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The close-coupled theory of atomic collisions in the presence of a radiation field xnay be used to
calculate the distribution of final atomic states which results from absorption of polarized light dur-
ing a collision. The theory applies equally well to optical collisions (line broadening) and to radiative
collisions (laser-induced collisional energy transfer). For an optical collision the detuning ~—co„is
restricted to be larger than either the Rabi frequency or the widths due to natural, Doppler, or pres-
sure broadening. The radiation field is assumed to be weak enough that the transition probabilities
are linear in field intensity. The molecular picture is emphasized in which the wave function is ex-
panded in a basis of field-free molecular states and the Hamiltonian is blocked in accordance with
molecular quantum numbers. The quantities needed to predict experimental observables are reduced
radiative scattering 5-matrix elements s„in the asymptotic Hund s case-(e) representatio~, The
theory of product orientation and alignment is equivalent to that which has been developed for
molecular photodissociation. It requires coherent sums of s„matrix elements from differen. t transi-
tion branches, that is, for P , Q-, and -R-type transitions corresponding to changes of —1, 0, and + 1

in total molecular angular momentum. On the other hand, the total absorption coefficient and the
branching ratio to different final fine-structure states irrespective of orientation or alignment depend
on incoherent sums of the same matrix elements.

I. INTRODUCTION

The absorption of light during an atomic collision has
long been the subject of line-broadening experiments and
theory. Such a collision may be described by the equation

Ao+Bo+ nxficu~A+B+(ni —1)fico,

where ni„represents the number of photons in mode A. of
the radiation field with frequency co and polarization eq.
For an ordinary line-broadening collision, also called an
optical collision, ' the perturber atom does not change
state, B =Bo, and the photon frequency is tuned near (but
we assume not equal to) the frequency co„for an allowed
transition of atom A,

Ace =E"—Ep .

Far a radiative collision, ' both atoms A and B change
state, and co is tuned near the atomic difference frequency,

@co„=E~+E—Eo —Eo .

Several recent experiments have studied the atomic
fluorescence (redistribution) following absorption in the
profile wings. Polarized fluorescence has been measured
from excited Sr or Ba 'Pi atoms following wing absorp-
tion of polarized laser light tuned near the 'P-'S reso-
nance line broadened by collisions with rare-gas atoms.
The Na+Ar system has also been studied by near-wing
polarization redistribution experiments and by measure-
ment of the Pi/2/P3/2 branching ratio following far-
wing absorption. These experiments represent optical
collisions. Similar polarization redistribution experiments
have also been suggested as a useful way to study radia-

tive collisions, ' and such an experiment has been report-
ed." These experiments, which probe the final-state dis-
tribution following absorption by the transient AB quasi-
molecule formed during the collisio~, may be expected to
yield more information about collision dynamics and
molecular interactions than measurement of the line pro-
file alone.

We have recently used the close-coupled theory of col-
lisions in a radiation field' ' to develop a nonadiabatic
theory of collision-broadened atomic line profiles
(henceforth called I).' The theory gives a complete
description of the nonadiabatic molecular dynamics for a
single binary collision in the presence of a radiation field.
The results of the theory are the state-to-state cross sec-
tions for the radiatively assisted collision (1). These can
be used to predict the distribution of final atomic states
and polarization of emitted radiation for both optical and
radiative collisions. This theory has been used to obtain
numerical results for Sr+Ar which have been briefly re-
ported elsewhere. ' Recent application of the theory of
collisions in a radiation field has also been made to calcu-
late the Pi/2/ P3/2 branching ratio for Na+Ar' and for
Na plus He, Ne, and Ar. '

A complete density-matrix theory of radiative redistri-
bution, including the effect of atomic degeneracy, has re-
cently has given by Burnett and Cooper. ' ' lf the binary
collision approximation is made, then the parameters re-
quired by their theory can be calculated by considering
only the properties of the quasimolecule AB. Gur
stationary-state scattering forinulation may thus be ex-
pected to predict the same observables as their theory
when applied with the appropriate restrictions. We will
confine ourselves in this paper to giving a cross-section
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formulation of the coherent final-state distributions which
result from absorption of polarized light during an atomic
collision. Thus we predict the total fluorescence intensity
of polarized redistributed light at low pressure, but we are
not concerned here with its spectral profile.

We will assume as in I that the incident radiation field
is weak, and for an optical collision, detuned from the
atomic resonance frequency by an amount much larger
than the Rabi frequency Q. Those assumptions ensure (a)
that radiative couplings provide only a weak perturbation
on collision dynamics and (b) the interaction of the radia-
tion with the separated atoms can be neglected for the
purpose of calculating the necessary cross sections.

As in I we emphasize the molecular picture with the
close-coupled expansion of the wave function in terms of
the field-free states of the AB molecule. The Hamiltonian
matrix for the close-coupled scattering equation is blocked
by the exact (conserved) field-free molecular quantum
numbers, J, M, and p for the respective eigenstates of
molecular total angular momentum, space fixed projec-
tion, and center of mass inversion of all coordinates. The
field breaks the molecular symmetry according to the
selection rules AJ =b =0, +1 and AM =q. Thus, the radi-
ation field induces transitions between initial and final
manifolds of molecular states associated with such JMp
blocks. The index b specifies the transition branch. We
define a set of reduced radiative 5-matrix elements s„in
the asymptotic atomic channel state representation, which
corresponds to a molecular Hund's case-(e) angular
momentum coupling scheme. These yield the smallest
number of dynamically independent radiative transition
amplitudes required to calculate the state-to-state cross
sections.

The theory of product distributions for a weak-field ra-
diatively assisted collision of A and B is essentially
equivalent to the theory of product distributions following
photodissociation of the AB quasimolecule. Although the
treatment of final-state interactions is the same for these
two phenomena, they differ, of course, in the averaging
over the ensemble of initial states. The "half-collision"
picture, which is commonly applied to photodissocia-
tion, can also be extended to the collision (1), which
may be viewed as a sequence of two half-collisions. This
viewpoint will be developed explicitly in a subsequent pa-
per on the basis of dynamical approximations. The
present paper concerns itself with the expresssions which
can be obtained solely by using the symmetries of the rnol-

ecule and the dipole radiation field.
If we wish to calculate the orientation or alignment of a

product atom, angular momentum algebra naturally leads
to the same angular momentum transfer formulation
which has been developed for photofragmentation stud-
ies. Our goal is to calculate the collision cross sec-
tions for (1) which describe the production of final-state
A atoms with electronic angular momentum j and space
projection m. The m dependence is solely contained in
geometric factors. All the required dynamical informa-
tion is contained in reduced transfer cross sections o (j),
which correspond to those occurring in photofragmenta-
tion theory. These transfer cross sections depend on
coherent sums of reduced amplitudes s from final-state

Hamiltonian blocks for different branches b
If we wish to calculate only the total cross sections for

producing particular final fine-structure states irrespective
of space projection m, it is convenient to define branch
cross section o (j) for each transition branch. These are
simpler than the transfer cross section o'(j) in that they
depend only on incoherent sums of squared amplitudes
for a single branch. Furthermore, they are calculated in
accordance with the blocking of the molecular Hamiltoni-
an used to calculate the dynamics.

We will first consider the conditions under which the
theory applies and obtain the expressions for the necessary
cross sections. We include a discussion of Hund's case (e)
and the case-(e) reduced radiative coupling matrix ele-
ments and selection rules. The relation to photofragmen-
tation theory will be described, as well as some of the per-
tinent results of that theory. We conclude by a short dis-
cussion of the treatment of hyperfine effects and collision-
al depolarization.

II. THEORY

A. Conditions and assumptions

eq =ep =z (4)

For circularly polarized light the z axis is chosen along
the propagation direction of the light and

We assume that the light is incident on a homogeneous
cell containing a spatially isotropic distribution of atoms
in their initial states, Ap and Bp. Absorption by the AB
quasimolecule formed during a collision of Ao and Bo
ultimately produces a photofragment in an excited state of
the A atom. We wish to calculate the following quanti-
ties, all of which can be measured by suitable experiments:
(a) the total photon absorption coefficient, that is, the
spectral profile; (b) the branching ratio to different final-
state fine-structure components j summed over the distri-
bution of m states, such as measured by the experiment of
Havey et al. ; and (c) the orientation and/or alignment
produced by the excitation, such as measured by Alford,
et al. The latter gives a measure of the distribution of fi-
nal m states. We assume that the polarization of the
final-state Auorescence is measured by detecting all spon-

Let us assume that the collision partner B in (1) is a
j =0 atom in both the initial and final states. This sim-
plifying assumption eliminates one level of angular
momentum recoupling in the theory and corresponds to
the experimental situation in the alkali ' or group-II met-
al plus rare gas experiments, and also corresponds to
the hypothetical radiative collision studied by Julienne'
or the experimental one studied by Falcone et al. Let the
atom A be characterized by the initial-state angular
momentum quantum numbers jomo and the final-state
quantum numbers jm. The choice of the space-fixed
quantization axis for mo and m depends on the polariza-
tion e~ of the exciting light. For linearly polarized light
the quantization axis z is chosen to be along eq,
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taneously emitted photons over the whole profile in a
transition to some final state AJ. All of the three observ-
ables above can be calculated in terms of averages over the
state-to-state cross sections o(j,m+—jp, mp, ep, co,q) for (1),

where eo is the incident kinetic energy.
For a weak radiation field the complete scattering wave

function, expressed in the molecule-field product basis
used in I, ' ' is

iP+(E)=e '
~jo, mo& ~n, oi,q&+ g

kojo,mo

1/2 ik R

+X f~ (j~m+ jo,mo, eo q ko, r)
kJ R

f+(jo mo~jo mo'eo ko r)
I
jo' mo &

l
n, cp, q &

~
j,m &

~

n —l, io, q & .

The first term represents an incident plane wave with
atoms A and 8 in their initial states and the radiation
field with n photons of frequency io and polarization q.
The second term with f,+ represents the elastically
( k p

——kp ) and inelastically ( k p &kp ) scattered waves
among the manifold of initial states. This scattering also
occurs in the absence of the radiation field, and for weak
fields is independent of the field parameters. For nonde-
generate initial states, jo ——0, this term is elastic only. The
third term with f„+is the one in which we are primarily
interested. It contains the scattered wave for the final
states produced by the absorption of one photon. The
final-state kinetic energy is eJ ——A' ki /2'. The total ener-

gy of the system is

E=Ep +Ep+ep+nkco=E +E +eI+(n —1)fico . (7)

Thus the detuning from the asymptotic transition fre-
quency co

„

is

i'(co —co ) =e —ep .oo J

The unit vectors ko and r represent the respective direc-
tions of the incoming plane wave and outgoing scattered
wave. The differential scattering cross section for the ra-
diatively assisted collision (1) is

dOg
(J m~jp mo'Ep q ko r )

In order to obtain the basic cross sections which we need
to describe the final-state distributions, we must integrate
(9) over final scattering angles r and average over initial

directions kp and over the microcanonical distribution of
mo states. This defines the integral cross section

cr (j,m~j p, ep, q)

1 1 I ~ f„~sin8ksin8,
mo ———jo2 +1 . 4m

Xd8kd8„dgkdg„,

where 8 and P represent the polar angles of k and r
Henceforth, we will simplify the notation and write the

cross section (10) as

o (j,m):o„(j,mojo,.ep, q),—
where the indices jo,eo, q are implied rather than written

I

explicitly. We retain the subscript co as a reminder that
the cross section describes a radiatively assisted collision
in which the photon participates. If we are not concerned
about the distribution of m levels, but only about the total
rate of production of state j, we need the cross sections de-
fined by

o„=go.„(j). (13)

The quantities (11)—(13) are what we need in order to cal-
culate the experimental observables discussed above.

The cross sections (11)—(13) depend on the intensity P
of the radiation field. We require P to be sufficiently
small that the effect of the radiation field on the nonrada-
tive scattering in the initial and final manifolds is negligi-
ble, and the probability of a radiatively assisted scattering
event is much less than unity. These requirements ensure
that the radiative scattering amplitude f„in (6) is linear
in the dipole radiative coupling operator, and the cross
sections (11)—(13) are linear in P. This condition depends
on the type of collision, and typical magnitudes are
iruup « 10 W cm for a radiative collision and

fico/«10 W cm for wing absorptions in an optical
collision. ' ' In other words, it will always be satisfied
for normal low-power laboratory experiments.

The radiation field interacts with the asymptotic A

atom for an optical collision but not a radiative collision.
Another way of saying this is that the molecular transi-
tion dipole moment of the AB molecule is nonvanishing
as the internuclear separation R ~ ao for the former, but
vanishes as an inverse power of R for a radiative col-
lision. In order to eliminate any need to consider
dressed atoms' and to justify the use of the field-free jm
quantum numbers to describe the asymptotic atoms for
optical collisions, we must also require that the detuning
co —coo be much larger in magnitude than the Rabi fre-
quency' Q of the atom A. The problem of dressed atoms
is discussed further in the Appendix . No such restriction
on detuning is required for radiative collisions, since
asymptotic radiative couplings are negligible.

For an optical collision we will also restrict the detun-
ing to the wings of the profile where the absorption coeffi-

J
o„(j)=g o~(j,m) .

m= —j
If we only want the total rate of photon absorption result-

ing from single collisions, we need the sum over all final
states
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cient is proportional to (13). In addition to requiring

l
co —co

l
»0, we must also require

l
co —co„

l

»b,co,„,where b,co,
„

is the largest of r„',b,cori, and

b,co~. Here r„is the natural radiative lifetime, b,coD is the
Doppler width, and

hued

is the pressure-broadening
width. We also assume the pressure is low enough that
three-body effects can be ignored. With these restrictions,
the rate of photon absorption, K(co}P, where E(co} is the
Beer s-law absorption coefficient (in units of length ), is

equal to the conversion rate of reactants to products in (1),
namely, NqN~(o„v ). The average is over the Maxwelli-
an distribution of velocity v and the distribution of initial
states jo. Thus the normalized absorption coefficient (in

units of length ) is

rc(~) (14)
Ng Ng

where Nz and Nz are the densities (in units of length )

of atoms A and B. Equation (14) applies to the whole

profile for a radiative collision and to the wings for an op-
tical collision. Since 0. is linear in laser power the nor-
malized absorption coefficient is independent of P, as it
should be.

We also assume that any effects on the cross sections
cr„(j,m) due to spontaneous emission can be neglected.
This should be a good assumption since the spontaneous
emission lifetime r, & 10 sec will always be much longer
than the time &, =10 ' —10 ' sec during which a col-
lision occurs. Of course, a proper account of spontaneous
emission must be made if the experiment samples the
long-time (-v„)evolution of the atomic excited popula-
tion following its creation by the rapid (-v; ) initial radi-
atively assisted collision. This is true if we are concerned
with the depolarization due to hyperfine recoupling, weak
external fields, or subsequent collisions (nonradiative}
with other perturbers. Hyperfine and collisional depolari-
zation will be discussed further in Sec. II G below. In the
absence of nuclear spin or external fields, -the polarization
of the emitted light can be directly given in terms of the
cross sections cr„(j,m) if the pressure is low enough that
the time ~d between depolarizing collisions is long com-
pared to v.„.

We give an example of typical magnitudes for some of
these parameters for the Sr+Ar system with excitation of
the Sr 5s5p'P1 state from the 'S0 ground state. The
natural lifetime corresponds to a broadening
fir, '=0.001 cm '. The Rabi frequency corresponds to
an energy A'0=0. 004 cm ' for fuug=l Wcm, for
which the probability of a radiatively assisted collision is
on the order of 10 for a detuning R(co —co„)of
+10 cm '. Since the half-width at half maximum Ahm~
of the Sr pressure-broadened Lorentzian line core profile
is 0.001 cm ' for argon perturber densities of -4X10'
cm, we may expect to achieve the low-pressure limit
for pressures somewhat below 1 torr. At such pressures
the absorption coefficient is given by (14) for detunings

l

co —co
l

& 1 cm '. Note that we need not make any as-
sumptions concerning co —co relative to ~, . Equation

—1

(14) applies even in the "impact" region as long as

leo
—co

l
»b,co,„.This can generally be satisfied at

sufficiently low pressure and power.

B. Free-free states

(16)

where pz is the atomic parity of atom A. [Recall atom B
has jz ——0. If jr&0, then j in (15) is replaced by

j = j z+ j e and Pz is rePlaced in (16) by P~Pii.] Using
(16), the parity of each l =J+j, . . . , l

J—j l
state for a

given J can be specified according to the usual e and f
designation of molecular parity: an e state has parity
( —1) for integral J and parity ( —1) '~ for half-
integral J; an f state has the opposite parity of an e state
for the same J. Table I gives the parities of possible I
values for several different j's. Henceforth, the parity la-
bel p will be assumed to mean either e or f. (Please note
that the parity label e has no connection with the Hund's
case designation. )

The case-(e) states (15) diagonalize the asymptotic
molecular Hamiltonian H" . ' ' The asymptotic diago-
nal elements approach

H4 ii( } E "+Ee+ ( +.
J &p R2 (17)

We will set up a partial-wave expansion which enables
us to make optimal use of molecular symmetries in calcu-
lating the radiative scattering cross sections (11)—(13). As
in I, we will use the natural blocking of the field-free
molecular Hamiltonian according to the conserved quan-
tum numbers J, M, and p of the AB molecule. These
characterize the total angular momentum, its space-fixed
projection, and molecular parity, respectively. Molecular
states for which at least one of these quantum numbers
are different do not mix. Molecular states for which all
three are the same mix due to coupling terms in the
molecular Hamiltonian. The form of the coupling terms
depends on the electronic-rotational basis set chosen. Al-
though the molecular Hamiltonian may be approximately
diagonal over some range of internuclear separation in one
choice of basis, often corresponding to some idealized
Hund's coupling case of angular momentum, the Hamil-
tonian will normally be strongly nondiagonal in this basis
in some other range of internuclear separations. Thus a
collision is often visualized as passing through several re-
gions of R, each of which is approximately described by
an idealized Hund's coupling case with the same J, M,

16, 17,30, 31

The quantum numbers which characterize the separated
atomic fragments at large R are those for the electronic
and nuclear rotation angular momenta, j and I, respective-
ly. There is no interaction between j and l at large R. In
order to construct the desired molecular states of total J
and M, the states

l j,m)
l
l, mi) with fixed-space projec-

tions of j and l must be coupled according to the rules of
angular momentum addition, J = j + l:

l J )= P (j l Jlm, mi) IJ m) ll m, ) . (15)
m, mI

The states (15), which correspond to a molecular Hund's
case-(e} coupling scheme, define the channel states of
scattering theory in terms of which the S matrix is
gi en 12~ 26~ 32~ 33

The case-(e) states (15) have definite molecular parity
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TABLE I. I values of each parity for a given j and J.

PAB p~ =+1

1

2

3
2

f
f
e

f
e
f

J——1

2

J+—1

J
J—1, J+1
J——J+—1 3

J——J+—1

J—2, J, J+2
J—1, J+2

J
J+—1

J——1

2

J—1, J+1
J

J——J+—3 1

J——J+—1 3

J—1, J+1
J—2, J, J+2

'e parity is ( —1) for integral J and ( —1)z—1/2 for half-integral
J;f parity is opposite to e.

where

~ + 1 +i (kjR —~l/2)
hjl ~

(2kj )
(20)

The cross sections for collisional mixing of the atomic jm
states o, (j',m'~j, m) can be given in terms of sums over
the S, matrix elements in (19); for example, a detailed
treatment of P fine-structure changing and depolariza-
tion cross sections has been given by Mies.

The radial functions F,+ are calculated from the standard
close-coupled equations in the absence of a radiation field
and take on the usual energy normalized form as R ~ ao,

F,+(j ', l'+ j,l—;J,M,p;R)
1/2

[Ptjt ~jj'~!1' itj'I'~ (j' I'+ j—i iJ p)] (19)

)Il+(j, l,J,M,p )

=g ~j', I',J,M,p)

&C F,+(j ', I'~j, 1;J,M,p;R)/R . (18)

where the E's are the energies of the asymptotic atoms.
The R-dependent off-diagonal elements and corrections

to the diagonal elements are, in general, proportional to
the differences between molecular Born-Oppenheimer po-
tential energy curves, that is, to R in the case of van
der Waals interaction between neutral atoms. ' At small
internuclear separations, the splittings between the rnolec-
ular potentials become large compared to the splittings be-
tween the centrifugal potentials in (17) for different l.
Thus, the molecular Hamiltonian is strongly nondiagonal
in the case-(e) representation at small R, and switching to
other molecular Hund's cases occurs. A detailed
knowledge of the full molecular Hamiltonian is required
to calculate the outcome of a nonradiative collision by
which states of the same J, M, and p are mixed. The re-
sult of the collision is to induce transitions between case-
(e) states of the same J, M, and p, but with different l.
Such collisions are described by the scattering wave func-
tion

J=Jo+b
~=~o+ e'

p= —po .

(21)

(23)

In the language of molecular spectroscopy, transitions for
which the branch index b= —1,0, +1 are, respectively,
designated P, Q, R transitions for absorption and R, Q,P
transitions for emission.

Our object is to calculate the S-matrix elements which
describe the transition from a case-(e) state in the initial
set of states to a case-(e) state in the final set of states.
Since we assume the radiation field to be weak, the desired
S-matrix element can be calculated in the distorted-wave
Born approximation, ' ' ' here called the radiative
distorted-wave approximation (RDWA):

C. Radiative coupling

The presence of a radiation field breaks the symmetry
of the AB molecule. Therefore, a radiatively assisted col-
lision causes a transition from an initial set of molecular
states with quantum numbers Jo,Mo,po, to a final set of
states with quantum numbers J,M,p. When the field is
weak, only one photon can be exchanged between the field
and molecule during a single collision, in accordance with
the usual selection rules:

~ (J,I,J,Mp jo, io,JO,Mo,po)= 2~i &q, (j,l,—J,Mp)
~

V"'~ q+(J„I„J„M„p,) & . (24)

Here 0', and q', are the scattering wave functions (18)
which, respectively, describe the transitions among the in-
itial channels and among the final channels in the absence
of a radiation field, except that the final-state I, func-
tion asymptotically approaches the complex conjugate of
( 19) 12

The radiative coupling in (24) is'

I

tensor form
1

d( )

then

e, d=-d,'".

(26)

(27)

grad
1/2

2''i667
ez d.

C
(25)

If the molecular dipole operator is expanded in spherical

Our object is to calculate S from close-coupled equa-
tions including the radiation field. Since the RDWA (24)
shows that S depends linearly on the V" operator, we
may use the Wigner-Eckart theorem to factor S into a
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(29)

The M-independent molecular Hamiltonian which de-
fines the set of close-coupled equations which we must
solve takes on the following matrix structure:

[ Ijoio]Jopo].,x.,
[ Ijl IJp~ Ijolo jJopo] x o

[Ijo4]Jopo~ IjIIJp]n, xn

[ I
J'l

IJp]„

(30)

We assume a manifold of no initial states and n final
states. The quantities in curly brackets in (30) show the
quantum numbers of the electronic-rotational basis, here
shown for case (e). Other Hund's cases with different
quantum numbers than [jl I could also be used, so long as
the asymptotic solutions are projected on a case-(e) basis;
for example, Hund's case (a) was used in I to formulate
the coupled equations.

For each initial Jppp manifold, there are three possible
final-state blocks corresponding to the transition branches
b' =J—Jp =0 + 1. Unless the initial state is nondegen-
erate there will be two possible parities po ——e or f associ-
ated with each initial Jp. Therefore, for each value of
initial-state total angular momentum Jp, there are six sets
of coupled equations (30) (only three sets for nondegen-
erate initial states, jo ——0).

D. Case-(e) reduced dipole matrix elements

The off-diagonal np&(n or n)&np dipole coupling ma-
trix in (30) contains the terms responsible for the radiative

geometrical and dynamical part

S (j,l,J,Mp~jo, lo,Jo,Mo,po)

=(J, 1,Jo
I
M, —q)s„(j,l+—jo, lo,Jo,po) . (28)

The reduced radiative S-matrix elements s contain all

the dynamical information about the radiatively assisted
collision and are labeled according to the state-to-state
case-(e) transitions j, l~jo, lo possible for each transition

branch b from states of each initial Jo and parity. The
particular definition (28) corresponds to that used in I,
chosen for convenience in carrying out summations.

The factorization (28), based on the assumption of a
sufficiently weak radiation field, is a very powerful tool
for simplifying our results. For strong fields S„willgen-
erally depend norilinearly on V", and separate dynamical
calculations are required for each M. However, the fac-
torization (28) permits us to set up the coupled equations
for radiative scattering which are independent of M, just
as the coupled equations for nonradiative scattering are
independent of M. All geometric effects are incorporated
in angular momentum algebra and all dynamical effects
are contained in the reduced matrix elements s in the
Hund's case-(e) representation. The s„may be calculated
directly by a close-coupled scattering calculation using re-
duced radiative coupling matrix elements in the Hamil-
tonian

&J,l,J,M Id 'I jo lo Jo Mo&

J1J M—

coupling. These matrix elements were explicitly worked
out in I for a collision-induced 'D~'S transition. We will
here obtain the general Hund's case-(e) selection rules for
optical and radiative collisions. The specific 'P 'S -case
has already been presented. ' From the standpoint of our
coupled equation molecular formulation, the only place
where the difference between an optical and radiative col-
lision occurs is in the asymptotic forin of the dipole cou-

pling matrix elements: these approach R-independent
constants for the former and vary as an inverse power of
R for the latter. ' ' This difference in R-dependent radi-
ative coupling leads to dramatic differences in the fre-

quency dependence of the cross section o.„(j)for small de-

tuning in the impact region of the profile,

I
co —co

I
&r, '. These differences have been briefly dis-

cussed before, ' and will be treated more fully in a future
paper.

For an optical collision the asymptotic reduced matrix
elements can be written down immediately if we ignore
their negligibly small R variation since the space-fixed di-

pole operator dq" does not depend on the coordinates
occurring in the spherical harmonics Y~ describing the
eigenstates of nuclear angular momentum. Using Eq.
(6.25) of Rose and the definition (29), we find for an op-
tical collision

(J I Jl ld'"I IJo, io,Jo)

=&g ( —1) (2j+1)' (2J'+1)'
0

&& W (j oj ~ Jo J' 1 I){J I

d" '
l ljo ) (31)

The reduced atomic matrix element for atom A,
(jlld"'Iljo), satisfies

2 1&jm Id' 'I jo,mo& I'=(2j+1)(jlld"' Ijo)'
mo, q

=(2j.+»(J.lid'"llj)'

(32)

I j,m;R & =[1+GJ" V" (R)]
I j,m &, (33)

and can be found from the measured oscillator strength of
the jap transition.

Equation (31) embodies the selection rule for optical
collision reduced dipole matrix elements, b, l =0; that is, if
a radiative transition occurs at large internuclear separa-
tions, only the electronic angular momentum of atom A

changes, not the nuclear rotation angular momentum.
Note that this selection rule applies only to the d"' cou-
pling operators, not to the s matrix elements, since in-
elastic couplings among case-(e) states can result in b,l&0
transitions (parity considerations ensure that b, l changes
must be even). However, in the absence of inelastic cou-

plings, only 4l =0 transitions can occur in an optical col-
lision.

Calculation of the reduced transition dipole for radia-
tive collisions depends on the existence of the interatomic
interactions V (R). ' ' We must introduce the effect of
V on the asymptotic atomic wave function in order to
find the matrix elements. Let us introduce the R depen-
.dence through first order in V" (Refs. 38 and 39)
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where
Ij,m & represents the asymptotic product state E. Cross sections

lj m&= IA(j m)& IB& (34)

and G is the resolvent involving summation over all
products states of atoms A andB other than those in (34).
The reduced radiative matrix elements thus depend on the
matrix elements of the type (here integrating only over
atomic coordinates for fixed R )

Standard scattering theory techniques allow us to write
the desired radiative scattering amplitudes (9) in terms of
the S-matrix elements found by solving the coupled
scattering equations:

f+(j,m~j p, mp, ep, q, kp, r)

YM, ~o(8k, gk)YM ~(8„,P„)
lp, l, m

(A(j,m)B
I

V Gj~dq +dq GJ ~ V
I
A(j p, mp)BO&

(35)

If the usual expansion of V" in multipole interactions is
made, the lead term in the R-dependent transition dipole
can be found. Recall that V" contains terms YM Y
for the L-pole —L'-pole interaction. These are expressed
relative to quantization on the internuclear axis R. In or-
der to integrate over the coordinates of the axis, it is
necessary to rotate these Y's into Y's defined in the
space-fixed axis system. This introduces products of rota-
tion matrices D D in the integral and leads to the selec-
tion rules on l.

If the product of atomic parities pzpii is different for
the initial and final states, the lead term in the multipole
expansion of V" is the dipole-dipole term, L =L'=1,
varying as R . In this case, we obtain the selection
rule I =lp lp+2. If the product of atomic parities is the
same for initial and final states, the lead term is the
dipole-quadrupole term, I.=1,1.'=2, varying as R
In this case, we obtain the selection rule I= lp+ 1,lp+3. A
detailed example of this case is worked out in I. Thus we
see that for radiative collisions, direct radiative transitions
with hl&0 are possible. These can occur even in the ab-
sence of inelastic collisional mixing of states, since the
transition moments are of longer range (R or R )

than the R interatomic interactions responsible for in-
elastic collisions. The effect of b,l&0 transitions on the
radiative collision profiles can be significant. Numerical
calculations have demonstrated the splitting apart of P,
Q, and R contributions to the total line profile due to
b,1&0 transitions. ' '

Xg„(j,l,M, m~j p lp Mp mp'tp q) (36)

where the Y's are spherical harmonics and

g„(j,l,M, m, ~jo lo Mo, mold q)

=g (Iojo Jo
I Mo mo m—o NIj,J IM —m, m)

Jp,J

XS (j,l,J,M P~j o, lp, JO,MO, PO,'ep, q) . (37)

When we average over initial states and integrate over fi-
nal scattering angles as in (10), we find that the cross sec-
tions (11) are

o (j,m)

XS (j,l,J,MP~jp, lo»o Mo Po ~o q) (39)

The expression (38) can be greatly simplified by making
use of the single dynamical assumption which we make
concerning the weakness of the radiation field. If we now
introduce the factorization (28) into (39), the summation
over Mp can now be explicitly carried out after introduc-
ing the equality

I
h (J,l, mojo, o, O,Mp, ep, q) I, ( )

k 0 lp l Jp 1lfp

where

It„(j,l, mojo lo Jo Mo'e'o q)

=g(lj,J IM —m, m)
J

j+1
(J, l,JO IM, q)(lj J IM m—,m)= —g (2J+1)(2t+1)(j,l, t IM, q)(l, t Jo IM m, m— q)$'—(lj Jp, l;J t), —(40)

where W is a Racah coefficient.
We find the cross sections (11)are

'+' 3(j, l, t
I
m, —q)'a„(j,m)= g ' ' ' o (j),2t+1

where the transfer cross sections 0' are defined by

(41)

P' (J,~ Jo ~Q, JQ,P0, ~0)

+1
(2J + 1)'~ (2t + 1)'~ W(l j,Jp, 1;J, t)

b= —1

Xs„(jl~jp Io Jp Po ep) (43)

0'(j)=,g g I p~(j I~jo Io'Jo po &o)
I

(42)
0 Jp l lp

with

and J=J0+b. Note that the parity label p0 in p' is
redundant, since it is given by Eq. (16) once lo is known.
We include it to indicate that for nondegenerate initial
states, jp&0, the sum in (42) can be broken down into two



838 P. S. JULIENNE AND F. H. MIES 30

components, one for e and one for f initial parity:

o'(j)=o'(j,e)+o'(j,f) . (44)

o„(j)= 2g g ~s (j 1+ j—o lo~Jo~po &o)
l

b. ~ 2JP+~ b .

p Jp Ip I

(47)

j+1
o„(j)= g o„'(j). (45)

Furthermore, the coherent sums in (43) can be eliminated
by explicitly carrying out the summation over t, since t
occurs only in the Racah coefficient. Thus we may also
write

~ bo„(j)=g o„(j),
b= —1

where the branch cross sections o. are defined by

(46)

The expressions (41)—(43) define the cross sections
necessary to describe the orientation and alignment of the
A atom following a radiatively assisted collision. Equa-
tions (41)—(43) have the same structure as the expressions
which have been developed to describe fragment polariza-
tion following photofragmentation. This similar
structure is merely a consequence of two common features
of both theories: (a) the factorization (28), which leads to
the irreducible tensor expansion in Eq. (40), due to the
perturbative nature of radiative coupling, and (b) the
averaging over an isotropic distribution of initial states.
The expression (41) is useful in that it separates geometri-
cal and dynamical effects in the total cross sections
o~(j,m). The complete dependence on the geometric
quantum numbers m and q is contained in the Clebsch-
Gordan coefficients (j, l, t

~

m, —q). All dynamical infor-
mation is contained in the transfer cross sections o'.
Clearly, t =j,j+1 has only three possible values. We use
the nomenclature transfer cross section for 0' following
the interpretation of t by Greene and Zare ' as the an-
gular momentum transferred from the photon to all
final-state angular momenta other than that j of the atom
observed.

The transfer cross sections cr' depend on initial kinetic
energy and photon frequency co through the reduced radi-
ative S-matrix elements s (j,l~jp Ip'Jp Pp, ep) in the
Hund's case-(e) representation. These give the smallest
number of dynamically independent amplitudes which we
must calculate in order to calculate the cross sections o'.
Note that the cr' depend on coherent sums of these ampli-
tudes. Each such sum contains one s~ from each of the
three possible molecular transition branches b that occur
by a radiative transition from an initial jphp state with to-
tal angular momentum Jp. Since final states of different
b for the same initial Jplp necessarily have different total
angular momentum J, and since molecular states of dif-
ferent J do not interact (we neglect very weak second-
order interactions through the radiation field), the o de-
pend on the independent dynamical evolution of the
coherent mixture of molecular states prepared by photon
absorption in the three different branches b.

The total cross section o (j) for producing the final
state j irrespective of m can be readily found from (12)
and (41). The summation over m can be trivially carried
out:

We see that the cross section cr„(j) can be separated into
a sum of partial cross sections in either of two ways, (45)
or (46). The calculation of transfer partial cross sections is
the natural choice if the goal is also to calculate product
polarization. However, calculation of branch partial cross
sections provides a simpler summation if we are not con-
cerned with product polarization, as is the case in I and
Ref. 18. The sum in (47) requires only an incoherent sum-
mation of s„matrix elements from the same branch and
does not require that we first calculate the coherent sums
(43). The branch cross sections o. thus are found from
sums which result from the natural symmetry blocking
(30) of the molecular Hamiltonian that is used to calculate
the molecular dynamics. Although interference between
different branches is eliminated in (47), the individual s„
matrix elements may exhibit interference effects if the
same final state j l can be reached from the same initial
state jplp by more than one path in the overall branch
Hamiltonian.

In general, we may expect the partial branch cross sec-
tion o" to be different for different values of branch index
b, since the dynamics occurs with different Hamiltonians
(30). These differences have been observed, especially in
the core and near-wing regions of the profile, for both op-
tical and radiative collisions for all of the systems for
whi. ch we have carried out numerical calculations so
far. '6'7'9 If the initial state is degenerate, jp&0, the
branch cross section can also be broken down into
separate contributions from e and f initial parity states,
just as for cr' in (44).

F. Orientation and alignment

The above theory for the cross sections describes the
distribution of excited atomic jm states which results
from a radiatively assisted collision. We wish to use these
to predict the results of experiments which probe this dis-
tribution by measuring the properties of the atomic
fluorescence from the manifold of jm states to a manifold
of final states jfmf (which may be the initial state jo of
A). We assume that the fluorescence intensity over the
whole spectral profile of atom 3 is detected, so that we
must sum the contributions of all m and mf sublevels.
We assume that the emission frequency in the vicinity of
mf is sufficiently different from the excitation frequency
co that the atomic fluorescence is resolved from the Ray-
leigh scattered light at frequency co.

A complete theory of the spatial distribution and polar-
ization of the fluorescence has been developed by Fano
and Macek. This theory has recently been reviewed and
applied to photofragmentation problems (i.e., photoioniza-
tion and molecular photodis sociation) by Greene and
Zare. This theory applies directly to the present prob-
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lem. The reader is referred to Greene and Zare's excellent
article for full details. We will briefly summarize here the
main results as they apply to radiatively assisted col-
lisions.

The intensity I($,8,X) of light measured by a detector
having polar coordinates (8,$) relative to the emission re-
gion and polarization analyzer axis oriented at angle X is
(again, refer to Greene and Zare for full definitions)

Ip
I($,8,X)= [1—h' '(j j/)Wo[P2(cos8) ——,'sin 8cos(2X}cos(2p)]+—,'h'"(j j/)@Ocos8sin(2p)J .

3
(48)

The angle P specifies the nature of the polarization vector
of the detected light: P=O for linear polarization and
P=+m/4 for left and right circular polarization. The
factors h"' and h' ' are purely geometric quantities tabu-
lated by Greene and Zare. All information about the dis-
tribution of jm states is contained in the orientation and
alignment parameters, d'0 and Wo, respectively. These
may be expressed in terms of our cross sections (41) and

(45) as

(o„(j,m)v}
80(j,co) =

. v'j(j+1) (o„(j)U}
3m' (a (j,m)v)

J J(J +1) (o (J)U)

(49)

(50)

I(( —Ig
Pg(co) =

I((+Iq

or it may be defined as the longitudinal polarization'

I(( —Ij
PL(co) =

It+

These two are related by

2Ps
L 3 P

(51)

(52)

(53)

and both may be expressed solely in terms of the align-
ment parameter

3h' '(jjJ )Mo
Ps (54)

4+ h ' '(j,jJ }MD

The average is over the distribution of velocities U and ini-

tial states jp.
Orientation can only be created by excitation with left

or right circularly polarized light, whereas alignment can
be created by circularly polarized, linearly polarized, or
unpolarized (equal mixtures of left and right circularly
polarized) light. Furthermore, orientation is measured by
circularly polarized detection, whereas alignment is mea-
sured by linearly polarized detection.

The excitation-detection geometry in the recent opti-
cal and radiative" collision polarization experiments
has been very simple: excitation by linearly polarized
light followed by measurement of the parallel,

I~~ I(g,m/2, X——=0), a. nd perpendicular, Ii =I(g, m /2,
X=a./2), linearly polarized fluorescence intensities with a
detector in a plane perpendicular to the polarization vec-
tor eo of the exciting light. These experiments, which
only measure alignment, define a polarization ratio as a
function of excitation frequency. Two definitions of this
ratio may be used. It may be defined as a normalized
Stokes parameter '

Pi= '~"'(j JJ)~o. (55)

A similar expression applies for @o. General expressions
for these geometric functions for orientation and align-
ment are tabulated by Greene and Zare for both linear and
circularly polarized excitation. The specific results for
alignment induced by linear polarization are

2 3
for t =j —1

5 5j

Go(j)= —— . . for t=j4 3
5 Sj(j+1)

2 3——+ . for t=j+1.
5 5(j+1)

(57)

G. Additional depolarization effects

The theory we have developed describes the polariza-
tion of fluorescence due to the distribution of electronic

jm states created by a single radiatively assisted collision.
Often other interactions may be present which modify
this polarization. These could be hyperfine recoupling
with nuclear spin I following the initial electronic excita-
tion, precession caused by an external magnetic field, or
population changes due to subsequent inelastic collisions.
The time scale ~, associated with the initial radiatively as-
sisted collision is much smaller than that of the fluores-
cence r„Ifthe time sc.ale associated with one of these ad-
ditional effects is rd, the effect can be ignored only if
&d &&&r.

In general, our cross-section results must be embedded
in a more general theory which takes into account these
other interactions. We may think of the very rapid radia-
tively assisted collision as preparing an excited-state elec-
tronic density matrix p(j, m;j', m') at time t =0, which
then subsequently evolves in time under the influence of
these other effects. In our problem of radiative redistribu-
tion only the diagonal electronic density-matrix elements
are needed. These are proportional to the cross sections

The alignment parameter is directly proportional to the
measured Pi. The geometric factor h' ' has the values
—j/(2j+3), 1, and (j +—1)/(2j —1) for the respective
values jy ——j +1,j, and j —1.

If we insert Eq. (41) into (50), the dynamic alignment
parameter can readily be expressed in terms of the
transfer cross sections o' and universal geometric func-
tions Go(j):

g o„'(j)G t(j)
d3f (56)

g o„'(j)
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o„(j,m). We can, of course, expand either p or (T in the
usual irreducible spherical tensor form

o„(j,m) =g( —1) J(jj,k
~

m, —m)o„' '(j),
k

(58)

( )g

g ~0 ~

(59)

(60)

where the initially created population, orientation Wo, and
alignment Mo are, respectively, proportional to 0' ', 0'",
and cr' '. The time evolution can be calculated using ei-
ther standard density-matrix techniques or other alterna-
tives.

The role of hyperfine recoupling has been treated by
Fano and Macek. Completely equivalent results can be
obtained using our time-independent scattering wave
function following the method of Percival and Seaton.
The results of the Fano-Macek theory have been summa-
rized by Greene and Zare. The observed orientation and
alignment parameters 6 and M are proportional to the
electronic parameters of Eqs. (49) and (50):

y',"=([o,(0, 1)+2o,(1,—1)]v)Ns,

y,' '=3(o, (0, 1)v )Ns,

(63)

(64)

(65)

represent destruction rates of population, orientation, and
alignment, respectively. The population destruction rate
y, vanishes since we assume no inelastic quenching.

The steady-state solution to (62) gives

p' '=(o'"'u)N„Nsr„" 1+y(2) (66)

o, (0, 1) and (7, (1,—1) (m values only are given). It is a
straightforward matter to set up the kinetic rate equations
which give the steady-state populations of the excited lev-
els. If we expand the radiative cross sections and excited-
state densities in the usual irreducible tensor components,
Eq. (58), then the kinetic equation for the kth multipole is

p'"=( .'"")N„N,—( „-'+y,'"')p'"', (62)

where k=0, 1, or 2, and

The proportionality constants 0(g' '(1 incorporate
the depolarizing effect of precession of j induced by hy-

perfine coupling of I and j:
The polarization ratio is

(67)

(k) (2F+1)(2F +1) F F' k 1

F F' 2I + 1 j j 1+CUFF'7 r
2 2

(61)

The index k =1 for orientation and 2 for alignment.
Since we assume that the fluorescence in all hyperfine
lines is detected, the summation in (61) runs over all excit-
ed state F and I" consistent with F= j + I. The hyper-
fine splitting between levels F and F' is fico~+ If all split. -

tings OFF are much less than ~, ', then g' '= 1 and hyper-
fine effects can be ignored.

The theory developed so far in this paper applies to the
low-pressure limit of the polarization ratio, when no depo-
larization due to perturber collisions occurs before emis-
sion. The general situation calls for solving the density
matrix equations which describe production of orientation
and alignment by radiatively assisted collisions and loss
by depolarization collisions. ' ' Note that our close-
coupling formulation gives not only the radiative scatter-
ing S matrix elements, but also the S, matrix elements
that describe elastic and inelastic collisions of the final-
state jm A atom with perturber B. The necessary cross
sections can be calculated from the S, matrix using stan-
dard techniques. Therefore, the radiative scattering
close-coupling calculation produces both the, radiative cr

and nonradiative o., collision cross sections and enables us
to give a complete description of the polarization ratio, in-
cluding its pressure dependence.

The calculation of the pressure dependence of PL will
be illustrated here for the simplest possible case, namely,
jo ——0 and j =1 with no nuclear spin. This case corre-
sponds to the group-II-metal —rare-gas systems which
have been studied experimentally. The only depolariz-
ing cross sections cr, (j,m~j, m') needed in this case are

where Mv is the zero-pressure limit of the alignment pa-
rameter given by (50). The expression (67) is equivalent to
that used by Alford et al. to extract Ps(Ns ——0) and y', '

from the pressure dependence of their measured polariza-
tion ratios: 1/PL is linear in the perturber pressure by
virtue of (65). Alford et al. were thus able to obtain
y,' '/N~ from their measured slope and the known value
o« ~r

The pressure dependence of the orientation parameter is
given by a similar expression:

d'p(Ng ) = Po(Ns ——0)
1

(68)

III. CONCLUSION

If our goal is to calculate the experimental observab1es
in a radiatively assisted collision using our close-coupled
formulation, then we must be able to calculate the case-(e)
reduced matrix elements s . These determine the dif-
ferential scattering amplitudes f+ in terms of which vari-
ous observables can be expressed. The f+ can be used to
determine not only the cross sections (T (j,m) but also the
angular distributions of final-state products or even the
results of coincidence experiments. As long as the radia-
tion field is sufficiently weak —and this covers the great
majority of laboratory experiments and applications —the

We see that measurement of the pressure dependence of
the orientation parameter in a circularly polarized
excitation-detection experiment can be used to extract the
(o,(1,—1)v) rate coefficient if (o(0, 1)u) is known from
an alignment experiment. An approach similar to the
above for a j =1 atom may be set up for more complex
atoms. In general, both hyperfine and collisional depolar-
ization would have to be accounted for.
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s remain linear in the radiative coupling operator, This
permits the key factorization (28). The effect of the radia-
tion is to introduce weak perturbative transitions in the
colliding system but otherwise does not perturb the field-
free collision dynamics.

If the trivial multiplicative factors in s„arefactored as
in I, then reduced free-free dipole matrix elements d can
be defined' which depend only on the properties of the
AB molecule:

Franck-Condon radiative excitation, and final-state
dynamics. ' In this manner we will show that our close-
coupled polarization ratio PL for far-wing excitation in
the group-II —rare-gas systems can be reduced through the
WKB approximation to a form equivalent to that found
by Lewis et al. on the basis of a simple geometric
model. Furthermore, the same theory of final-state in-
teractions applies to a recent photodissociation experiment
and leads to a similar interpretation.

1/2
ff (69) APPENDIX

We see from (24) and (28) that these matrix elements

d„=(%,lid"'ll++) (70)

where the initial state %b is a bound state instead of a
scattering state. Both radiatively assisted collisions and
photofragmentation sample final-state interactions impli-
cit in the final-state scattering wave function 4, . Our
close-coupled theory of radiatively assisted collisions is
essentially equivalent in its ability to treat final-state in-
teractions to the recently developed driven equation for-
mulation of molecular photodissociation. " The two phe-
nomena differ, of course, in the role of the initial state.
Photodissociation offers the possibility of experimentally
choosing particular Jp values through judicious prepara-
tion of the initial bound state, whereas radiatively assisted
collisions always select a wide range of incoming partial
waves.

The next paper of this series will develop explicitly a
half-collision viewpoint of radiatively assisted collisions
that is analogous to the half-collision viewpoint of photo-
dissociation. ' The separation of initial- and final-state
dynamics contained in the RDWA (24) permits us to look
at a radiatively assisted collision as a sequence of two
half-collisions, one in the initial manifold of states and
one in the final manifold. The generalized multichannel
quantum defect analysis (MCQDA) of scattering wave
functions in arbitrary potentials provides a powerful
tool in this regard. The MCQDA not only enables us to
relate the initial-state scattering 0'+ and bound %'b wave
functions by analytic continuation across the initial-state
dissociation threshold, but also permits us under suitable
conditions to factor the matrix of d into separate ma-
trices that describe initial-state dynamics, adiabatic

are analogous to the adiabatic dipole free-free Franck-
Condon amplitudes of conventional line-broadening
theory, but contain additional information in the scatter-
ing wave functions 'p,—about inelastic collisions in the ini-
tial and final states. ' We may think of them as general-
ized nonadiabatic free-free dipole Franck-Condon ampli-
tudes.

In view of (69) the relation of our radiatively assisted
collision theory to photofragmentation theory becomes
even more intimate than implied by symmetry considera-
tions. The photofragmentation transition amplitudes, for
which radiation is also treated as a perturbation, are ex-
pressed in terms of bound-free dipole amplitudes

(71)

We will here consider some of the problems associated
with the presence of asymptotic radiative couplings,
which always occur for optical collisions. No problem
occurs for radiative collisions, since the dipole coupling
operators decrease asymptotically as R ", n )3.

The case-(e) states describe field-free atoms. When the
field is present and tuned near an atomic transition fre-
quency, co =co, the upper and lower atomic states of de-
finite angular momentum are mixed, and j,jo are no
longer good quantum numbers. The mixing does not af-
fect the l quantum numbers, as shown by the Al =0 selec-
tion rule in (31). Thus, when we set up the electronic-
rotational-radiation Hamiltonian matrix K in the form
(30), only states of the same I =lo are coupled, i.e., for
each initial lp and branch b, there is only one possible
upper jlJ state with l=lp that can couple radiatively to
the lower jplp Jp state.

The dressed representation is found by diagonalizing
the asymptotic Hamiltonian of (30),

H d
——UHU,

I 4) =Ul e)

(A1)

(A2)

where
I
d) and

I
e) represent the respective column vec-

tors of dressed and case-(e) electronic-rotational-radiation
basis functions. If

0 «1 ) (A3)

where 0 is the atomic Rabi frequency, ' then by perturba-
tion theory the terms in U associated with the dressing of
the asymptotic atoms are of the order of 0/

I

co —co

Therefore, if the s„arecalculated in the dressed represen-
tation (A2), they will differ from those in the (e) represen-
tation by terms on the order of II/

I
co —co I. We thus

avoid any problems associated with asymptotic radiative
couplings by requiring that (A3) be satisfied.

The above discussion applies when we set up the cou-
pled equations considering only one final-state branch at a
time in Eq. (30). We encounter a different set of problems
when all final-state branches are included in the same set
of coupled equations. This method expands the set of
equations (30) so as to permit calculation of all matrix ele-
ments at the same time, and was utilized for the Sr+Ar
system in Ref. 17. We will use this case as an example.
There are six coupled equations, and states of the same
1 =lo are present in each of the P, Q, and R final-state
blocks for the different transition branches. These three
final states of the same l are completely degenerate in the
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electronic-rotational-radiative Hamiltonian at sufficiently
large R that the R long-range molecular potentials
have damped to negligible values [see Eq. (17)]. The pres-
ence of the asymptotic radiation field mixes the three ex-
cited 'P case-(e) states of the same I (but different J) to
give dressed excited states (we consider here only that part
of the dressing that affects these degenerate excited states
and ignore terms of order 0/

~

co —co „~),

selves depending on the actual numerical algorithm used
to diagonalize the asymptotic Hamiltonian.

In order to generate s„(e)matrix elements in the case-
(e) representation when they are calculated in the asymp-
totically diagonal dressed representation, s„(d), it is
necessary to rotate the vector of three dressed matrix ele-
ments of the same l back to the case-(e) representation us-

ing the inverse of the transformation in (A4):

dl Ul(3)(3)el (A4)
s „(e)= U '(3 X 3)s „(d). (AS)

where e and d are three-element column vectors. The ele-
ments of U are all of comparable magnitude, say on the
order of 3

One of the three dressed states resulting from the diago-
nalization (A4) is nondegenerate, corresponding to the
m =0 state which couples radiatively to the ground state
for linear polarization. Its row in the unitary matrix U is
symmetry determined. The other two dressed states
remain degenerate, corresponding to the two m =+1
states which do not couple radiatively to the ground state.
The eigenvectors of these twofold degenerate states are
not unique, but have an arbitrary rotation among them-

We find in numerical studies on the Sr+Ar system that
when the transformation (AS) is applied [using the numer-
ically calculated U'(3X3) matrix] the s„(e)matrix ele-
ments from the full set of coupled equations (including all
transition branches from a given initial Jo) agree with the
s„(e)matrix elements calculated from the three separate
sets of coupled equations which come from considering
only one transition branch at a time, as in (30).

Any problems associated with asymptotic dressed-atom
degeneracies can always be avoided by satisfying (A3) and
calculating only one branch at a time. Our numerical cal-
culations show that it is possible to calculate all branches
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