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General properties of the semiclassical time propagator are given for molecules in interaction with

intense laser fields, i.e., for molecular systems advanced by a periodic time-dependent operator. The

operator expression of Floquet's theorem is used to unify various approaches in the literature and to

emphasize that the problem can be reduced to a time-independent one with an effective quasienergy

operator, if evolution is only considered at multiples of the optical period. The Magnus expansion

(through third order) is used to obtain an explicit expression for the quasienergy operator. The

recursive-residue-generation method, devised to evaluate transition amplitudes for systems with a

very large number of coupled states, is developed in detail and applied to the model problem (with

over 3)& 10' states) of an anharmonic oscillator, dipole coupled to the laser and also linearly coupled

to a multimode harmonic bath.

I. INTRODUCTION

Over the past few years, the theory of excitation of
atoms and rnolecules by intense lasers has advanced con-
siderably. ' Nonperturbative calculations within the
dressed state or the semiclassical molecule-field descrip-
tions, in addition to those employing the rotating-wave
and other approximations, have been performed on a
number of small molecules or for relatively small subsets
of states in larger molecules. These calculations were re-
stricted to fewer than one thousand states, since eigenvec-
tors of large matrices were required. In order to bypass
this bottleneck, in this study a new approach to the multi-
state problem is formulated and applied to a model; calcu-
lations with many more than 10 states are possible.

We will begin the formulation within the semiclassical
theory; the molecule is regarded as a quantum system and
the radiation as an externally provided classical periodic
field. This problem is then equivalent to the general prob-
lem of a quantum system advanced by a periodic time
dependent Hamiltonian. Such systems are effectively
studied by means of Floquet theory. ' In Sec. II A, we
first review how the operator formulation of Floquet
theory' ' leads to a factorization of the time propagator
into periodic and exponential aperiodic components. This
leads to the significant result that the time-dependent sys-
tern can be advanced by means of a ti'me-independent ef-
fective Hamiltonian M, the quasienergy operator, provid-
ed that time intervals are discretized by observing the sys-
tem only at integer multiples of the optical cycle. More-
over, the operator expression of Floquets theorem is sys-
tematically used to unify various approaches relating to
Floquet theory. Then, in Secs. IIB and IIC, we show
how the propagator can be more fully specified by the ad-
ditional assumptions of symmetry and reality of the
periodic Hamiltonian. In particular, a discrete mi-
croreversibility principle can be derived, similar to the
usual microreversibility principle, but only valid for mul-
tiples of the optical period. Finally, in Sec. IID, the

Magnus expansion of the time-propagator ' is used,
along with results from the preceding section, to obtain an
explicit expression (through third order) for the effective
time-independent Hamiltonian.

In Sec. III, we detail the new recursive residue genera-
tion method' (RRGM) which is particularly adept at cal-

culating, in complete generality, transition amplitudes,
(f

~

exp( —iMt A')
~

i ), between two arbitrary states,
~

i )
and

~ f ), and where M is any time-independent Hamil-
tonian. In this method, which focuses on transition am-

plitudes one at a time, the key feature is the recursive gen-
eration of residues of the Green operator associated with
the propagator exp( —iMt

~

iri), thus avoiding the necessity
of calculating eigenvectors of large matrices. The residues
are generated by employing the Lanczos method' to
recursively convert the Hamiltonian matrix to tridiagonal
form —a structure which greatly facilitates the calculation
of eigenvalues. The residues are then calculated directly
from several sets of eigenvalues of tridiagonal matrices.

Development of the RRGM was particularly inspired
by studies of the Cambridge solid-state physics group '

on the electronic structure of disordered solids. Their em-

phasis was on computation of the local density of elec-
tronic states about a site in the disordered solid. In other
applications, Lanczos recursion and Lanczos polynomials
have been used in several areas, including studies of the
Jahn- Teller effect, spacings of molecular vibrational
eigenvalues, magnetic resonance line shapes, and pho-
toionization. In particular, since the time-dependent in-
teraction of molecules with intense lasers can be reduced
to a time-independent problem by using an effective Ham-
iltonian to advance the system, Sec. IV is devoted to nu-
merical study of a model consisting of an anharmonic os-
cillator, dipole coupled to the laser and linearly coupled to
a multimode harmonic bath. Emphasis is placed upon
characteristics of residue spectra, with comparisons be-
tween results from matrix diagonalization and the
RRGM. A summary of the method is presented in Sec.
V.
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II. FLOQUET THEORY

The linear, unitary time propagator, U(t
I
tp), is evolved

by the time-dependent Schrodinger equation

dU(t
I
to)

H(t)U(t
I
tp)=i'

dt

H(t) =H, +H, (t),
U(to

I
tp) =1 .

In the present section, which was inspired by earlier work
in Ref. 8(c), we will see how the expression for the time
propagator is restricted by assuming several properties for
the Hamiltonian operator. Section II A is mainly devoted
to the operator expression of Floquet's theorem, '

which results from assuming periodicity of the Hamil-
tonian in time, and to its relation to other formalisms
used in the literature. In Sec. II B, we derive a property of
the propagator resulting from assuming reality and time
symmetry of the Hamiltonian about a given instant,
whereas in Sec. IIC we go through the consequences of
combining the assumptions of Secs. IIA and IIB, i.e.,
that a "discrete microreversibility principle" can be ob-
tained together with the reality of the quasienergy opera-
tor introduced in Floquet's theorem. Finally, in Sec. IID
an explicit expression for that operator is given in the case
of sinusoidal time dependence.

A. Properties resulting from the periodicity
of the Hamiltonian in time

dP(t it, )
H(t)P(t

I
to) —iA'

i a) =P(t
i
to) i

a)e

The time-dependent vectors P(t
I
tp) I a) are called steady

states whose r representation is the u (r, t) of Sambe.
The relation to the matrix formalism used by Wyatt

and co-workers is easily seen: First, denote the field-free
eigenstates by j I

k) I,

Ho I
k &

=
I

k &Ek . (6)

By using the closure relation

g I
a)(a

I
=1

the transition amplitude between the (field-free) states
I

i )
and

I f ), i.e., the (f, i) matrix element of Eq. (3) becomes

&f I
U(t

I
to) I

'& = 2 &f I
P('

I
'o) I

a&

ie (f to) )
fi

Xe (aii& .

Then, if we put

&f I
U(t

I
to )

I
' &

= Uf (t
I

tp )'
&f I

P(t
I
to) I

a & =@f (t)

(a
I
i ) = (a

I
P '(t i pto ) -I i ) =tI)*., (to),

E~ =p~co,

When the Hamiltonian is periodic in time,
H, (t+r)=H)(t), then the propagator has the following
properties.

(1) For evolution through n cycles (n is an integer)

Eq. (8) for the i ~f transition amplitude becomes

Uf (t
I
tp) = g @f&(t)e tI)*t(tp)

or, in terms of matrices,

(10)

U(tp+nr
I
to)=[U(to+a

I
tp)]" .

This relation can be easily proven from Eq. (1) (see also
Refs. 10 and 12).

(2) The evolution operator may be factored into a uni-

tary time-dependent periodic operator times the exponen-
tial of a "unitless" Hermitian time independent -operator:

P(t
i t, )= imago(. t tp)Dm( (12)

U(t
I
t, )=@(t)e ' C) '(t, ) .

Moreover, the relation with Shirley's time-independent
matrix formalism may be seen as follows: since P(t

I
tp)

is a periodic operator, it may be Fourier expanded

U(t
I
t, )=P(t

I
t, )e

P(t+r
I

tp)=P(t
I
tp) P(tp

I
to)= 1

(3)

m=0, +j,

Multiplying on the right by
I
a), and using the closure re-

lation for the molecular states [ I

k ) I, then gives

This is an expression, in operator language, of the well-

known Floquet theorem.
Now, let us write the eigenvalue equation for the

quasienergy operator M=AcoM, where %co is the photon
energy,

P(t
I t, ) ia) = gg ik, m)D„",

k m

where

Ik, m)= Ik)e

(13)

Mia)=
I
a)e, . (4)

These (real-valued) eigenvalues and eigenvectors will be
called quasienergies (or Floquet energies) and Floquet
states, respectively. Spectral properties of the operator M
have been discussed by Gesztesy and Mitter. "Next, mul-

tiplying the Schrodinger equation (1) on the right by the
Floquet state Ia) and replacing U(t

I
tp) by its expan-

sion, Eq. (3), we obtain

may be regarded as dressed molecular states, and
Dk '= (k

I
D

I
a) are the coefficients for the expression

of a steady state in the dressed molecular basis. Next,
from Eq. (4), with

(t) pEO(e ltdt+ e
—l )tdt

first using the closure relation for the dressed molecular
states
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g ~k, m)(k, m
~

=1,
k, m

(14) C. Property resulting from the periodicity, the reality
and the symmetry of the Hamiltonian

and then multiplying on the left by ( k', m' ~, we obtain

g g [(Ek+mfuu)5k k5
m k

Let us assume that the Hamiltonian is periodic (of
period r), in addition to being real and symmetric about

to, and let us take t =n~ with n =+1,+2,. . . . By
Floquet's theorem [Eqs. (3) and (4}]we know that

+VI, k(5~ ~+)+5~ ~ ))]Dk~'=e~Dk~ ~,
U(to+nr

~
to ) =exp +—M(nr) (21)

where

Vk k
——,

' E ( k—'
~ p ~

k ) .

This equation is identical to the one derived by Shirley.

where M is the Hermitian time-independent quasienergy
operator. Inserting Eq (21) into Eq. (18},we obtain

l l
exp — M(n—r) =K exp +—M(nr) K

fi

B. Property resulting from the reality and symmetry
of the Hamiltonian about a time to

If we assume that there exits a time to about which the
Hamiltonian is symmetric, i.e.,

or still

exp ——M(nr) =exp ——(KMK)(nr)

Hence the quasienergy operator is real,

(22)

KH(tQ +t)K=H(to —t)

and that the Hamiltonian is real

KH(to + t )K =H(to + t )

(15)

(16)

where X is the antiunitary complex conjugation operator
with the properties

K=X, E =1, (17) l l
exp ——M(nr) =K exp ——M(nr)

fi
K (24)

(23)

which entails that the Floquet states
~

u) may always be
taken as real, thus reducing by half the recursion calcula-
tions (see Sec. III B).

The quasienergy operator being Hermitian, time in-

dependent and real, we also have the obvious relation
r

U(to + t
~
to ) =KU(to t

~
to )K (18)

then, the unitary time propagator has the following prop-
erty: or still (for any initial time to)

U(tp+ n~rtp ) =KU (to+ nr
~

to )K (25)

for all times t. Indeed, U(to+ t
~
to ) is determined by the

Schrodinger equation

dU(tQ +t
~

tQ )
H(to+t)U(to+t

~
to ) =iA' (19)

If we change t into —t and take the complex conjugate of
both sides of Eq. (19), we obtain, in view of Eqs. (15), (16),
and (17)

d(KU(to —t
~

to )K)
H(to + t )(KU(to t

~ to )K}=ik-
dt

which may be regarded as the expression of a discrete mi

croreuersibility principle Indeed E. q. (25) resembles the
usual expression of the microreversibility principle [see
for instance Ref. 28(b)] but is distinct from it in that it
only holds for the discrete times to+nr (n =0,+1,. . .).
This brings out once again that a physical problem with a
periodic Hamiltonian reduces to a time-independent prob-
lem with an effective quasienergy operator if the evolution
is only considered at times to+ n 7.

D. Magnus expansion of the quasienergy operator

Thus we see that

U(t*, +t
~

t", )

(20) An explicit expression for the quasienergy operator M
can be developed by means of the Magnus expansion'
(for a different approach, see Ref. 10), where Q„(t)is the
nth-order term,

KU(to t
~
to )K—

are solutions of the same differential equation and since
they have the same initial conditions, i.e.,

U(to
~

to)=KU(to
i
to)K=1,

or

l l
exp ——Mr =exp ——g Q„(r)

Mr= $ Q„(r),
n=1

(26)

(27)

they are equal. where, for example, through second order,
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tp+ 7

Qi(r)= f, H(ti)dt's,

l ~p+
Q,(r)= f dt~ f dt, [H(t~), H(t, )] .

(28a)

(28b)

It is a well-known property of the Magnus expansion that
the Q„(r)are Hermitian operators, which implies that

k even

Qk(r) =0 (29)

since Qk(r) (k even) are pure imaginary operators (when
the Hamiltonian is real) as can be seen from the general
expressions for Q„(r),given for instance in Table II of
Ref. 8(c).

Thus we are left with the expansion

g Q„(r)
n=1

is, in its turn, Hermitian, which agrees with the fact that
Mr itself has to be Hermitian.

Moreover, requiring in addition that M~ should be real
[see Eq. (23)], entails

U(to+nr
~

tp) =exp ——M(nr) (35)

As a result, the transition amplitude between field-free
molecular eigenstates belonging to the spectrum of H is
given by

&f ( (((to+co( to)
(
i & (f e=xp — (Ho+ V)(ee) i

&f I
U(to+i

(
to) (i &

= (f exp —'Mt i—(37)

(36)

where V=M —H may be regarded as the time-
independent perturbation inducing transitions when M
advances the system to multiples of ~. It should be em-
phasized here that the method developed below does not
explicitly rely on M being a quasienergy operator and nr
being a multiple of the optical period, but can be used for
any transition amplitude of the type

Mr= g Q, (r) .
I odd

When the time-dependent perturbation is of the form

H, (t) = V„cos(tot)

(30)

(31)

i.e., for transition amplitudes between two arbitrary states,

~

i ) and
~ f ), and where M is any time-independent

Hamiltonian, which advances the system to any time t.
The method, which is based on recursive generation of the
residues of Green functions, will be termed the recursive
residue generation method (RRGM). '

the explicit expressions for Ql(r) (l= 1 and 3) are (we used

the symbolic language MACSYMA to derive these results) A. Green functus. ons

Q3(r) =—

from which we see that

M) ———Qt(r) (l=l and 3)
1

7

Q)(~) =H&&~,

,', I[H', [H', V„]]——.'[V„[H',V, l]Ir
A co

(32a)

(32b)

(33)

g(g) =(gI —M)

as follows:

(38)

(f
~
U(tp+t tp)

~
i) = . f d(e '~'Gf;(g), (39)

1

As is well known (see, e.g. , Ref. 29), Eq. (37) may be ex-

pressed in terms of the resolvent

is a time-independent (and of course also real and Hermi-
tian) operator. It therefore seems safe to conjecture that
relation (33) holds for all odd values of l. To sum up

M= +Mt,
I odd

(34)

where MI is a real time independent Herm-itian operator.
It is clear that any truncation of the summation in Eq.

(34) gives rise to an operator having the required proper-
ties for M, i.e., to be real, time independent, and Hermi-
tian. In other words, the properties required for the
operator M are fulfilled term-wise by the M~ operators.

III. RECURSIVE RESIDUE GENERATION METHOD:
RRGM

As seen in the preceding section, it is a consequence of
Floquet's theorem, Eq. (3), that evolution through time in-
tervals which are multiples of the optical period ~ is
governed by the propagator

Mia)= ia)e
and the closure relation

N —1

ia)(ai =1,
a=O

(40)

(41)

the transition amplitude, Eq. (37), may also be expressed
as

N —1 —re t/A
&f

~
U(to+t

~
to) )

i &
= g &f

a=O
(42)

Direct calculations of the eigenstates
~

a ) being impracti-
cal, if not impossible for X & 10, it is important to note,
and it is the very gist of the RRGM, that Eq. (42) can be

where the contour C runs from + oo to —oo, parallel to
the real axis just above the singularities of the "off-
diagonal" Green function

Gf ((p)=&f ~g((p)
~

~ &

The starting point of the RRGM is, however, different:
using both the eigenvalue equation
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evaluated without directly computing the eigenvectors

i
a ), by using the following ideas.
(i) The coefficient (f i

a) (a
i
i ) can be expressed as a

linear combination of, at most, four positive numbers:

0&R»(a) &1,
N —1

Rgg(a) =1
a=O

(48a)

(48b)

(f ia)(a fi)= —,'(
i
(u ia) i' —

i
(v

i
a) i'

(Parseval's relation). In terms of the residues, Eq. (43) can
now be written

where the four transition vectors are

(43)

Rf;(a) = —,[R„„(a)R»—(a)+iR ~(a) —iR~(a)]

and the i ~f transition amplitude, Eq. (42), becomes

(f i U(tp+t
I
tp) Ii)= g Rf (a)e

a=O

(49)

(50)

(ii&+ if&),

i
v)= (ii) —if)),

(ii)+i if)),
2

(44)

The transition amplitude is thus an ¹erm expansion in
which the coefficients of the exponentials are given by Eq.
(49), i.e., expressed in terms of the residues of diagonal
Green functions, which can be explicitly constructed [see
(iv) below].

(iii) The residue R»(a) is by its very definition (see,
e.g., Ref. 31)

1

2
R»(a)= lim [(g—e )G»(g)] .

e
(51)

G„(g)=(Ai(gl —M) 'iB), (45)

where id) iB)= ii), if), u), iv), iw), or iz).
Once again, using the closure relation, Eq. (41), we obtain

(ii) Next, let us consider the matrix elements of the
resolvent, i.e., the Green functions, with respect to the
kets

i

A ) and B),
(iv) Focusing upon the explicit construction of the diag-

onal Green functions Gz~(g), let us use an orthonormal
basis in which A) is the ft'rst member in order to ex-

press the matrix M corresponding to the operator M. By
the rule to invert matrices we have

Gg„(g)=(A i(gl —M) 'iA)=
det[gl —M]

N —1"-' (a ia)(aiB)»
a=p

(46)
(52)

R»(a)=
i (a

i
A)

i
2, (47)

and since
i

A ) is normalized, the diagonal residues
Rzz(a) are bounded and add to unity:

in which (2 ia)(a iB) is recognized as the residue
R»(a) corresponding to the simple pole e of the Green
function G» (g). Moreover, since

a=O

where [gl M]'"' is —the reduced matrix obtained by de-
leting the first row and column from [gl —M]. The
eigenvalues of M and M'"' are Ie~} and Ie~ '}, respec-
tively. From Eqs. (51) and (52), the residue is then the
product of (N —1) factors (each typically the order of un-

ity):

Rzq(a) =I I p(a)l q ~'(a) I '"' i(a)I'+i +i(a) . . I Iv"' i z i(a), (53)

where

I p"r'(a) =(e —ep ')/(e —er) . (54)

Ie~"'}, and Ie~"},thus reducing by half the recursion cal-
culations.

The significant result is that diagonal residues, and
hence transition amplitudes [see Eqs. (49) and (50)] can be
computed directly from five sets of eigenvalues, [e },
[e }, [e ' }, [

e'"' }, and I
e"} without explicitly con-

structing eigenvectors.
For the usual case where (f i

a) and (a ii ) are real
numbers, i.e., when i i), i

f), and M are real (see Sec.
II C when M is a quasienergy operator), Eq. (49) reduces
to

Rf, (a)= —,
' [R„„(a)—R„,(a)]

so that only three sets of eigenvalues are needed, [e },

B. Recursive method for tridiagonalization

In order to generate the sets of eigenvalues needed to
compute residues in Eq. (53), we will use the Lanczos re-
cursion method' to convert the quasienergy matrix M
into a Jacobi (tridiagonal) matrix J. With the exception
of a diagonal matrix, the Jacobi representation of the
quasienergy operator is that which is most compact.
Once the diagonal [ap, a ~,. . . } and off-diagonal
[bi, bz, . . . } elements of J have been computed, the eigen-
values are obtained quickly [in about 10% of the total



30 THEORY OF LASER-MOLECULE INTERACTION: 877

~
n+ 1)= IM

~

n ) —
~

n )a„—
~

n —1)b„jlb„+~, (56)

where a„=(n
~

M
~

n ), and b„+&normalizes the residual
uector, IM

~

n ) —
~

n )a„~n —1)b„j.By construction,
at least in infinite precision arithmetic, each recursion
vector is implicitly orthogonal to all previous ones. In or-
der to start the recursion, we choose either

~

0) =
~

u ) or

~

0) =
~

u ). A very important feature of this procedure is
that only two recursion vectors are needed in fast storage
in order to build the next vector.

Having generated the sets of self-energies and off-
diagonal coupling energies from the starter ~0)=

~

u),
two diagonalizations (using TQLRAT) yield eigenvalues of
J, denoted Ie j, and eigenvalues of the reduced Jacobi
matrix in which b, is set to zero before diagonalization,
denoted Ie~"'j. From these two sets of eigenvalues, all
residues R„(a)[henceforth the diagonal residues Rzz(a)
will be denoted Rz(a)] are computed from Eq. (53).
Priming the recursion method with the other starting vec-
tor

~
0) =

~

u ) then leads to two additional sets of eigen-
values Ie j and Ie' j. (Eigenvalues of the two full J ma-
trices will be identical, for the

~
u) or

~
u) starting vec-

tors. ) The residues R„(a)are then computed from an
equation analogous to Eq. (53). The transition residues
R;t(a) then follow very simply from Eq. (55).

A significant feature of the recursion method is that the
number of chain links n needed for convergence is usually
much smaller than N, the size of the original molecular
basis. In effect, most of the physics of the i ~f transition

CPU (central processing unit) time] and with no addition-
al storage by use of the EISPACK routine TQLRAT. Tridi-
agonalizing M is best viewed as the result of a transfor-
mation from the original molecular basis ( ~

k ),
k=1,2, . . . , N j to the recursion basis I ~

n),
n =0, 1, . . . , N —1 j. In effect, we are transforming M
with the matrix of recursion vectors U, U MU=J, al-

though the procedure is done in steps, with no need to
store the whole transformation matrix U. In this new

basis, the only nonzero matrix elements of operator M,
i.e., the nonzero elements of matrix J, are the diagonal
self ener-gies (a„)and the nearest-neighbor coupling ener

gies (b„).The result is that we have converted the origi-
nal problem, with a complex network of interstate cou-

plings, to a one dime-nsional (Hiickel type) disordered lat
tice We .will refer to a„and b„+&as specifying one link

in this one dime-nsional chain used to portray J (e.g., see
Ref. 32).

In the Lanczos algorithm, as reformulated by Paige, '

each recursion step 'forges a nehru link in the chain "Sta.rt-
ing with the initial recursion vector ~0), after forming
the vector M

~
0), the first self-energy is a p = (0

~

M
~

0).
The residual vector IM

~
0) —

~
0)ap j is then formed; its

norm determines the first coupling element in J,
b, =[~M j 0) —)0)ap~ ~' . The next normalized recur-
sion vector is then

~

1)=(M ~0) —~0)ap)lb~ Now, .
given the recursion vectors

~

n ) and
~

n —1), and the pre-
vious chain link (a„~,b„)in fast storage, the next chain
link is then generated from the explicit three-term re-

currence relation

is concentrated in a relatively small subspace (dimension

n) of the full Hilbert space. As recursion proceeds, each
chain link generates a more distant environment of the
transition of interest. As a result, the eigenvalues and

largest residues which are most important for the i~f
transition are generated quickly; refinement of these
values along with the generation of small residues and
their eigenvalues occurs as n increases. This feature will

be demonstrated in the next section. The same effect was

seen in earlier applications of the Lanczos method in

solid-state physics and in magnetic-resonance line-shape
calculations

As recursion proceeds, rounding errors in finite pre-

cision arithmetic lead to loss of significant figures which

produces a gradual (after 30—50 steps) loss of global

orthogonality (but not linear independence) in the recur-

sion basis. Numerical experience has shown that this re-

sults in multiple copies of some eigenvalues, usually those

on the edges of the range of eigenvalues. In addition,
some "incorrect eigenvalues" (i.e., eigenvalues which are
poor approximations to any real eigenvalues) are pro-
duced, which eventually settle onto actual eigenvalues as
n increases. These spurious eigenvalues must be re-
moved from the eigenvalue lists before computing resi-
dues from Eq. (53). This is accomplished in a two-step
procedure. First (for the recursion basis evolved from

~

0) =
~

u )), multiple copies of eigenvalues are deleted
from both lists I e~ j and Ie~"'j. That is, if

~

e —e +~ ~

&o, then e +& is deleted from the Ie j list.
The same procedure is followed for the list I e~"'j. For the
model Hamiltonian in Sec. IV, o.=10 was used. Next,
the lists Ie~j and Ie~"'j are compared to see if there are
any eigenvalues for which

~

e —e (u)
~

&cr If so,. both of these eigenvalues are deleted from
their respective lists. The two sets of eigenvalues must in-

terweave, e & e'"' & e +&, so that a near coincidence is re-

garded as an indication of spurious eigenvalues in both

lists. This procedure has also been extensively employed

by Cullum and Willoughby in their use of the Lanczos
method to generate eigenvalues of large matrices. The
selective reorthogonalization method of Parlett and
Scott' could be used to eliminate problems associated
with spurious eigenvalues, but it is sufficient, and simpler,
to merely follow the above procedure to contract the lists
of eigenvalues at the end of the calculation.

Computations with the Lanczos recursion procedure
are greatly aided if M is a sparse matrix. For the algebra-
ic Hamiltonian in Sec. IV, this is the case; the fraction of
nonzero elements is generally less than 5%. In this event,
only the nonzero elements M,z are computed and stored
on disk. Batches of these elements (usually 20000 at a
time) are then read into fast storage in order to compute
M

~

n ) in Eq. (56). However, if M is relatively small and

sparse, it is possible to store all of the nonzero elements in

high-speed memory at one time. Another possibility is
that if there is discernable symmetry in the pattern of
off-diagonal elements (e.g. , repeating blocks of nonzero
elements in particular off-diagonal(s)), then a specialized
multiplier for M

~

n ) may be designed to greatly speed up
the recursion process. Utilization of structured sparsity
will be treated in more detail elsewhere.
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IV. NUMERICAL RESULTS: MULTIPHOTON
EXCITATION IN A MODEL SYSTEM

A. Model Hamiltonian

Nb

+ g V „',(a "b;+ab; ), (57)
i=1

where Ia, a I and I b;,b; I are boson raising and lowering
operators for the anharmonic oscillator (pump mode) and
for one of the harmonic modes, respectively. The opera-
tors [a,aI for the Morse oscillator are discussed by Leas-
ure. In addition, 3 and 8 are related to D, the dissocia-
tion energy, and Rcu„ the zero-order frequency. Several
additional remarks should be made about the terms in this
Hamiltonian: (1) the Nb harmonic degrees of freedom are
uncoupled from one another (the bath has been diagonal-
ized); (2) the last term in this equation controls pump
mode-bath energy exchange; V,'„',determines the strength
of intramolecular VV coupling. This is a restricted quan-
tum exchange model in which atb; allows feedback of
energy (through single quantum exchange) from the bath
mode back to the pump mode. A similar Hamiltonian
has been used to model laser interaction with an adatom
on a surface and to study classical chaos in multiphoton
excitation.

The time-dependent coupling Hamiltonian is assumed
to have the form

H&(t)=p&(a+at)E cos(rot), (58)

which allows nearest-neighbor n~n+1 coupling in the
pump mode. Leasure has shown how any dipole cou-
pling operator for the Morse oscillator can be written as a
series in the products (a )'(a )

For the computations in this section, Nb ——4, so that
there are altogether Nb+1=5 "molecular" modes (of
which only one is infrared active). If we then allow a

In this section, the model Hamiltonian used for compu-
tations in Secs. IVB—IVE will be described. We assume
that a monochromatic laser is coupled through the dipole
operator to a Morse oscillator, which in turn is coupled to
a "bath" of Nb harmonic oscillators. The field-free Ham-
iltonian is

Nb

II~=Aa a B(ata—) + g fm;btb;

maximum of p vibrational states in each mode, there will

be a total of N =p states in the molecular basis. In this
study, p=3, 4, or 5, so that the bases contained 243, 1024,
or 3125 states, respectively. Parameters in this model
Hamiltonian are listed in Table I. Note that the harmonic
energy spacing for the pump mode is 1.0 energy unit
(where one "energy unit" equals 1000 cm '). The states
cluster into bands, with one state in the lowest band, five
states in band 2, etc.

The basis functions chosen to represent the quasi-
energy operator are products of harmonic oscillator func-
tions,

n n1 n2 n3 n4

where n; =0,1,2, . . . . Of course, these are eigenfunctions
of part of the molecular Hamiltonian in Eq. (57), namely

Nb

Aa "a B(ata—) + g fico;b; b; .

In this study, we will concentrate on transitions between
these basis states which are induced by the combined ef-
fect of both the intramolecular, ab; +atb;, and the dipole
coupling operator, a+a . However, in realistic applica-
tions, it would be better to prediagonalize each quaside-
generate band of basis states, and then study laser-induced
transitions between these approximate molecular eigen-
states. Finally, in this study, we used the Magnus expan-
sion for M in Eqs. (32)—(34), correct through first order
in both types of coupling operators.

B. Comparison between diagonalization
and recursion results

For relatively small basis sets, it is important to com-
pare "exact" eigenvalues and residues from direct diago-
nalization of M with those from the recursion method. In
this section, comparisons will be presented for N=243,
which arises when three basis functions are available in
each of the five modes of the Hamiltonian in Eq. (57).
First, for 150 recursion steps, Table II (for "weak" cou-
pling, V;„,=0.01, V„~=0.02) compares the lowest 20
eigenvalues and residues for the initial recursion vectors

i ) =
~

i —1,0,0,0,0), for i = 1—3. The eigenvalues agree
to better than 1% with their "exact" counterparts. The
residues for i=1,2 also agree well, although errors for
i =3 in the largest residues can be as large as 10%%uo. Errors

Symbol

TABLE I. Parameters for model Hamiltonian [Eq. (57)].

Description Value'

CO ~, C02, C03, C04
(&)V;„1

V.aa =p&E0

Pump mode harmonic frequency
Pump mode anharmonicity
Harmonic bath mode frequencies
Intramolecular coupling
strength"
Radiative coupling strength

Laser frequency

1.0
0.02

0.97,0.99,1.01,1.03
0.01 (weak)
0.03 (strong)
0.02 (weak)
0.04 (strong)
1.0

'In units of 10 cm
"V„',is the same for all modes, i = 1, . . . , 4.
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TABLE II. Comparisons of eigenvalues and residues, for different initial vectors, N=243. Diag. means diagonalization results.

Recur. refers to the recursive scheme with 150 recursion steps. ( V;„,=0.01,V„q——0.02; other parameters listed in Table I.)

Diag.
R &](a)

iu ) =1)

E
Recur.

Rgg(a)
Diag. Recur.
R22(a) R2q(a)

Diag.
R»(a)

/u)= [3)
Recur.
R33(a)

—0.00041
0.96096
0.977 92
0.99449
1.012 68
1.031 87
1.905 87
1.930 84
1.95049
1.95609
1.969 56
1.973 65
1.988 13
1.99025
1.992 76
2.006 84
2.009 69
2.025 54
2.02646
2.04475

0.999 58
0.000 17
0.000 13
0.00007
0.00003
0.00002
0.00000

—0.00041
0.960 92
0.977 88
0.99448
1.012 67
1.031 87
1.912 39
1.933 19
1.948 15
1.955 92
1.969 53
1.98498
1.99009
1.993 13
2.006 84
2.01001
2.022 90
2.02645
2.044 77
2.061 93

0.999 58
0.000 17
0.000 13
0.00007
0.00003
0.00002
0.00000

0.00042
0.394 97
0.301 36
0.17099
0.082 69
0.048 68
0.000 65
0.000 10
0.00006
0.00000
0.00004

0.00002

0.00001

0.00042
0.396 98
0.300 83
0.170 11
0.082 25
0.048 44
0.000 80
0.000 10
0.00006
0.00000
0.00003

0.00000

0.000 00

0.00000
0.000 36
0.000 27
0.000 16
0.00008
0.00004
0.71040
0.11135
0.067 10
0.000 10
0.044 93
0.001 19
0.024 75
0.004 95
0.003 58
0.012 15
0.005 46
0.004 79
0.003 69
0.003 48

0.00000
0.00040
0.000 31
0.000 17
0.00009
0.00005
0.784 66
0.094 72
0.058 05
0.000 68
0.029 41
0.009 11
0.006 61
0.001 17
0.007 37
0.001 49
0.001 17
0.002 46
0.001 72
0.000 34

in the residues are due to small shifts in the eigenvalues of
both M and the reduced matrix M'"' from their exact
values.

Table III present similar comparisons for the "strong"
coupling case ( V;„,=0.03, V„z——0.04) for the 1~3 transi-
tion. Errors in the largest residues are usually below 5%.
Fortunately, there is a partial cancellation of errors in the

individual residues when R;t is computed from Eq. (55).
The most significant comparison between the two

methods is for the time evolution of individual transition
probabilities. From the eigenvalues and residues, survival

probabilities, ( I
~

U(t
~

0) ( I ), were compared (not
shown here) for both early (0&t&0.20 ps) and late
(1.00 & t & 1.0002 ns) times. In spite of the eigenvalue and

TABLE III. Comparison of residues for 1—+3 transition, N=243. 100 recursion steps were used.

Diagonalization
R»(a)

Recursion
R»(a)

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

—0.001 639
0.924 353
0.976096
0.997410
1.018 747
1.055 068
1.838 724
1.900 306
1.921 467
1.942 607
1.953 757
1.969 962
1.975 283
1.996 353
1.996469
2.017675
2.031 979
2.039071
2.053 209
2.074484
2.108 569
2.788 861

0.001 208 46
—0.001 366 69
—0.000 105 86
—0.000 11198
—0.000 11561
—0.000 761 76

0.000 553 19
0.000 073 52
0.000 077 26
0.000 085 57
0.000 003 04
0.000 307 01
0.000 004 33
0.000 002 11
0.000 000 01
0.000 003 01
0.000 021 05
0.000 001 49
0.000 023 05
0.000 024 35
0.000 074 38
0.000 000 01

—0.001 639
0.924 143
0.976 078
0.997 390
1.018 726
1.054 916
1.843 343
1.902 224
1.922 662
1.943 309
1.953 135
1.969 125
1.975 229
1.996 174

a
2.017 573
2.030 892
2.039 069
2.051 798
2.072 412
2.105 445
2.793 659

0.001 281 52
—0.001 445 26
—0.000 11191
—0.000 11881
—0.000 123 15
—0.000 809 83

0.000 572 07
0.000 084 46
0.000 089 59
0.000 101 15
0.000 003 76
0.000 325 79
0.000 003 66
0.000002 33

0.000 003 42
0.000021 51
0.000 001 99
0.000 022 98
0.000 023 81
0.000 070 93
0.000000 01

'An eigenvalue close to this exact value was not returned in the recursion procedure.
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TABLE IV. Comparisons of time evolution, N=243. (All probabilities & 10 .)

t (ps)

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

1000.00
1000.01
1000.02
1000.03
1000.04
1000.05
1000.06
1000.07
1000.08
1000.09
1000.10

P)p(t)
Diagonalization

0.4202
0.6050
0.0897
0.1575
0.5622
0.2677
0.0216
0.3369
0.3566
0.0798
0.4599
0.2477
0.1812
0.4173
0.4886
0.0420
0.2195
0.5856
0.2131
0.0437
0.4576

Recursion'

0.4202
0.6050
0.0898
0.1575
0.5622
0.2678
0.0216
0.3369
0.3566
0.0798
0.4599
0.2477
0.1812
0.4173
0.4887
0.0420
0.2195
0.5856
0.2131
0.0437
0.4574

P)3(t)
Diagonaliz ation

0.9095
2.0627
0.0687
0.0929
1.6249
0.5382
0.0275
0.4399
0.8289
0.0135
0.6181
0.3934
0.0202
0.4573
0.8799
0.2196
0.4002
0.8395
0.6477
0.2213
1.0029

Recursion'

0.9095
2.0625
0.0686
0.0930
1.6245
0.5382
0.0275
0.4402
0.8292
0.0135
0.8739
0.5254
0.0802
0.6752
0.9838
0.2234
0.5837
0.9207
0.5055
0.2437
1.0080

'100 recursion steps were used.

residue errors, the survival probabilities are usually accu-
rate to about 1 part in 10 . In Table IV, probabilities for
the 1~2 and 1~3 transitions are shown for both early
(0 & t & 0.1 ps) and late (1.0000 & t & 1.0001 ns) times. For
the 1~2 transition, errors as large as 1 par' in 4000 arise,
while for the 1~3 transition, the short-time results are
again as accurate, but the long-time results show larger er-
rors (the absolute error is about 10, for probabilities the
order of 10 ). For both of these transitions, only 100 re-
cursion steps were used to generate the eigenvalues and
residues; the errors may be made as small as desired by in-

creasing n, the number of chain links under consideration.
That is, those residues and eigenvalues are accurately gen-
erated by the same recursion procedure (from

~

u ) and

~

v )) which are needed for the computation of
(f ~

U(t
~

0)
~
i ); small residues and their associated eigen-

values are computed relatively late in the recursion
scheme.

C. Residue spectra

In order to illustrate some characteristics of residue
spectra, Fig. 1 shows R„(a),R„(a),and R,I(a) for the
i =

~
2,0,0,0,0)~f=

~

3,0,0,0,0, ) transition. The residues
are plotted as horizontal "sticks" at the appropriate eigen-
value E . The residues cluster around the energies of the
zero-order states. Although the diagonal residues R„(a)
and R„(a)are always positive numbers, the transition
residue R,i (a) may assume positive and negative values.

Figure 2 illustrates how specification of ~i ) and
~ f )

preselects those regions of the eigenvalue spectrum which
will receive numerical emphasis. For N= 3125, residues
are plotted as vertical sticks, at the position of the associ-

3.2

3.l
R„(a) R„(a) R23(a)

3.0 .

2.9-
F3

2.7

2.I-

2.0. p
2

1.9-

I.B-

0 O. I 0.2 0 O. I 0.2 -0.02 0 + 0.02

FIG. 1. Residue spectra for the 2~3 transition, where state
2 is

~
2,0,0,0,0, ) and state 3 is

~
3,0,0,0,0, ). The left column

shows the energies of the zero-order anharmonic states, comput-
ed from the Hamiltonian A (a ~a ) —B(a~a ) . The middle two
columns show residue spectra for the starting recursion vectors

~

u ) and
~

v ); R23(a) =
2 [R„(a)—R„(a)].

ated eigenvalue, for the overtone sequence of initial recur-
sion vectors 2 '

(~ 1)+
~
f)), with f=2, . . . , 5. In each

case, there is a large residue (-0.5) near the ground-state
energy E=0, and a bundle of residues near the energy of
the "final" zero-order state (E= 1,2,3,4, respectively).
Most eigenvalues associated with small residues (&0.001)
are not produced when n &&X, as discussed in the next
section. In this sense, the RRGM automatically concen-
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0,6

0.5

N = 3125
I1& +I2&

BAND 5 RESIDUES

N = IO24

0.3
isa& + Iss&

0.2

0.1-

li& + l3&

lsa&=
I

l. &, z, o,o &

O. I

5.8 4.0

0.4-

0.3-

0.2

0.0

0.5
I
I&+i4& i I&+/5&

~2

0.3

0.2-

0.0 1.0 2.0 3.0 40

l5

FIG. 2. Residue spectra, for four overtone transition vectors.
The largest residues concentrate around the energies of the
zero-order states. The basis size is 3125, and the strong cou-

pling parameters from Table I were used.

trates its numerical effort just where it is needed, to pro-
duce large residues and their associated eigenvalues.

D. Dependence upon the number of recursion steps

For a specified initial recursion vector, say u ), the
preceding analysis showed that eigenvalues and residues
important for one particular transition are accurately gen-
erated. As n, the number of recursion steps increases;
these "important" eigenvalues and eigenvectors converge
to their final values, usually for n «N. For example,
Fig. 3 shows residues in the band near E =4 for the tran-
sition vector l u)=2 'i

(
l
38) +

l
39)), for a system

with N =4 = 1024 basis vectors, where
l

38 ) =
l

1,1,2,
0,0) and

l
39)=

l
2, 1,2,0,0). (The energy of unperturbed

state number 38 is 3.93.) As n increases from 40 to 220,
the number of eigenvalues predicted in this band increases
from 5 to 15. Eigenualues corresponding to the largest
residues are predicted first, with refinement of these values
occurring as n increases. Additional smaller residues are
also generated as n increases. The eigenvalues and resi-
dues are essentially converged by the time n =220. Eigen-
values (and residues) not near the energies of these two
unperturbed states are not among the first ones generated,
at least for n «X. Of course, "how different" the initial
and final states are determines the value of n required for
convergence. Some typical values for pump mode transi-
tions, with li ) =

l
1) are f=1,n=50; f=i + 1,n =100;

f=i +2,n=200; f=i+3,n=500; f=i +4,n =1000.
Very weak (P,f —10 ) overtone transitions required rela-
tively large values of n (near N/2) for convergence. 0th-

$.8 5.9 4.0

FIG. 3. Residue spectrum near E=4 for the initial recursion
vector associated with the transition from state 38 to state 39 in
the N=1024 system. The right axis gives the number of recur-
sion steps ( n), while the number of predicted states in this band
is shown along the left axis.

TABLE V. Convergence of the time-dependent transition
probability P»( t) with respect to the number of iteration steps,
N=3125. Entries are 10 Pi3(t).

t (ps)

0.05
0.15
0.25
0.35
0.45
0.55
0.65

1000.40
1000.10
1000.20
1000.30
1000.40
1000.50
1000.60
1000.70

P1 =75

0.1677
0.0091
0.0030
0.0288
0.0841
0.0289
0.0043
0.0968
0.0534
0.0013
0.1024
0.0642
0.0138
0.0251
0.0615

N= 100

0.1610
0.0057
0.0029
0.0254
0.0886
0.0387
0.0038
0.0508
0.0431
0.0077
0.1503
0.0508
0.0311
0.0345
0.0249

n= 150

0.1611
0.0057
0.0029
0.0255
0.0886
0.0387
0.0038
0.0510
0.0429
0.0078
0.1516
0.0503
0.0305
0.0348
0.0245

erwise, values of n around N'i are sufficient for conver-
gence. Rapid convergence of the local density of states
with respect to the number of recursion steps in solid-state
problems was noted previously.

For a fixed basis size N, the number of chain links in
the recursion controls the accuracy of the time-dependent
transition probabilities. For example, Table V shows how
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TABLE VI. Basis size dependence of eigenvalues and residues (only values greater than 10 are list-
ed here) for the initial recursion vector 1u ) =2 '~ [12)+

~

3)].

E
X=243'

R(a) E
X= 1024"

R(a)
X=3125'

R(a)

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

—0.001 64
0.924 14
1.054 91
1.843 34
1.902 22
1.922 66
1.943 31
1.953 13
1.969 12
1.975 22
1.99609
1.996 34
2.017 57
2.030 89
2.039 07
2.051 80
2.072 41
2.10544
2.793 66

0.50044
0.000 11
0.000 12
0.198 51
0.031 22
0.033 81
0.03S 98
0.001 46
0.128 82
0.001 45
0.00063
0.000 32
0.001 43
0.009 09
0.000 85
0.009 92
0.01049
0.032 28
0.00001

—0.001 64
0.924 14
1.05491
1.84092
1.901 87
1.922 23
1.942 89
1.953 11
1.967 85
1.975 21
1.99607
1.996 30
2.017 56
2.030 80
2.03906
2.051 71
2.072 31
2.105 18
2.734 10
2.812 14
2.833 75
2.854 76
2.87643

0.50044
0.000 11
0.000 12
0.209 11
0.031 88
0.034 15
0.03944
0.00148
0.11829
0.00092
0.000 52
0.000 31
0.001 32
0.008 48
0.000 79
0.009 31
0.009 89
0.030 37
0.001 42
0.000 23
0.000 23
0.00024
0.00040

—0.001 64
0.924 14
1.054 91
1.84091
1.901 87
1.922 29
1.942 89
1.953 12
1.967 85
1.975 21
1.99608
1.996 34
2.017 56
2.030 80
2.039 06
2.051 71
2.072 32
2.105 17
2.731 19
2.811 56
2.833 20
2.854 17
2.875 21

0.50044
0.000 11
0.000 12
0.209 14
0.031 89
0.034 15
0.03944
0.001 48
0.11825
0.000 90
0.000 56
0.00027
0.001 32
0.008 48
0.00079
0.009 31
0.009 90
0.030 36
0.001 51
0.000 24
0.00022
0.00023
0.000 32

Sum of
residues

'150 recursion steps were used.
"150recursion steps were used.
'250 recursion steps were used.

0.999 99 0.999 51 0.999 54

Pt3(t) varies with n, for two time intervals. In this case,
convergence is reached around n = 100, although the
values for n =75 are qualitatively correct.

E. Basis size dependence

To predict a particular transition in a multistate sys-
tem, it is not always necessary to include a very large
nutnber of basis states. Figure 4 shows the 1—+2 transi-
tion probability over the time interval 0& t &0.140 ps for
two different bases. Except when the transition probabili-
ty falls below, ~ of the maximum value, even the
%=243 basis adequately models this transition. This
point is illustrated further in Table VI, which lists eigen-
values and residues for the 1u ) =2 '~

(
1
1)+ 13)) initial

recursion vector. In this case, most of the eigenvalues are
accurate to 0.1% (except for a=19, for the smallest
basis). Also, there is little difference between the residues
for the IV=243 and 3125 state calculations.

V. CONCLUSION

In this study, we have seen that combining "discrete"
Floquet theory with the RRGM allows the treatment of
molecules interacting with intense driving fields with a
much larger number of coupled states than are amenable
using any other method. In fact, studies are being con-

ducted of the model system in Sec. IV with -40000
states. As far as the RRGM itself is concerned, we
would like to emphasize that it does not depend upon Flo-
quet theory (e.g., other time-independent Hamiltonians
can be used for the laser-molecule problem, including
those provided by the rotating wave and rotating frame 7

approximations) or the laser-molecule context, but is de-
10

10

10

-5
10

{—N = 3125 (n = 250)
~ N = 243 (n= 100)

-6
10

I I I I

0 20 40 60 80 100 12Q I4Q
t (fs)

FIG. 4. Time dependence of the 1~2 transition probability
for two different basis sets.
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vised for the evaluation of any transition amplitude

(f
~
exp( —iMtlh') ~i ) involving a time-independent gen-

erator M to advance the system. Therefore, the RRGM is
likely to be useful for a variety of other problems (e.g., the
evaluation of time-dependent correlation functions in sta-
tistical mechanics, classical statistical mechanics,
scattering theory, etc.).
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