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Shear-induced partial translational ordering of a colloidal solid
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Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order
spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these
crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each
other with a (111)direction parallel to the solvent flow. In this paper we analyze in detail the dis-

ordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are
led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different
process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion
to the background fluid forces a homogeneous flow, where every layer is in motion relative to its
neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the
lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel
and perpendicular to the direction of the applied stress. The magnitude of these deformations is es-
timated using the configurational energy for bcc and distorted bcc crystals, assuming a screened
Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic
elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing
an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes
the structure from the bcc~ and bcc2 twins observed at zero shear to a distorted two-dimensional hcp
structure at moderate shear rates, with a loss of interlayer registration as the shear is increased.
This theoretical model is consistent with other experimental observations, as well.

I. INTRODUCTION

Aqueous suspensions of uniformly sized submicrometer
polymer spheres are model colloids. ' The colloidal parti-
cles are highly charged and may interact over a long range
such that even in dilute suspensions (0.1 wt. %) they ex-
hibit interparticle solidlike or liquidlike order. Average
particle separations may be adjusted so that light scatter-
ing can be used to investigate the collective colloidal-
particle order. The equilibrium properties of these "col-
loidal solids" and "colloidal liquids" have been studied ex-
tensively, and experimental results illustrate the strong
correspondence to pure fluids and solids in both structure
and dynamics of equilibrium fluctuations.

Recently there has been a growing interest in the micro-
scopic and macroscopic properties of sheared spherical-
particle systems. ' Our earlier microscopic structure
studies, using light scattering from dilute colloidal
suspensions, have revealed a variety of structures as the
rate of shear is varied. When samples which spontaneous-
ly form body-centered cubic crystal (bcc) lattices in equili-
brium are subjected to increasing shear, they will pass
through a series of structures before melting and finally
exhibiting an amorphous or fluidlike order. This shear-
induced melting is reversible and is not due to an increase
in temperature, as the temperature remains well below
that required for melting. Furthermore, the liquidlike
structure exhibits a distortion in the pair distribution
function, which corresponds to that anticipated for pure

fluids at extreme rates of shear. '

This shear-induced me1ting phenomena also has been
observed in more concentrated (-10%) aqueous suspen-
sions by Pieranski, in nearly close-packed suspensions by
Hoffman, and in solid argon by computer simulation by
Evans. " Light scattering has been used by Pieranski and
Hoffman to monitor the transition from sliding solid
layers to an amorphous liquidlike structure as the rate of
shear increases. The transition is accompanied by an
abrupt increase in the shear viscosity (shear thickening).
By testing a variety of samples Hoffman has demonstrat-
ed that the instability leading to the transition has a
universal character and may be related to microscopic pa-
rameters. Because this phenomena of shear-induced melt-
ing is observed in such a broad range of systems it may be
more general than initially anticipated and merits closer
examination.

Furthermore, molecular-dynamics studies suggest many
similarities between the properties of colloidal suspensions
sheared at modest rates and the properties of pure atomic
systems, sheared isothermally at enormously large
rates. ' ' In Evans's"' investigation of shear-induced
melting, he finds that the stress tensor, which describes
the pressures and viscosities of the system, evolves con-
tinuously as a function of the rate of shear. However, the
tensor shows regions of different analytic behavior, which
suggest different microscopic organization in different
shear-rate regimes. He points out the similarity with the
colloidal-suspension experiments and indicates that these
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phenomena may provide an alternative to other theories
of plastic flow, such as those used to describe Bingham
plastics. Other results from nonequilibrium molecular
dynamics suggest that system properties may not be ex-
pandable as an analytic function in the rate of shear. This
effect may be related to the long time tail in the equilibri-
um velocity autocorrelation function' and/or nonlinear
coupling effects. ' Because there seems to be a strong
analogy between colloidal solids and liquids with pure
atomic solids and liquids, colloidal systems may prove
useful in understanding these and other nonequilibrium
phenomena.

Our earlier experiments at large rates of shear indicate
a phase for which there is no long-range order, a suspen-
sion structure which is liquidlike or amorphous. As the
rate of shear is reduced, we observe the development of
short-ranged translational order characterized by strings
of uniformly spaced colloidal particles which are parallel

to the direction of the local solvent velocity, V. As the
rate of shear is further reduced, an abrupt transition (tran-
sition I) is observed where the colloidal-particle strings
condense into distorted two-dimensional close-packed (2D
hcp) layers. This is a transition from short-ranged to
two-dimensional order. The layers are parallel to V, per-
pendicular to the shear V, and freely slip past one another.
Between transition I and a transition at a lower shear rate
(transition II), there is no correlation along V of layers
separated along T. These structures are similar to that
found in equilibrium liquid crystal phases of disk-shaped
molecules. For this reason one may consider such struc-
tures as shear-induced liquid crystal phases.

In this paper we present experimental results and a
theoretical interpretation for the development of long-
range order below transition II. Here the correlation
length along V for translational ordering parallel to V is
observed by light scattering to increase from zero at tran-
sition II to infinity at a transition at small applied stress,
corresponding to the intrinsic bcc crystal yield stress.
Hence the entire sequence of the above-mentioned shear-
induced structures occur beyond the elastic limit or above
the intrinsic yield stress of the bcc crystal. Our earlier ex-
periments suggested this shear flow beyond the elastic
limit below transition II is plastic flow of three-
dimensional crystals, mediated by dislocation motion.
Solitons were proposed to move perpendicular to V and 7
and parallel to e (see Fig. 1). These solitons changed one
bcc twin structure to the other as they propagated. The
intervening region between the two twin structures was a
three-dimensional hexagonal close-packed (3D hcp) struc-
ture. This model was supported by the observation of two
distinct kinds of structures seen in the diffraction pattern
for scattering from a sample in the rocking-cuvette cell.
Here both the (strained) twin bcc and the 3D hcp struc-
tures have signatures in the diffraction patterns in this
shear-rate regime. However, the experimental results to
be presented in this paper are for a well-characterized
velocity profile and do not exhibit multiple coexisting
structures (other than strained bcc twins) in this shear-rate
regime. Furthermore, the observed bcc twin structures
are found to be described well theoretically in terms of the
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FIG. 1. Twin bcc structures (bcc~ and bcc2) are shown. In
each structure a (111) direction is parallel to V and (110)
planes are parallel to the V-e plane. The common boundary be-

tween the twins is a (211) plane parallel to the 1-V plane. (a)
Two layers are shown. One is designated by 0 and the other by

~. Basis vectors a, b, and c are shown for the bcc lattice. The
in-plane strain which changes these layers into a distorted 2D
hcp or distorted fcc structures is shown by arrows for each twin.
The transition being studied distorts the outlined hexagon into a
more symmetrical hexagon. (b) Several bcc twins stacked in the
e direction are shown. As the sample is stressed and Aows,
these structures oscillate as indicated by the arrows and ex-
change identities periodically. The (211) plane boundaries oscil-

late in the V direction.

continuous deformation of single bcc crystals which are
stressed beyond the limit of stability. The stressed bcc
crystal motion is coupled to the background fluid and the
system follows an oscillatory path in strain space. At low
shear this path takes the crystal from near the bcc twin
structure through a distorted face-centered cubic (fcc)
structure or distorted 2D hcp structure to near the other
bcc twin structure. At moderate shear rates this path
straightens to give distorted 2D hcp structures. This pic-
ture of colloidal crystal flow is quite distinct from normal
plastic flow mechanisms of atomic crystals which are
realized in terms of defect motion. In the colloidal crystal
model the background fluid viscosity forces the whole
crystal to homogeneously deform in response to the ap-
plied shear. This continuous deformation of the crystal
results in a flowing crystal. We do expect plastic flow,
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FIG. 2. Photographs of video records made of scattering intensity distributions produced by a 0.17 wt. % deionized aqueous
suspension of 0.220-pm-diameter polystyrene particles. At zero shear a bcc twin structure is identified in (a). The visible lines are
due to thermal diffuse scattering. For small rates of shear ( V upward and V normal to the plane of the page), the Laue spots are ob-
served to shift horizontally toward a vertical axis, which passes through the k-space origin at the beam stop (center). This shift is

proportional to the f„cmop oentnof a given reciprocal-lattice point and increases with increasing rate of shear. In ib) there are two
sets of 211 spots, which have merged in (c) and continue to merge in (d) as the rate of shear is increased. In (d) the shear rate (-10
Hz) is sufficiently large that the original bcc structure now looks like a distorted 2D hcp structure.

however, at values of applied stress below the intrinsic bcc
crystal yield stress, i.e., below those values investigated ex-
perimentally here and in our earlier studies.

In this paper we examine in detail the interparticle
structure for rates of shear below transition II, from an
equilibrium bcc solid to a collection of freely slipping dis-
torted 2D hcp layers at moderate rates of shear (-10 Hz).
We use an improved rotating-disk shear cell and are able
to observe shear-induced distortions in the interparticle
ordering. These distortions are measured as a function of
the shear rate to study the continuity of the transition.
Laser Doppler velocimetry is employed to measure flow
profiles. These experimental details and results are re-
ported in Sec. II.

II. EXPERIMENTAL DETAILS AND RESULTS

Earlier experiments employed either a rocking-cuvette
cell, which has easy optical access but a time-dependent
Poiseuelle flow profile, or a concentric-cylinder cell,
which has less convenient optical access but a simple
time-independent shear. The present rotating-disk cell
consists of two quartz disks which are approximately 8 in.
in diameter and separated by a uniform gap of —1 mm.
The total sample volume is 60 cc. One disk rotates at a
steady but adjustable low rate of speed such that tur-
bulence and radial flow effects are unimportant. The axle
for rotation of the moveable disk is sealed by —1-mm-
thick teflon quad rings which contact the rotating disk
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and cell wall. The outer portion of the cell is sealed by a
silicon rubber o-ring which the stationary disk contacts.
The incident laser beam (A, =6328 or 4880 A) can be
directed perpendicular to the plane of the gap between the
disks, or rotated about this position by +60. This rota-

tion can be made about an axis parallel to V or an axis
parallel to e.

The samples used in these studies are similar to those in
previous experiments. Aqueous suspensions of highly
charged, Dow Chemical polystyrene, latex spheres (diame-
ter —=0.2 pm) are diluted to a concentration of -0.1

wt. % and are highly deionized by addition of a strong
acid-base mixed-bed ion exchange resin. The samples will
form bcc polycrystalline structures after several days con-
tact with the exchange resin. Experiments are conducted
at room temperature without thermostating ( T =24
+1'C).

If the colloidal sample sustains a shear flow which is

gradually eliminated, macroscopic striations are observed
which exhibit rapid submillimeter structure variation

along e but are extended in the flow-velocity direction V.

Light scattering Laue patterns index to bcc structures and
indicate the existence of two twin-related bcc crystals, as
depicted in Fig. 1. A bcc ( ill) direction, the closest

packed direction, is parallel to V and perpendicular to V.
The bcc (110) planes, which slip over one another, are the
closest packed planes. This close-packed orientation cri-
teria corresponds to the preferred slip direction and slip
planes in metals, ' and it admits to the two possible twin
bcc structures which are observed. Here, however, the
solid polycrystalline structure not only slips in these pre-
ferred directions but also has been reoriented by the flow.

When the oriented bcc crystal sample is subjected to a
shear stress, the observed scattered light Laue pattern dis-

torts from that seen in equilibrium. This distortion may
be seen in Fig. 2 which presents photographs of the ob-

served scattering pattern as a function of the rate of shear
for a sample illuminated with Ar+ laser light (A, =4880 A)

incident normal to V and e (zero angle of incidence). The
bcc 110 reciprocal-lattice points, connected by line seg-
ment B in Fig. 3, are observed to shift symmetrically to-
wards a vertical axis passing through the reciprocal-lattice

origin (beam-stop position) and parallel to k„.The bcc
211 reciprocal-lattice points, connected by line segment A

in Fig. 3, also shift in the same way and those pairs
closest to this vertical axis merge to become single spots at
the end of this shear-induced evolution. The final scatter-

ing pattern looks less like that for a twin bcc structure
and more like that for a distorted 3D fcc or 2D hcp struc-

ture which is compressed in the V direction. Quantitative
measurements of the relative displacement of reciprocal-
lattice points are presented in Fig. 3. Those relative
separations, which change as a function of shear, show a
discontinuous change from the equilibrium bcc position
for a small but finite initial shear rate followed by a con-
tinuous evolution to the distorted hcp structure with in-

creasing shear rate. This deformation is reversible. How-

ever, the relaxation from small but finite shear to the zero
shear value takes —1 h, whereas the other deformations
are stable within seconds of a change in the rate of shear.
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While no quantitative intensity measurements have yet
been made, the higher-order reciprocal-lattice points are
diminished in intensity when the sample is sheared, and
there is a variation in intensity between point pairs reflect-
ed about a vertical axis passing through the reciprocal-
lattice origin and parallel to k~, and also for reflection
through a horizontal axis parallel to k, and passing
through the reciprocal-lattice origin. As the angle of in-

cidence of the probe beam is changed for the equilibrium
bcc crystal, we observe spots in the scattering pattern to
change in intensity, indicating that reciprocal-lattice
points come on and off the Ewald sphere. This indicates
that there is three-dimensional ordering. However, as the
rate of shear is increased, this ordering in the V direction
becomes shorter ranged and the reciprocal-lattice points,

except in the kv-k, plane (ki ——0), begin to extend as
A A

long tubes in the k~ direction. In the k&-k, plane a bcc
110 reciprocal-lattice point remains fairly distinct and is
brightest for all shear rates when the incident beam makes

an angle L9=30 with respect to k~ in the k~-k, plane.

3 4 5 6
SHEAR RATE ( sec 1)

FIG. 3. Relative k-space separation for selected reciprocal-

lattice points as a function of the rate of shear. The specific
separations measured are depicted in the schematic scattering

pattern shown in the upper right-hand corner. The horizontal

displacement of a spot is seen to be proportional to the f„com-
ponent of the reciprocal-lattice point. That is to say, the slope

of the A line is twice the B line, and the C line has zero slope.
There is little relative displacement vertically. A discontinuous

change in relative displacement occurs at small rates of shear;

the equilibrium bcc positions do not merge continuously with

the values obtained by extrapolating to zero shear. Extrapola-
tion of the low shear-rate lines A and B give the proper k-space
values for the distorted 2D hcp structure at the same large rate
of shear.
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FIG. 4. Velocity profiles in the disk cell for several different
rates of shear. All data indicate simple linear shear within ex-
perimental error. There is neither plug flow nor stationary crys-
tal structure near the walls. The velocities reported for 900 pm
are determined from measurements of the rotational speed of
the moving disk.

Velocimetry measurements' were made sampling the 1

mm gap at approximately 100 pm intervals. Each velo-
cimetry run lasted approximately 30—60 sec. Owing to
geometrical constraints, the scattered wave vector was not
parallel to the V direction; but the ratio of the com-
ponents in the shear and velocity directions was

kv /k„=tan 39 . The reported velocities in Fig. 4
represent a direct inference of the local velocity from the
frequency of oscillation of the measured correlation func-
tion without correction for shear aliasing' or multiple
scattering. The actual velocities are quite small and lami-
nar flow with a constant shear is present under all experi-
mental conditions. The velocities reported for 900 pm are
determined from a direct measurement of the wall veloci-
ty and agree well with the light scattering results. There
seems to be neither stationary crystal regions adhering to
the walls producing a large shear in the region between
the plates nor a plug flow having a low shear region in the
center with a high shear near the walls.

III. INTERPRETATION

A. General considerations

The gross features of the observed phenomena are con-
sistent with our shear experiments using the rocking-
cuvette and rotating-cylinder cells. The basic transition
from a twin bcc structure to a distorted two-dimensional
sliding-layer structure is preserved. However, we do not
observe the additional 3D hcp marker, the doubling of

spots near the bcc 110 reciprocal-lattice point in the

k, -k~ plane, reported for the rocking-cuvette experi-
ments. This phenomenon may be related to the more
complex shear in the cuvette. Furthermore, we have ob-
served an initially discontinuous behavior followed by a
steady continuous deformation as the shear rate is in-
creased from zero. These new results lead us to reexamine
the processes at work at low rates of shear.

The shift of the observed spots or reciprocal-lattice
points may be understood as a simple "in-plane" shear of
the bcc (110) layers as is indicated by the arrows in Fig. 1.
Such a deformation will produce a shift of reciprocal-
lattice points in a direction having both k~ and k, com-

ponents, and the shift will be proportional to the k„com-
ponent. Experimental measurements of the magnitude of
the shift in the k, direction are presented in Fig. 3. Note
the dependence of the shift on the k, magnitude of the
spot pairs A, 8, and C. Evidently, as the rate of shear is
increased, each layer distorts until at the end of transition
II it is symmetric and identical to its twin. This deforma-
tion, which does not change the spacing of particles in

strings extended along V nor the spacing of strings along
e, produces a distorted 2D hcp structure like that ob-
served in the scattering patterns at transition II. The real
space-distorted structure is 8% shorter along the V direc-
tion than a true 2D hcp structure. Remarkably, this shear
distortion is perpendicular to the shear direction V' and
has the opposite sense in each of the twins. Furthermore,
the constancy of the incident angle 8, at which the bcc
110 reciprocal-lattice point in the k~-k, plane maintains
its maximum intensity, indicates that the separation be-
tween layers normal to V is a constant (within 10%) as a
function of the rate of shear. The decrease in intensity of
higher-order reciprocal-lattice points indicates an effec-
tively larger Debye-Wailer factor or larger rms fluctua-
tions in particle position about lattice sites. This is not
surprising when one considers the violent nature of the
shearing process. It is surprising that the system main-
tains a fairly regular homogeneous structure, as indicated
by the reasonably simple scattering pattern with well-
defined spots.

The intensity asymmetries in the Laue patterns present-
ed in Fig. 2 may be due, in part, to effects of the in-plane
shear discussed above, but may also indicate other shear
deformations of the real lattice. These deformations can
change the relative distance of reciprocal-lattice points
from the Ewald sphere in this geometry in a nonsym-
metric way. In addition to a shear within a layer in the e
direction, there may be layer-stacking shears in the V'

direction. These shears may be of two kinds: a staggering
of layers in the V direction as one moves along V and a
staggering of layers in the e direction as one moves along
V. These shears correspond to the expected shifts in a
layer of marbles which is pushed over another layer with
a zig-zag motion.

B. Strained bcc crystals

Because the equilibrium sample is an oriented bcc crys-
talline or polycrystalline state as shown in Fig. 1, we in-
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vestigate the configurational energy of a single, oriented,
three-dimensional, bcc crystal as a function of the strains
suggested by light scattering experiments. To this end we
must consider the colloidal-particle interactions. These
particles are highly charged having a potential surface
charge of —10 e. However, the actual charge in solution
is produced by partial dissociation of counterions from
surface-bound sulfate groups. Also, counterions near the
highly charged surface may condense. ' The result of ei-

ther of these processes is to reduce the effective charge for
a given particle. Furthermore, the free counterions (un-

condensed) act to screen the Coulomb interaction between

particles.
Silva and Mokross' have computed the configurational

energy per particle for colloidal particles interacting via
screened Coulomb pair interactions. They find for suffi-

ciently large screening lengths (aa (2, where ~ is the in-

verse screening length and a is the bcc lattice constant)
that the bcc crystal structure has the least configurational

energy, compared to other lattices with the same density,
particle charge, and ~. Thus the bcc structure should be
the most stable at low temperatures. This is a generaliza-
tion of the argument which demonstrates that a system of
point particles, which interact via Coulomb repulsive in-

teractions in a uniform neutralizing background of the op-

posite charge, will form a bcc crystal at low density and

temperature. This is a "Wigner crystal"' and this term
has also been used to describe the bcc crystal structure
seen in the colloidal suspensions. ' ' ' We use the Silva
and Mokross approach to calculate the configurational en-

ergy per particle for different distortions of the bcc lattice.

This energy is given by the following summation which
converges extremely slowly for small va:

2 2 —scf r, (Ze + e (3.1)

+, exp I.2~2 &2 4~2 ~ 3

and the 8 transformation connecting the real I r; } and re-

ciprocal lattices I k; },
3/2

+exp( —
~

r —rI
~

r )= g exp(ik r —k /4v )

I m

1
exp( r2), —2

(2ir)'
(3.3)

where L is the primitive lattice volume and r is any po-
sition in space, to find

Here Ze is the effective colloidal-particle charge, a is the
reciprocal screening length (excluding macroion charge), e
is the dielectric constant of the medium (-80 for water)
and I r; I are particle positions in the lattice excluding the
reference particle at the origin. This summation may be
broken into two highly convergent sums using the method
of Ewald. Here we make use of the integral transform
used by Silva and Mokross,

J exp( r t —a /4t —)dt

Z2e 2 4~;k .-, exp[ —(k~+a )/45 ]
e +

m
L' (k +~)

e ' erfc
~

r —ri ~5+

—~/ r —rI/ K+e erfc
~

r —rI ~5—
2

1 K+
&

~erfc
8m 25

5exp( —~ /45 ) ~ . (3 4)

The reciprocal-space terms result from using the 0
transformation on the integral which extends over the
range from 0 to 5. The integral from 5 to oo is performed
without use of the 8 transformation. The Ewald parame-
ter 5 is adjustable to give optimal convergence and may be
set equal to the reciprocal of the bcc lattice constant,
5= 1/a. To find the potential energy of the reference par-

ticle at the origin, one simply sets r =—0 and excludes this

point (rt =0) from the sum, as has been done already for
the 8 transformation. While this calculation is identical
to that of Silva and Mokross, we present the final result in
Eq. (3.4), because the form is a simplified version of their

I

result and is more easily programmed for computation.
We have not included the energy of the counterion cloud
of the particle at the origin. This will lead to a divergence
of our result as ~a ~0. Inclusion of this term leads to an
extra term dependent on ~a in Eq. (3.4) and gives numeri-
cal results identical to those of Silva and Mokross. How-
ever, as long as we make lattice distortion comparisons at
the same ~a value, this term is not important. Also, if we
are interested in forces or differences in potential at a
given ~a, this term produces no effect.

Distortions of the bcc crystal are studied by using the
following basis vectors to generate the bcc lattice:
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a =a —52b,

b'=b, (3.5)

c —c +63b+5& a — b1

where

a =—(x+y —z),
2

b= —( —x+y+z ),
2

(3.6)

c=—(x —y+z) .
2

Here x, y, and z are mutually orthogonal unit vectors
and a, b, and c are the basis vectors for a perfect bcc
lattice. The velocity vector V for this particular bcc
orientation may be taken parallel to b. The vectors a and
b are basis vectors for the bcc (110) plane shown in Fig.
1. The basis vectors for a distorted bcc lattice are given

by a ', b ', and c ', where shear strains are introduced
into the perfect bcc structure through the 5 parameters.
The experimentally observed shear of the (110) plane indi-
cated in Fig. 1 is generated by 62. Stacking distortions are
produced by 53 for staggering layers in the V direction
and by 5i for staggering layers in the e direction. These
distortions preserve the crystal density, the distance be-
tween particles in a string, and the distance between

strings in the V-e plane.
Basis vectors of the reciprocal lattice must be generated

from a ', b ', and c ' if the sum in Eq. (3.4) is to be per-
formed. To this end we find the following reciprocal-
lattice vectors for the distorted bcc lattice:

fixed values of 5z and 53. The results of this calculation
for aa =1.0 are presented schematically in Fig. 5. Here
5z measures in-plane distortions of (110) layers and
54—53 52/2 measures the relative slip of adjacent (1 10)

layers parallel to b, when both displacement and distor-
tions are taken into account. It is seen that this energy
surface as a function of these variables has an hcp struc-
ture, which is compressed by 13% in the 54 direction
compared to a perfect hcp structure. The peaks in this
energy surface correspond to hexagonal structures (c axis
parallel to V) and have the largest configurational energy.
The lowest energy points correspond to two twin bcc
structures having the experimentally observed orientation.
We define the energy of these structures to be zero. The
saddle point on a line connecting two adjacent twin struc-
tures has a distorted fcc structure. The line 5z=-—,' inter-
sects a subset of these saddle points and represents an in-
plane shear which has brought the (110) layers into the
more symmetric but distorted 2D hcp form, which is ob-
served at the end of the shear-induced transition II. Thus,
in equilibrium, the system sits in one of the low energy

1.0

0.5

0.0

k, = [(1—5i)x+y —5~z]
a

1/2
3 n

2
(1—25i)kv+ — k,

2
—0.5

2"
kb = [(—5i/3+52 —53 —5&52)x

a

+ ( 1 +52)y + ( 1 51/3 53 5152)z ]
—1.0 0.5 1.0

2m 1

a v2 (1—25)/3+ 52 —253 —25,52)k v

2 1k„+ (1+35,)k,v'3 " 6
(3.7)

k, = (x+z)= (V2kv) .
a a

Note that the only shift parallel to the k, direction is pro-
duced by 52, the in-plane shear. Also the magnitude of
the shift will depend on the value of the k„coordinate of
the reciprocal-lattice point, as both the shift and the coor-
dinate are associated with kb only.

The configurational energy P is calculated as a function
of 5z and 53 by adjusting 5~ to minimize p for each pair of

FIG. 5. Schematic drawing of the configurational energy
ca//Zzez, for a distorted bcc lattice of colloidal particles, which
interact via a screened Coulomb interaction with aa =1.0. The
energy surface has a distorted 2D hcp structure as a function of
the shear-strain variables 5~ and 54, which are defined in the
text. The energy is defined to be zero for the perfect bcc twin
structures (o ) and is larger than zero for all other positions.
Distorted fcc structures (U) are found at the midpoint of
straight lines connecting adjacent bcc twin structures. A line for
which 5q ——

6 corresponds to layers which have a distorted 2D

hcp structure. The curved lines connecting bcc twin sites
represent a trajectory for which (ay/a52)=0. The surface has
qualitatively the same structure for 5& ——0 or for 5& which mini-
mizes P.
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FIG. 6. Configurational energy ca//Zie~ for a distorted bcc
lattice of colloidal particles evaluated along a straight line con-
necting adjacent twin sites. The results are presented as a func-
tion of 54(=1.55&) for several values of ~a. The qualitative
structure is similar in all cases and the barrier height drops by
25% over the range of stability for bcc crystals (~a in the range
[0,2]). The potential minima, defined to be zero, correspond to
bcc twin sites. The maximum corresponds to a distorted fcc or
distorted 2D hcp layer structure.

bcc configurations. As the shear rate increases from zero,
the system evolves to a region near the 5z-= —,

' line.
The configurational energy P has been examined in de-

tail along a straight line (54 ——35&/2) connecting two adja-
cent bcc twin sites for aa values in the range [0,2], the
range of stability of the screened Coulomb bcc crystal.
Figure 6 shows the change in the potential as a function
of 54 for several values of aa. For each aa series, a con-
stant is added so that all energies are zero in the bcc con-
figuration. Surprisingly the resulting configurational en-

ergies are all quite similar and diminish only by 25% in
maximum value as ~a increases from xa =0 to 2.

By generalizing the method of Silva and Mokross, cal-
culations have also been made for a crystal which has a
finite number of (110) layers stacked in the shear direction
V'. The same shear strains given by the 5 parameters are
employed and the configurational energy is found to be
nearly identical to that for the corresponding infinite crys-
tal. The bcc configurations have the least energy and are
the most stable equilibrium structure down to isolated sys-
tems of three layers. However, for isolated two- or one-

layer systems the energy surface is quite different and the
configurational energy of the distorted 2D hcp structure
have the least value.

Calculations of the configurational energy have also
been made for 5i constrained to zero. The structure of the
energy surface presented in Fig. 5 is substantially the
same. The bcc energies are identical. The difference be-

tween the bcc energy and the maximum energy of the sur-

face changes by less than 10%. However, along the least-

energy path connecting adjacent twin bcc structures, the
maximum energy for the constrained calculation is three
times that for the unconstrained calculation. Thus, if 5i
does not relax to a minimum energy, the energy barrier
between bcc twin sites is increased threefold.

C. Model calculations

Because the configurational energy surface for a range
of aa( =0 to 2) and different 5i constraints has essentially
the same structure as a function of 5z and 54, we adopt the
following mathematical model for P(5z, 54):

P(5z, 54) =A I cos[2~(5z ——,
' )]

+cos[ —m(5z ——,
'

)+2vr54]

+cos[ —~(5~——,
'

) —2+5~]+ —,
'

I . (3.8)

This potential-energy surface has the same distorted hcp
structure as that in Fig. 5. (Rescaling 54 by a factor
W3/2 will bring this into a true hcp structure as a func-
tion of the variables. ) The stresses or force per particle re-

quired to produce strains described by this potential may
be calculated from p by differentiation subject to the con-
straints of the problem. If a stress is applied to produce a
strain 54 without any additional stresses to constrain 5z, a
path will be followed for which (BPIB5z)

~ s =0. The sys-

tem adjusts so that no additional strains are required to
hold a particular value of 5q. The configurational energy
can be found along this path. The required stress or force
per particle to produce this strain can then be found by
differentiation of P with respect to 54 along this path.
The path for this motion is shown in the upper portion of
Fig. 5 and is labeled by I in Fig. 7. In Fig. 8 the potential
energy and force per particle for this motion are
displayed. The energy is minimum in the bcc and twin
bcc structures. It is maximum in the 3D fcc (distorted 2D
hcp) structure. The force per particle is zero at all of
these points and maximum for 54——0.12. For small
stresses the bcc crystal distorts and begins to shift from
the energy minimum. As the stress is increased the dis-
tortion increases, until the stress exceeds the maximum
restoring force at 54 ——0.12. At this point the crystal frac-
tures and slips or flows. Since we observe a linear shear
profile in our experiments (without plug flow or crystals
sticking to the walls of the cell), we conclude that the ob-
served structure is a flowing structure. It exists beyond
the limit of stability of the crystal. It should be noted,
however, that slip or fracture in ordinary solids occurs for
stresses much lower than that implied by these theoretical
considerations. ' This is thought to be due to thermally
induced defects which provide another mechanism for de-
formation. Indeed, our earlier explanation for this phe-
nomena is based on propagating solitary waves or defects
in the crystal. However, this point of view has not yielded
as rich an explanation of the data as the model to be
developed.

Consider a colloidal crystal which flows when subjected
to a shear stress. The relative motion of bcc (110) layers,
which are parallel to the e- V plane and move parallel to
V, is described by 54. A nonzero internal stress, which
moves 54 away from the bcc minima, must be compensat-
ed by either a drag produced by the solvent or a stress ap-
plied by the walls of the container, or on acceleration re-
sults. However, we assume that the system is overdamped
by the solvent forces so that acceleration terms are negli-
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FIG. 7. Trajectories in 52-54 strain space for M=1.0 and

various A' values in the model potential calculations discussed
in the text. For A' )0.5 an initial starting point where 52 is in

the interval ( —3 3 ) will produce a trajectory which decays to a

stable orbit that oscillates about 52 ——6. This represents a flow-

ing crystal. For A (0.5 an arbitrary initial starting point will

decay to a single point representing a static strain of the crystal.
For 52 ———

3 and —, there are unstable trajectories. Also shown

is the trajectory for (BP/55&) =0 and is labeled I.

FIG. 8. A comparison is presented for the distorted bcc
screened Coulomb potential eaP/Z~e~(za =1.0) and the model
potential P/A along a path for which (BP/552) =0 in each crys-
tal. This path is near that taken by the experimentally sheared
system. The force per particle required to produce the 54 distor-
tion and overcome the potential barrier is also presented
[eaF/Z'e'=B(ca//Z'e2)/854 and F/A =B(P/A)/554]. The
potentials are minimal at bcc twin structures (defined to be zero)
and maximum at a distorted fcc or distorted 2D hcp structure.
The forces are largest near 54—-0. 1 and represent the maximum
strain that the crystal can withstand along this path.

gible. With this approximation in mind, we write the fol-
lowing equation of motion for 54.

Here we take I =61r1)s(a/V 2), where I is the drag coef-
ficient per particle, rj is the solvent viscosity, and s is the
particle radius. The relative solvent velocity between ad-

jacent layers parallel to the e- V plane is given by au/v 2.
When u is not zero, there is a drag-induced stress on the
particles in the crystal. In the absence of other forces, the

layers will flow with the local solvent velocity. However,
—(1/

~

b
~

)BP/854 gives the reaction force per particle in

the V direction as a function of 54 (and 5q) when the crys-
tal is strained. Finally F gives the force per particle pro-
duced by interaction of the crystal with the container
walls. For a statically strained crystal, 54——0, u =0, and
the force applied to the edge of a perfect crystal produces
a homogeneous strain throughout. Each particle in each
layer is strained from its equilibrium position and pro-
duces a small reaction force. This force, when added to
the forces produced by the other particles, balances the
applied force. In this case I is opposite and equal to the
reaction force per particle.

We must consider another equation of motion, because
54 and 62 are not independent. A stress, which changes
54, can also induce a change in 5z, a strain which describes

the in-plane shear of those (110) layers parallel to the e- V
plane. As the layer undergoes an in-plane shear, different
parts of it will move with different velocities relative to
the local solvent velocity of the layer. Those particles
which are at rest with respect to the local solvent will feel
no drag, while the drag on the other portions of the layer
will increase linearly with distance from the line of zero
drag. If we calculate the drag force per particle which
damps the in-plane motion, we see that this force in-
creases with the extent of the layer in the e direction. In
an infinite layer, this is an infinite force and no 52 motion
would be seen. Yet, it is the motion of 52 which is ob-
served experimentally. Thus, the internal stresses pro-
duced by the 52 motion may cause a breakup of the infin-
ite bcc crystal into strips of bcc twin structures which
share common (211) boundary planes. These planes are
parallel to the V-V plane and are the natural twinning
planes in bcc metals. An example of this structure is
presented in Figs. 1(a) and 1(b) where the lines giving the
[111]direction are also the edges of (211) planes separat-
ing two twin structures. In the presence of a shear each
strip of crystal will oscillate between the two twin struc-
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tures, alternate strips will be alternate twins, and the (211)
boundary plane will oscillate parallel to V has shown in
Fig. 1(b). The width of these twin structures in the e
direction will determine the maximum drag force pro-
duced by changes in 52. This modification of the single
crystal analysis maintains much of its content, removes
the infinite drag problem, and forms a basis for under-

standing the striations observed experimentally.
The equation of motion for 52 in the overdamped limit

is given by

(3.10)

=2m A I sin[ ir(52 —',—)+2m—54]

I"5,= — +F' .1 a

Ib

Here I ' is the effective drag per particle and depends on
the crystal width. No estimate of its value is given at this
time. The reaction force per particle of the crystal struc-

ture is given by —(1/
l

b
l BP/552), where we assume P is

still given by the infinite crystal form. F' represents the
forces applied by the walls of the container. The solvent

velocity is the same everywhere within a given layer and

therefore it does not enter as a factor in this equation.
The forces F and F' exerted by the container walls on

the crystal are taken to be constant and equal to their
time-averaged values. If F' is not zero by symmetry argu-

ments, it will certainly oscillate about zero. Therefore, it
is set equal to zero. The value for F is constrained be-

cause the velocimetry data indicates that the average local
velocity in the colloidal structure is the same as the local
velocity in the solvent. There is no unusual flow, no plug
flow, nor any crystals sticking to the walls. Therefore,
(5q)=u and we find the average value of F to be

F=(1/
l
b

l
)(BP/B5q), where the brackets represent time

averages.
If the form for P presented in Eq. (3.8) is used to calcu-

late the forces per particle in the equation of motion, we

have

[f2+(+f4)'~']'"
r lb

(3.14)

and is inversely proportional to the probability for finding
the system in a given state of distortion. Normalized
probability distributions are presented in Fig. 9 for some
of the trajectories presented in Fig. 7. These distributions
are presented as a function of 54 from which the value of
5z must be inferred. For A & —, the distribution functions
are 5 functions representing single unique states. As A
increases above —,', the probability becomes continuously
distributed having peaks where the crystal force is strong

0.3—

sample of trajectories has been computed numerically and
is presented in Fig. 7 for &=1 and various values of A.
Here a system started for any value of 52 in the range
( ——, , —, ) will decay to a stable periodic orbit about 52 ———,.
An increase in the rate of shear corresponds to an increase
in A. As A increases, the trajectories become progres-
sively more straight and close to 5z ———,

' for all values of
54. The maximum deviation of a trajectory from 52 ———,

'

shifts to larger 54 as A increases. For A (—,
' there are

no stable periodic trajectories. A given starting position
will decay to a point in the 5&-5z space and this represents
a nonflowing distortion of the bcc crystal.

Physically the crystal is strained for low values of A
but flows for large values. If the rate of flow is not too
large the system can have significant in-plane relaxation
of the (110) layers to produce distorted bcc structures. As
the rate of shear increases, the in-plane distortion is limit-
ed by solvent drag forces and the trajectory tends to the
52 ———,

' line.
The speed of a point along a trajectory is given by

+sin [n (52——', ) +2m 54] J
=2m Af4 0.2—

(3.11)

and

=2m.A Isin[2m. (52——,
' )]+—,

'
sin[@(52——', ) —2m54]

2

0.1 CO

2.0

1.0

+ —,
'

sin[77(52 ——', )+27754] I =27TAf2 .

(3.12)

0.0
0.0

I

0.2 0.4 0.6
84

0.8
0.51

1.0

The equation for trajectories in 54-62 space may then be
found from a ratio of the two equations of motion, (3.9)
and (3.10), as follows:

d54 A+ f4
f2

(3.13)

where M=I"/I and A =
l
b

l
(I u +F)/2~2. Thus tra-

jectories may be parametrized in terms of W and A. A

FIG. 9. Probability density P for finding the model colloidal
solid in a given state of distortion as a function of 54 and
parametrized by A'. For A' (0.5 the system is static with one
strain state for each A value. For A )0.5 the system flows
and has a continuum of possible strain states. The largest prob-
ability for a given A corresponds to the state of greatest resis-
tance to flow along a given trajectory. As the rate of shear in-

creases (A increases) the probability becomes more uniformly
distributed over the trajectory and the system becomes more two
dimensional in character.
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and retards the motion. For large shear the probability
becomes uniformly distributed. The evolution from a
peaked to a uniform distribution function is also observed
experimentally. The reciprocal-lattice points of the bcc
structure elongate continuously into tubes of light parallel

to kv for k„&0as the rate of shear is increased. The
tubes simply represent the multiplicity of structures im-
plied by the probability distribution and are responsible
for the scattering seen. Because the probability distribu-
tion can be calculated for a given trajectory in this model,
the time-averaged reaction forces of the crystal may also

be calculated. The force F'=(1/
~

b
~
)(r)JIB52) is trivi-

ally zero because the trajectories are periodic. It is zero by
assumption, otherwise. The force F=(1/~ b

~
)(r)Q/854)

2mAf4 —is presented in Fig. 10 as a function of
&u

~

b
~

/2rrA for W= l. Here the definition of A has

been used in conjunction with F=(1/
~

b
~

)(r)Q/r)54) to
determine I u

~

b
~

/2trA.
Now that the shear rate has been related to A and the

probability distribution as a function of A is known, the
most probable distortion 5q can be found as a function of
shear. This result for our model with W= 1 is presented
in Fig. 10. At zero shear the distortion represents that for
a bcc crystal. For infinitesimal rates of shear there is a
discontinuous jump from the exact bcc value to values
which produce distorted bcc structures. As the rate of
shear is increased, 52 evolves continuously to a value con-
sistent with the distorted 2D hcp structure. These model
results are consistent with experimental observation.
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FIG. 10. The scaled force of resistance to flow
—f4 ——(1/2rrA)(BP/854) per particle is presented as a function
of the scaled shear 1 u

~

b
~

/2nA. The force decreas. es with in-
creasing shear and indicates that the colloidal flow is shear thin-
ning. Also shown is the most probable distortion (upper curve)
and minimum distortion (lower curve) for 52 as a function of the
rescaled shear. Note the discontinuous behavior between zero
and finite values of shear. The experimental data has been fit to
this model calculation, as shown, by adjusting the particle
charge to Z =360 to give a reasonable fit.

IV. DISCUSSION

In this paper we report experimental observations of the
low shear-rate order induced in shear-oriented bcc col-
loidal crystals. At zero shear, oriented bcc twin structures
coexist in suspension and macroscopic striations are ob-
served. For small nonzero rates of shear the structure de-
forms discontinuously to a (time-averaged) distorted bcc
twin structure. For increasing rates of shear, this distort-
ed bcc structure evolves continuously into a distorted 2D
hcp structure.

The data is interpreted on the basis of shear distortions
of a bcc crystal lattice and a deterministic mechanical
model of overdamped collective particle motion. The
flowing structure is viewed as alternating layers of de-

forming twin bcc crystals stacked in a direction perpen-
dicular to both the shear and velocity directions. This
structure is tentatively identified with the experimentally
observed striation. The shear flow causes these crystals to
oscillate between the two different twin structures. For
small rates of shear there is sufficient time for the crystals
to relax that a distorted bcc twin structure can be identi-
fied from light scattering studies. However, the relaxation
is not infinitely fast and there is a discontinuous jump be-
tween the zero shear and finite shear scattering patterns.
As the rate of shear increases there is even less time to re-
lax and the crystal adopts a structure halfway between the
two twin structures, a distorted 2D hcp structure. The
strain in the velocity direction becomes uniformly distri-
buted in time and the light scattering exhibits more of a
two-dimensional behavior.

While this model does involve edge dislocations which
form the boundaries between the twin bcc structures, it is
not the expected defect-assisted motion associated with
plastic flow. We do expect plastic flow at applied stresses
below those used in our experiments. The alternation be-
tween the two bcc twins should not be considered a Mar-
tensitic transition, ' because it is not thermodynamically
driven. Furthermore, Martensitic transitions generally in-
volve a volume change (shear and compression) while
these colloidal samples show only shear distortions. The
structure referred to as the distorted fcc structure has an
energy larger than the undistorted equal-density fcc struc-
ture, the equilibrium structure for ira & 2. This undistort-
ed fcc structure cannot be reached by the shear distortions
investigated here; rather, the particle density in strings
along V must be decreased in favor of more, properly po-
sitioned strings. In some of our experiments we observe a
flickering in the diffraction pattern at low shear. The fre-
quency of the flickering increases with increasing shear
and supports our model for the alternating twin crystal
Aow. However, this flickering is not always reproducible
and may indicate a polycrystalline structure extending
along V as well as that along e. The drag mechanism
which breaks the crystal up along e may also operate
along V if the relative motion between particles and sol-
vent becomes too large.

The in-plane friction factor I" is left as a parameter in
the theory and must depend on the size of individual crys-
tallites parallel to the e direction. We have presented nu-
merical results for M=1 which implies I =I". For this
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M value at limiting small rates of shear, the most prob-
able 52 value is nearly the smallest possible value for the
model potential given in Eq. (3.8). This value is approxi-
mately constant for M&1 and increases for W& 1. For
M =1 the minimum 52 value corresponds with the experi-
mentally measured distortion at limiting small rates of
shear. Differences between the model potential and the
true bcc potential will undoubtedly affect the agreement
between predicted and measured values of 5q. However,
we have compared the theoretical minimum and most
probable values of 5~ for M =1 with experimentally mea-
sured distortions (most probable experimental values}.
This comparison is presented in Fig. 10. The fit between
theory and experiment determines A and consequently
the effective particle charge, if we assume 5& ——0 and
xa = I. %'e have also assumed that the potential barrier
height between the bcc twin structures is the same for the
model potential and the screened Coulomb potential cal-
culation. The charge we find is Z=360 and is in good
agreement with that expected experimentally. This result
supports our model which takes a different point of view

than defect mediated flow.
The assumption that ~a =1 is not critical because the

maximum in the configurational potential energy present-
ed in Fig. 6 varies by 25% over the stable range of aa.
The chosen value is representative. We have chosen
5~ ——0, because this variable represents a crystal strain
which will also be damped by the solvent. Furthermore,
layers of alternating bcc twin structures will produce op-
posing stresses tending to limit 5~ ——0 as the system is
sheared. Thus 5~ is taken to be zero.

A prediction of this model is that the shear viscosity
should decrease with increasing shear. Shear thinning has
been observed in colloidal suspensions; ' ' but for suspen-
sions as dilute as these, shear viscosity measurements are
difficult. However, ion exchange-resin beads become
trapped in the colloidal solid if they are small in diameter
and settle to the bottom if they are large. These phenome-
na suggest a shear-thinning behavior. Shear-thinning
behavior may also be responsible for the spot doubling
seen in the rocking-cuvette cell at low rates of shear. The
low shear region in the cell center will have a large viscos-
ity and plug flow may develop. A high shear region near
the cell walls produces one set of spots and the plug
another. The shear-thinning behavior is qualitatively the
same as predicted by Evans for the soft-sphere fluid sys-
tem. However, the force F is directly related to the intrin-
sic stress or pressure tensor for the colloidal particles and
this function decreases with increasing shear in opposition
to the prediction for a pure soft-sphere fluid. However,

one system is a pure fluid and the other is a suspension.
This study looks at low shear near the solid phase, while
Evans's study extends to correspondingly larger rates of
shear.

The shear-induced distortions predicted for pure
fluids and used for colloidal liquids expands the pair
distribution function about the equilibrium pair distribu-
tion function. For the model presented in this paper the
most probable state of the system is not located at the
equilibrium position. Rather it is near the position of
maximum force on the appropriate trajectory. If this po-
sition can be determined, it is a better point of expansion
for theoretical analysis. Whether this behavior is related
to nonanalytic behavior of transport properties remains to
be seen.

One may question the adequacy of a "single crystal"
description of the shear flow. The shear flow might
break the crystal into a large number of independent slabs
which freely slip past one another. As the shear increases
the slab thickness decreases and the slabs gradually relax
to the 2D hcp structure. This would be supported by ex-
perimental observation, but the previously discussed cal-
culations indicate a different behavior. Theoretically the
slabs would not exhibit much internal relaxation until

they were one or two layers thick. Then the relaxation
would be nearly complete. One would expect to see a ra-

pid change from bcc to hcp or a coexistence of the two
structures, as a function of the shear rate. This is not seen
experimentally.

Finally, packing arguments appear to be a key to under-
standing the shearing process in bcc crystals. The (111)
directions are the closest packed directions and the (110}
planes are the closest packed planes. Stressed bcc crystals
will slip along these directions. In a shear flow colloidal
crystals orient with a (111)direction parallel to the velo-

city of the flow with (110) planes perpendicular to the
shear. Increasing the rate of shear distorts (110) layers as
discussed in this paper, but the (111) direction is unaf-
fected in packing. Larger rates of shear break up the
(110) layers, but strings of particles are still directed along
the flow direction. Finally the strings break up leaving an

amorphous structure at very large rates of shear.
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