/T] is-
negative also. Hence, for sufficiently large T,

I

0 IO 20 30 40 50 60

Energy ( K}

FIG. 3. Smoothed cumulative densities of states for the rigid
and nonrigid —i.e., solid and liquid —forms of the Ar5 cluster
described by the correlation diagram of Fig. 1.
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tional states built on excited vibrational levels.
To illustrate the phase change with change of the tem-

perature in our model of an Ar5-type cluster we computed
its partition function Z(y, T) and Helmholtz free energy
F(y, T) in the vicinity of y=1 for different values of T.
A variety of values for co, , the vibration frequency in the
nonrigid limit (which is a parameter in the model), were
used. Most of these values were chosen considerably
smaller than any of the normal-mode frequencies in the
rigid limit, since the degree of nonrigidity is expected to
correlate more or less inversely with the strength of the
interparticle interaction. In Ref. 15 and Fig. 2 we
presented examples of Z(y, T) and E(y, T) based on a
five-state approximation.

The curves of Z(y, T) and F(y, T) near y=1, which
are shown in Fig. 2 for co,"'=3 K and for three different
temperatures, explicitly demonstrate how the sharp onset
of a two-phase region develops: at T=(1.2 K) &Tf,
F(y, T) is a monotonically increasing function of y; at
T=Tf =1.37 K, [BF(y,T)/By)]r &

——0; finally, at
T=(2.0 K) & Tf, F(y, T) displays a maximum at a point

y & 1. The corresponding curves for the partition func-
tion calculated with co,"'=4 K were presented earlier. '

Let us now discuss the approximation used to construct
the graphs of Ref. 15 and Fig. 2. Both sets were comput-
ed making explicit use of the correlation diagram in Fig.
1, and the sum in the expression for the partition function
was truncated at the five-quantum state in the nonrigid
limit. The reason is that the diagram extends only to that
level and its construction for higher levels is itself a non-
trivial project. The error introduced by omission of the
higher states can be estimated taking into account that at
the extreme nonrigid limit (y=1) the partition function
can be calculated with any degree of accuracy. We shall
consider a calculation to be accurate if it includes at least
the lowest one of those high levels, each of which contri-
butes less than 1% to Z(1, T). With this definition one
readily finds that at least 11 states should be considered in
the nonrigid limit for co,"'=4 K and T=3.5 K. Introduc-
ing a quantitative measure E' ' '( T) of accuracy as

~

Z'~ '(y=1, T) —Z'~ '(y= 1, T)
~

~ (6.2)Z"'(y= 1, T)
E(a', a")(T)

where a' ( (a") is the quantum number of the highest
state included in the actual calculation and a" is that re-
quired to make this calculation "accurate, " we obtain
E' '"'(T=2.5 K)=0.98, E' '"(Tf)=0.95, and
E' '"'(T=3.5 K) =0.81. Note that the freezing tempera-
ture Tf is a function of the number of states considered
and in general Tf(a")&Tf(a'). [Our representation
predicts that Tf(a") (Tf (a'). ] Because of this the
difference in the numerator of Eq. (6.2) may be negative
for T= Tf, which is what warrants the use of the
modulus sj.gn.

In order to confirm the main result of our five-state
calculation —the existence of a point Tf which on the
temperature scale separates a one-phase region from a
two-phase region —in a more accurate treatment, we
recomputed Tf and Z(y, T) in the vicinity of y = 1 using
11 states. To do that we had to know E (y) as a function
of y (at least near y = 1) for all 11 states. We circumvent-

ed the task of construction of the correlations between
higher levels by introducing certain reasonable assump-
tions on the cumulative slopes C of the correlation
curves for these levels. The cumulative slope of the ath
level is defined as follows:

C (y)= gg;c;(y), a=0, 1, . . . (6.3)

where i labels the splittings of that level and

dE;(y)
c;(y)=

dy
(6.4)

With knowledge of C for a=6, . . . , 11 one calculates the
contribution b,Z of those states to the partition function
in the vicinity of y = 1 as

11

bZ(y, T)= g g e
a=6

where

E (y)=E (y=l)—C (y=1)
(1—y) .

(6.5)

(6.6)

We reiterate that since the density of states in the nonrigid
limit becomes overwhelmingly larger than that in the rig-
id limit we expect C~ to be negative for higher levels.
Even with the extreme "worst-case" assumption that
C =0, a =6, . . . , 11 near y = 1, we confirm our five-state
calculation of the freezing temperature Tf by converting
it to an accurate one. In our actual 11-state calculations a
more realistic ansatz was incorporated. Namely, we as-
sumed that the values of C, a =6, . . ., 11 are constant in
the vicinity of y=1 and lie on the same straight line as
points C4- —250 K and C5 ——420 K, calculated in ac-
cordance with Eq. (6.3) and Fig. 1. Note that this as-
sumption is also a very nonrestrictive condition since it
gives values of C~/g~ (slope per unit of degeneracy)
which are negative but monotonically approach zero with
increase of a.

Results of the 11-state computation for Z(y, T) and
E(y, T) are given in Fig. 4 for co, =4 K and three tem-
peratures. The phenomenon of phase change is even more
pronounced than in the five-state case. Note that the
freezing temperature is now =3.00 K. This value of Tf
was associated with a"=11 in Eq. (6.2) when E' '"'(Tf)
was calculated.

The physical effect of decreasing the value of the non-
rigid fundamental frequency toe' is a lowering of Tf,' that
is, the lower is co,

"' the lower is the minimum temperature
at which the liquid can be stable. Let us compare the re-
sults for co, =3 and 4 K. The main feature is the sub-
stantial decrease of the freezing point Tf to a value of
=1.37 K. The results for T=1.20 K and Tf -1.37 K
are accurate in the terms of the definition given above. A
seven-state calculation would be accurate at T=2.00 K;
E' ' '(T=2.00 K)=0.98.

To conclude this section we turn to the following ques-
tion: %'hat can be inferred from our model calculations
about the melting temperature T~ which is defined by the
condition [BZ(y, T )/By]r o

——0'? The value of the par-
tition function in the rigid limit at T=Tf-3.00 K is
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FIG. 4. Behavior of Z(y, T) and I (y, T) for the five-particle model of Fig. 1 in the vicinity of Tf and of y=1 for co,"'=4 K. Note
that the vertical scale of (c) is much expanded from those of (a) and (b) in order to make the minimum of Z(y, T) clear. Section VI
describes the ansatz made in the computations using 11 states to construct these curves.

=322.6, i.e., it is much larger than that in the nonrigid
limit (see Fig. 4). Note that this is an accurate result. Be-
cause of the high density of states in the rigid form at low
temperatures and fast convergence of the sum in the parti-
tion function, the first 22 pure rotational states (no vibra-
tions) were sufficient to provide the desired accuracy.
The energy of the state J=22 is = 14.2 K, which is much
lower than the energy of the highest state to be included
in an accurate calculation in the nonrigid limit at the
same temperature. Most (if not all) of the pure rotational
levels have positive slopes at y=0. Thus one should go to
quite high temperatures, at which the energy levels built
on excited vibrational states and having negative slopes
begin to play a role, in forcing the derivative of the parti-
tion function with respect to y to vanish. As can be seen
in Fig. 3, the cumulative densities of states in two forms
of an Ars-type cluster become equal in the vicinity of
E=50 K. Above this value one should expect the down-
ward sloping energy levels to dominate in order to con-
serve the total number of states. Thus if the melting point
T was not found below 50 K it certainly will be reached
above T=50 K and not far from it.

VII. CONCLUSION AND DISCUSSION

The foregoing argument has demonstrated that a model
of the energy levels of clusters based on a parameter
measuring rigidity implies that clusters may exhibit two
phases, one liquidlike and one solidlike, over a discrete
temperature range bounded above by a melting tempera-
ture T~ and below by a freezing temperature Tf. These
temperatures depend on the number of particles in the
cluster. Between Tf and T is a temperature at which
the free energies of the liquidlike and solidlike X-cluster
are equal; this could be called the temperature of thermo-
dynamic equivalence T, . Previously this temperature
had been called the melting temperature but we now see
that it is more useful to reserve that name for the tem-
perature of the upper bound for existence of the solidlike
form.

The existence of the upper bound T is due to the den-
sity of states of the liquidlike form increasing faster with
energy than that of the solidlike form. The differential
rate of increase itself increases with X, the number of par-
ticles in the cluster. Hence we can expect the convention-
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ic part of the attractive potentials acting between pairs of
particles F ~ and everything else in the potential &' for
the rigid limit, thus

A (y) =M+ P &+(1—y)P ' . (7.1)

Clearly, when y =0, A corresponds to the rigid limit and
when y=1, A corresponds to the Gartenhaus-Schwartz
limit. This is not the only way to construct a suitable
4 (y), merely an illustration that it can be done in a
manner that will yield the correlation diagram, at least for
levels below dissociation limit. [There are obvious diffi-
culties with computing eigenvalues and eigenfunctions for
a Schrodinger equation based on Eq. (7.1) if one uses per-
turbation theory, but not if one uses well-chosen, discrete,
finite basis sets.] Looking ahead, one can see motivation
to construct some such Hamiltonian for arbitrary y; for
example, one can ask what kinds of Hamiltonians will
give rise to softening of the single, stable, solid, low-
temperature phase when the temperature is increased.
That is, one may try to find what kinds of Hamiltonian
will move the locus of the low temperature from @=0 to
y &0 as T increases, as in Fig. 5, case (ii). Or one may
ask what are the necessary and sufficient conditions on
A (y) for the appearance of a stable form of cluster for
some intermediate value of y between 0 and 1, as in Fig.
5, case (iii).

The model used here is neither rigorous nor complete.
No cognizance is taken here of the role of pressure; the
energy levels have been treated as one-parameter functions
EJ(y ), and no attempt has been made to relate the nonri-
gidity parameter y to pressure or volume. Naturally, a
more complete model would include a mechanistic con-
nection between y and volume, and perhaps temperature
as well, to reflect how dilation makes nonrigidity come
about. The model is also partly classical and partly quan-
tum mechanical, because no tunneling has been allowed
between the rigid and nonrigid forms. Without this re-
striction one cannot distinguish the two phases as separ-
able; any cluster would exist in a single state consisting of
a superposition of both forms. However, the restriction is
entirely natural; simulations confirm that classical passage
times between rigid and nonrigid forms in the coexistence
range are many orders of magnitude longer than vibration
frequencies and we can expect tunneling times to be
longer still.

The model is not rigorous in the sense that the density
of states might not obey our supposition that the energy
levels, in the mean, preserve the density of states. We
have assumed that the density around any energy E' near
y=1 correlates principally with the density near y=O
around an energy E at which the cumulative density is
approximately equal to that at E '; i.e., at which

EO Elf p(O, E)dE= f p(1,E)dE. It is conceivable that the
0 0

states at y=0 over all the range of bound-state energies
might correlate almost exclusively with high-lying states
at y = 1, so that the system would not exhibit the domi-
nance of negatively sloped EJ.(y)'s at high E. However,
this would require that the symmetries of the states at
y=O not allow those states to correlate with low-lying
bound states at y=1, which would be a pathological
situation indeed. Alternatively, it could happen that, over

a limited range of energies around E, the majority of lev-
els at y=O have positive slopes but that these are crossed
in some zeroth order by levels with negative slopes corre-
lating to states in the energy range around E'. However,
the adiabatic noncrossing rule applies to states having the
same symmetry at a zeroth-order crossing, whatever value

y has. Consequently there may be many states in some
energy range that have one slope near y =0 and an oppo-
site slope near y = 1 as a result of avoided crossings; in
fact, some states may have energies that exhibit several re-
versals of slope between y=O and y=i. If there are
enough of these reversals it may be possible for F(y, T) to
have three or even more minima as a function of y. This
sort of behavior is allowed within the confines of the
model and unlikely to be observed in real clusters, but just
realistic enough that experimenters might wish to be
aware of the possibility.

The model used here is a little different from the usual
bifurcation models although it is still a bifurcating sys-
tem. Instead of a forking bifurcation of the usual Landau
type (such as that used to describe molecular isomeriza-
tion as a bifurcation' ), the form that becomes stable
when Tg T~ appears at a value of y far removed from
that for which F(y, T) has a minimum when T & T~. In
the simple form of the model with constant slopes for the
energy levels the new form necessarily first appears at

y = 1. However, this need not be the case in general. Fig-
ure 5(a) shows schematically several forms which F(y, T)
might take, and, in Fig. 5(b), we show plots of the loci of
the minima and maxima of F(y, T) to which the sketches
of Fig. 5(a) correspond. The appearance of the interior
minimum in F(y, T) in case (iii) of Fig. 5 can be classified
as a cusp catastrophe. However, only by examining
specific systems can we expect to produce examples to il-

lustrate these cases.
It may be helpful at this point to enter a little discus-

sion of physical realizations of cluster melting as the fore-
going model would have it occur. A useful case is the
13-particle cluster. Its lowest energy form is the closed-
shell icosahedron of 12 identical particles packed around
the 13th. This form of the 13-cluster is virtually certain
to be a nearly rigid, solidlike object with well-defined
small-amplitude vibrations and the rotations of a nearly
rigid spherical top. Its energy levels separate cleanly into
rigid rotor levels and vibrational modes.

Now consider the same cluster with one of the 12 parti-

FIG. 6. A schematic representation of a system with a deep,
narrow potential well (at left) with a sparse level structure, cor-
responding to a rigid structure, and a broad region of higher en-

ergy with shallow potential minima and a high density of states,
corresponding to a nonrigid, perhaps liquid, structure. As
drawn the two regions are separated by a potential barrier which
allows each form to exhibit its own independent existence.



928 BERRY, JELLINEK, AND NATANSON 30

cles removed from the icosahedral shell and left bound on
the "surface" of the remaining 11-particle shell with its
one vacancy. Considerable energy is required to remove
the one particle from the closed icosahedral shell; a little
of this is recovered when the remaining 11 particles relax
around the vacancy. After this relaxation has occurred
the particle on the outside of the shell cannot return to
that shell without overcoming an energy barrier corre-
sponding to the work required to open up the vacancy to
its initial, unrelaxed size. The dynamics of the atomic
motion in the cluster with one vacancy and one promoted
particle must surely be dominated by the motion of the
particle on the surface and of the vacancy; both must be
vastly more mobile than the particles in the closed-shell
icosahedron, presumably mobile enough that the cluster
with the promoted particle can be thought of as liquid.
The coexistence of the liquid and solid N-cluster corre-
sponds to the coexistence of the closed-shell icosahedron
and the open-shell "icosahedron" with its vacancy and
promoted particle. These two, one solidlike and the other
liquidlike, are characterized by their own regions of coor-
dinate space and phase space. One species has quantum
states confined to the steep potential well around the
closed-shell geometry of minimum energy; the other
species has quantum states localized in the region of the

many small hills and valleys of the high-energy structure
of the promoted particle and vacancy.

This situation is illustrated schematically by the poten-
tial shown in Fig. 6. The well of the icosahedral structure
is shown in the left-hand part of the sketch; the barrier
separates it from the mobile, high-energy region of the
liquidlike structure at right. While, strictly, the wave
functions of all the quantum states have amplitude in
both the solidlike and fluidlike regions, the barrier is large
enough (or the connecting passage is narrow enough) that
each individual system can be considered to be either solid
or liquid for a very long time.

The coexistence of the two forms can be interpreted in
terms of Fig. 6 this way. The solidlike form is stable be-
cause the low energy of the bottom of the well assures
that quantum states deep in the well are populated signifi-
cantly at low and moderate temperatures. The liquidlike
form gains its stability by its high density of states or high
entropy; even though its energy is quite high, and the pop-
ulation of each quantum state is always low, there are so
many levels in the liquidlike region that at moderate or
high temperatures a significant number of systems popu-
late the totality of the liquidlike states. In this sense, the
two forms are like two isomers, one with low energy and
the other with high entropy.

The exact Hamiltonian for this system is the full 13-
particle Hamiltonian for unrestricted motion. However,
its natural realization for the solidlike form is the
rotator-oscillator effective Hamiltonian of the icosahedral
cluster vibrating about its lowest-energy geometry. The
natural effective Hamiltonian for the liquidlike form
might in this example be that of only two particles, one
the promoted particle on the surface and the other the
quasiparticle vacancy, both possibly in the background of
the vibrations and rotations of the other particles. In oth-
er situations the nonrigid form might have as its natural

effective Hamiltonian the Hartree-Fock central-field
Hamiltonian.

One other realization illustrates the passage from rigidi-
ty to nonrigidity without displaying two coexisting forms
because only one degree of freedom is involved. This is
the inversion motion of NH3. The lowest levels are local-
ized around the pyramidal geometry so the natural effec-
tive Hamiltonian for these states is that of small oscilla-
tions around the pyramidal equilibrium configuration and
rotations of that pyramid. For states with more than two
quanta in the inversion mode a more natural Hamiltonian
is that of large-amplitude "flopping" around the planar
geometry, in a potential well that has a bump in the re-
gion of its center, at the planar geometry.

We wish to close by restating our principal inference in
slightly different terms, namely, that finite clusters can
exhibit sharp freezing temperatures and sharp melting
temperatures, but that these temperatures are not the
same. The temperatures Tf(N) and T (N), respectively,
represent limits to the range of stable existence of the
liquidlike and solidlike cluster of N particles —Tf, a lower
limit and T an upper limit. A11 our traditional experi-
ence with the melting transition has led us to identify that
lower limit and that upper limit as the same temperature,
and surely they must be the same in situations in which
the phase rule applies. A macroscopic collection of clus-
ters in equilibrium, even if it were monodisperse, has only
one equation of state, just as a macroscopic system of two
isomers of a single chemica1 composition has only one
equation of state. Hence the phase rule is not violated by
the fact that Ty(N) and T (N) are not the same. It will
be a fair challenge to connect the picture presented here of
small clusters having different freezing and melting points
with our common understanding of bulk matter, particu-
larly with the sharp freezing (melting) temperature, the
phenomenon of metastable but isolated phases away from
the freezing (melting) temperature, and the limits of ex-
istence of the metastable phases along the spinodal.
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APPENDIX A

Here we prove that for energies high enough the cumu-
lative density of states in the nonrigid limit becomes
larger than that in the rigid hmit. We also evaluate the
relative rate of growth of the degeneracies of states in the
two limits. To this end we divide the energy range into
intervals of constant length co, and evaluate g"' for large
n on the one hand, and the number of rigid limit states in
the energy interval (Ia —II',"', aco,"'] on the other (see
Fig. 7). Using the Einstein model and neglecting the
selection rules due to spin-prescribed statistics one can
represent the degeneracy g ~ of the (nJ) vibrotational
state of a nearly rigid spherical-top X-particle cluster as a
product of two factors g '„and g J, where
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and J~ + 1 is an upper bound on the number of rotational
states for any n in the energy interval of size co, . Taking
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FIG. 7. Schematic representation of energy levels in the rigid

and nonrigid limits. Appendix A is concerned with comparing
the number of states for y = 1 at ufo", ' with the number for y =0
between {a—1)co,"' and ace,"', and then with the cumulative den-

sities of states at ago,"' for y =0 and 1.
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The total number of such states in the energy interval

( I a —1Ico, , co,"'] is

n J/g[n a)

n =0J=JI(n, a)
(A2) (3N —6)!

(A.8b)

where the highest accessible vibrational state

(A3)

we arrive at the following inequality for X~:
1/2 ' 2 ~1 1/2

Xa& '2 +1B B

(The square brackets [. ] stand for "integral part. ")
J~(n, a) and Jl, (n, a) label the lowest and the highest rota-
tional states (for a given n ) which fall into the energy in-
terval under consideration.

Clearly

X

3X—6+

(3N —6)!

(A9)

n JgC" n m

&a& ggn g gJ& gg»» ggy~»
n =0 J=JI(n, a) n =0 J=0

(A4) Applying Stirling s formula to the right-hand side (rhs) of
(A9) and neglecting terms decreasing with increase of a
faster than 1/a we obtain

where J=J(a) is the highest (n =0) rotational state to be
considered, lnX' & (3N —5) lna+ lnH'(N)+G "(N,a), (A10)

J(J+ 1)8 & ace, (A.5) where
I

m.' er

lnH"(N) —= 3N ln(3N —6)+—3N 1+ ln +5.51n(3N —6)+ ln(2V'2/n) —6 1+ ln + ln '

CO CO

nr'/
COe

Dr
COe

+

G "(N,a) —= + (3N —5.5)(3N —6)
(A12)

The degeneracy g
"' of the ath state in the nonrigid limit

is

(3N 4+a)!—
(3N —4)!a!

Evaluation of Eq. (A13) for large a gives

lng ~'=(3N —4) lna+ lnH"'(N)+ G (N, a), (A14)

where
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(3N —3.5)(3N —4)6 Na=
a (A16)

It follows immediately from Eqs. (A10)—(A16) that

lnH"'(N) = —3N ln(3N —4) + 3N

+3.5 ln(3N —4)—0.5 in(2m )+4, (A15)

dependent factor) to more realistic clusters as well.
Indeed, if one removes all the degeneracy of the normal
modes of the Einstein model so that the rigid limit has
3N —6 different fundamental frequencies, apart from any
degeneracies resulting from point-group symmetry, the
sum over n in Eqs. (A2), (A4), and (A8b) should be re-
placed by

X' &g"' (A17)

g a~ H"'(N)

X~ H "(N)
(A18)

[In view of the way inequality (A9) was obtained one can
replace the & in (A18) by »].

The cumulative densities of states

for any fixed N and all a's large enough. This last in-
equality guarantees the cumulative number of states in the
nonrigid limit to become larger than that in the rigid lim-
it. The relative rate of accumulation of states in the two
limits at large a's is characterized by the relation

p (P» —1+n» )! (3N —7+n» )!

(P» —1)!n»! (3N —7)!n»!

we evaluate

(A24)

where K and P» label, respectively, the different normal
modes and their degeneracies, nK is the highest state ac-
cessible in the K mode, and g „ is the degeneracy of the"IC

state nK. Since

and

R(a, y=O)—:g X,".

i=0
(A19)

(3N —7+n»)!
(3N —7)!n»!

(3N 7+n» )!—
(3N —7)!n»!

R(a, y = 1)= g g,"'
i=0

can be evaluated for large a as follows:

(A20)

(3N 6) (3N —6+ )!

(3N —6)!n!
(A25)

R(a, y=O)= g X,"+ g &,'
where n is the highest accessible state in mode with the
lowest fundamental frequency co ":

i=0 i=a
a —1

y ~ + y H (N);m s—
i=0

CXCOe

(A26)

while

4+O( sx s)— —
3iY —4

(A21)

R(a, y= 1)= g g; + g g"
i=0

i=0
-nr+ y Hnr(N) ~ 3N —4

H"'(N) as+ +O(a )
3N —3

(A22)

where a should be chosen large enough to allow use of
Eqs. (A10) and (A14). Thus the relative rate of increase
of the cumulative densities of states in the rigid and non-
rigid phases of an N-particle cluster at large a's (energies)
1S

APPENDIX 8

We show here that inequality (A18) implies a possible
answer to the following question: How does the melting
temperature T~ depend on the number N of particles in a
cluster? It follows from (A18) that

H"'(N)
a )1

H'(N)
(B1)

Comparison of (A25) and (A26) with (Agb) shows that the
results for a more realistic cluster model differ from those
of the Einstein model by at most an N-dependent factor,
if at all. An additional change in the N dependence (but
not in the a dependence) of the results may follow from
inclusion into consideration of the symmetry number,
which corrects for the fact that not all the states are al-
lowed by the spin-statistics-prescribed selection rules.

R(a, y =1) (3N —4)H"'(N)
CX

R(a, y=O) (3N —3)H'(N)
(A23)

is a sufficient (but not necessary) condition for a to satisfy
relation (A17). Solution a"(N) of the equation

Note that the rhs of inequality (A23) approaches that of
(A18) when N increases.

Several remarks should be made concerning these re-
sults. Although they were derived for a highly idealized
cluster model, their validity extends (up to an N-

Hnr(N)
cx =1

H "(N)
(B2)

defines an upper bound [a']+ 1 on the lowest state a for
which inequality (A17) holds. Taking into account the N
dependence of the rotational constant [Eq. (6.1)] and
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neglecting in the rhs of Eqs. (All) and (A15) those terms
which approach zero with the increase of N, we obtain
from (Bl)

lna (N}= lnH "(N)—lnH"'(N)

(B3)

where C is a constant that depends parametrically on co,
"'

and co". Since co,
" &co, , lna (N} and thus a (N) become

decreasing functions of N. The implication of this result
for the N dependence of T, which is defined by the N
dependence of a, can be deduced from the following
reasoning. Even in the most pathological situation in

which a starts to increase with N (this situation is con-
ceivable since [a')+1 is not an exact upper bound) there
will be a value of N =No such that a(No) =[a"(No)]+ 1.
Clearly, for N & No, a and thus T~ must decrease with
the increase of N.

This conclusion is a step in the substantiation of our
earlier conjecture that the bulk melting temperature is a
common limit of Tf(N) and T~(N) when N~oo. It
should, however, be noted that our derivations become in-
valid in the limit of very large X's. These derivations
were performed neglecting the terms G "(n,a) and
G"'(N, a) in Eqs. (A10) and (A14), respectively (see Eqs.
(A12) and (A16)]. Omission of these terms is justified
only if N varies in a limited range and a is large enough.
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