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Transition probability of a two-level atom interacting with a time-symmetric pulse
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We have studied a special class of time-symmetric pulses interacting with a two-level system.
These pulses are built out of a class of asymmetric functions for which the analytic description of
the interaction was possible. The time behavior of these pulses is given. We have evaluated the
transition probability in a closed form. These pulses can be used to simulate the familiar Lorentzian
and Gaussian pulse shapes remarkably well. Therefore, they can be used in computing the overall
features of the interaction process. Comparisons of the transition amplitudes are made between the
closed-form solution and numerically calculated Lorentzian and Gaussian cases.

I. INTRODUCTION

In many applications of laser spectroscopy an atom,
subject to interaction with a resonant or quasiresonant
EM field, may be considered as a two-level system, the
two levels being those connected by the radiation field.
The problem of finding transition probabilities is then re-
duced to the problem of solving a time-dependent
Schrodinger equation for the two levels. This in turn
reduces to a pair of coupled differential equations for the
level amplitudes a ~ and a2.

—ai —— iPf(t)e —' 'a2,

dt
a, = —iPf(t)e' 'a, .

In deriving (1), one assumes that the EM field has an opti-
cal frequency carrier coL which is detuned from the atom-
ic transition cop by a (small) quantity a. In (1) f(t)
represents the time-dependent, and slowly varying, field
amplitude; P is a coupling coefficient. The rapidly vary-
ing terms oscillating at twice the optical frequencies have
been eliminated (rotating-wave approximation).

Relaxation terms are not present in (1). Therefore Eqs.
(1) will apply to those cases where the interaction between
the field and the atom takes place in a time shorter than
the lifetime of the two levels, thus restricting the field am-
plitude f ( t) to a class of functions which go to zero suffi-
ciently fast as t approaches + ao. For a thorough descrip-
tion of this problem the reader is referred to Allen and
Eberly. '

Other problems in many areas of physics reduce to
solving (1) subject to particular initial conditions. For in-
stance, in experiments of laser spectroscopy the laser
field induces transitions between atomic or (quasi) molec-
ular levels. Here several atomic levels are involved in the
whole process. However, Vainshtein et al. and Payne
and Nayfeh have shown that the essential physics is con-
tained in the time evolution of a two-level system, thus

bringing the problem back to that of solving (1).
Although simple in form, Eqs. (1) constitute a formid-

able problem. The general solution is known only when
a =0. In this case the simple transformation

(&)

(where the integral is supposed to converge when evaluat-
ed from —oo to + oo, as discussed above) maps the sys-
tem (1) into the differential equation

a i'2+P ai z ——0,2 (3)

where primes denote differentiation with respect to z.
Solutions of (3) are

ai z(z) =2 i zsin(Pz)+Bi zcos(Pz) (4)

so that, transforming back to the t variable, and taking as
initial conditions

one gets

ai(t)=cos P f f(t')dt'
(6)

az(t) = i sin P — f(t')dt'

Equations (6) display the well-known feature' that, when
+Oo

P f(t)dt is an integer multiple of m., the (upper) lev-

el, whose amplitude is a2, is left after the interaction with
the EM field in the same condition (i.e., with zero ampli-
tude) as it was prior to the interaction.

When a&0, only a few particular cases can be solved
analytically. To the authors' knowledge, these include the
following.

(i) Constant envelope amplitude:

0, t&r;
f(t)= fp=const, r; &t &rf (7)

0, rf &t.
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The level amplitudes oscillate at the frequencies

[ a+(—a2+4P to)'/ ]/2 (Rabi frequencies).
(ii) The solution for the pulse shape

f(t) =sech(t/2) (9)

was obtained some 50 years ago by Rosen and Zener. %'e
omit the derivation of the solution here since it will be de-
rived as a special case of a more general solution later on.
The very interesting feature of this solution is that the
upper-level population a2(t) I, assumed to be zero at
t = —00, displays at t = + oo the following behavior:

I
a, ( ~ )

I

2 =sech2(~r )sin2(P~), (10)
+ oc

Pn being the area P f(t)dt of the pulse. Once again,
as in the a=0 case, one has the feature that the upper-
level population is left zero after the passage of the pulse
if the pulse area is an integral multiple of rr. The only
difference is that now

I
a2

I
cannot reach, at any time,

the maximum allowed value of 1 because of the detuning
CX.

This remarkable fact led Rosen and Zener to formulate
the hypothesis that such a behavior was characteristic for
any kind of pulse; they conjectured that a general possible
form for

I
a2 I

could have been

I
a2(~ )

I

'=
I
~(a)sin/1

I

' (11)

where A is the area of the pulse and P (a) is the Fourier
transform of the pulse shape evaluated at co =a. Equation
(10) would be a special case of (11) for a hyperbolic-secant
pulse shape. This conjecture was proven wrong by a num-
ber of authors. 6 7

(iii) Quite recently, Bambini and Berrnan have shown
that the Rosen-Zener analytical solution can be general-
ized. They found that an analytical solution is possible
for a whole class of functions f ( t) whose shape is given in
parametric form,

f ( )
ez ( 1 z)

Az +@,
(12)

(1—z)'+I'

where A, and p are real parameters, and z is a dummy
variable ranging from 0 to 1 when t ranges from —00 to
+ 0o. It is easy to see that, when p= —, and A, =O, one
gets from (12)

this is the so-called "Rabi solution. " Inserting (7) into (1),
one shows that the solution is given by

rr + (rr2+4132f 2 )1/2

a& 2(t)=dr 2exp i
2

t

(a2+4P2f 2 )1/2

+BI 2exp E

their decay and, conversely, for A, &0 the decay is faster
than their growth. The remarkable feature of these pulses
is that they never leave the upper level unpopulated far
any value of the area of the pulse, s 9 contrary to the pre-
diction of the Rosen-Zener conjecture.

With the advent of fast computer facilities, the problem
of finding analytical solutions to (1) could seem to be
overcome. However, this is not exactly the case. When a
gets very large, numerical integration of (1) must be per-
formed with special care due to the fast variations under-
gone by the coupling terms e +-' '. Thus, although possible
in principle, numerical calculations may become costly,
and, after all, they do not disclose anything else but num-
bers. Thus some speculations about analytical properties
of (1) and its solutions still seem to be in order. Moreover,
ordinary perturbation theory fails to predict transition
probabilities due to the existence of an essential singulari-
ty of (1) at t = 00.

In 1972—1973 Crothers' obtained a general formula
for evaluating the transition probability of a two-level sys-
tem under the action of a time-dependent coupling poten-
tial. His formula applies even if a is made time depen-
dent and it changes sign at some time during the interac-
tion. " More recently, Berm an and Robinson' have
shown that the asymptotic behavior of the transition
probability is related to the residue of first-order poles of
f ( t) in the complex t plane.

&e want to show here another approach to the prob-
lem. Using a symmetrization procedure for pulses in (12),
one can build up a class of functions (all with the same
area and same peak amplitude) whose analytical solution
can be written down. Although the transition probability
will appear in the final results in terms of the hyper-
geometric function, its evaluation is much faster and more
precise than direct numerical integration of (1), especially
for larger values of rz.

As we will see, these pulse shapes can be made similar
to other pulse shapes (for instance, Lorentzian pulse
shapes) which are frequently met when solving practical
problems and may therefore serve as an indicator of the
overall properties of these pulses. The pulse shapes we
will obtain are a one-parameter family and may vary in a
large range. The asymptotic behavior of their solutions
will be compared to the asymptotic behavior obtained
through numerical computations from other kinds of
pulse shapes.

II. DERIVATION OF SYMMETRIC PULSES

First of all, we rederive here the pulse shape for which
an analytical solution exists. System (1) can be written in
the form of a single second-order differential equation for
a~,

f(t) =sech(t), ar+ ia —ar+P—f a&
——0. (13)

thus showing that the Rosen-Zener pulse shape belongs
to the class of functions (12). Apart from the hyperbolic-
secant case, all other pulses of (12) are asymmetric in
time, i.e., for A, &0 the growth of the pulses is faster than

A similar equation holds for a2, the only difference being
the replacement of a with —a.

The most general transformation of the independent
variable is
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p f a,"+(i ap+p)fa I +P f a i
——0, (15)

where a prime indicates a derivative with respect to the
new variable z and a dot a derivative with respect to the
old variable t.

Equation (15) can be transformed into the hyper-
geometric equation

z(1 —z)a i'+(Az +B)a'i +Da i

if the following identifications are made:
2 D

p2 z(1 —z)

(iap+p)f Az+B
pzfz z(1 —z)

Equation (17) can be satisfied if we set

2

(16)

(17)

z = f p(t')f(t')dt', (14)

where p(t) is an arbitrary function. The assumption is
made that pf is summable in the infinite interval
( —oo, + oo ). Inserting (14) into (13) one finds

Their peak amplitude is not fixed, however. The max-
imum off(z) is attained at

(28)

and has the value

1

2v'p(p+ A, )
(29)

The maximum of the pulse is not at t=O unless A, =O.
The problem of finding solutions for the level amplitudes
can be solved if the pulse function f ( t) which appears in
(1) or (13) belongs to the class of functions defined by
(24)—(26). Indeed, for these functions, Eq. (13) maps into
(16), and the hypergeometric function provides the analyt-
ical solution to our problem.

The general solution of Eq. (16) is' a linear combina-
tion of two independent solutions,

ai(z) =AiF(a, b;c;z)

+B,z' 'F(a —c+ 1,b —c+1;2—c;z), (30)

where F(a,b, c,z) is the hypergeometric function whose
parameters a, b, c are defined by the following relations:

p=v'z(1 —z),
while Eq. (18) gives f (z) after insertion of (20):

iav'z (1—z)z
(A +1)z+B——,

'

(20)

(21)

a+b = —(1+2),
ah= —D, (31)

c=B.
The two constants Ai and B, in (30) can be evaluated

in terms of the initial conditions a i 2(z =0); one finds
The hypergeometric equation has fixed singular points at
z=0, z=1, and z= co. With the choices made, t = —oo

corresponds to z=O and t =+ m corresponds to z=1.+ 00
The integral p(t)f(t)dt is, therefore, equal to 1, as
can be easily seen.

The arbitrary constants A and B are chosen in such a
way as to obtain a real function f(z). Thus we set

a, (z) =a, (0)F(a,b;c;z)

i ( ab)'——a2(0)
1 —c

)&z' 'F(a —c+ 1,b —c+1;2—c;z) . (32)

B —
~ =lcxp,

where A, and p are real parameters. Thus we find

f( )
v'z(1 z)
&+9

(23)

(24)

The nature of the solution is described in Ref. 8. We
point out here the remarkable fact that these pulses do not
allow for a zero transition probability except in the cases
of resonant tuning (a=O) or a time-symmetric pulse
(A, =0).

III. SYMMETRIZATION OF PULSES

dz z(1 —z)
dt

=pf=
A.+—

one finds

zIJ
t =ln

)i +@

(25)

(26)

The pulse shapes thus obtained in parametric form [Eqs.
(24)—(26)] all have the same area n.: indeed,

f f(t)«= f f(z) = f, =~. (27)

The explicit time dependence off cannot be written down.
One can only find the relation between t and z by in-

tegrating the equation

The question now arises whether the hyperbolic-secant
pulse shape is an exceptional case, in the sense that it is
the only pulse shape which allows for zero transition
probability at a&0. We have indirect proofs that this is
not the case. Indeed, numerical work' has shown that
other pulse shapes, such as the I.orentzian pulse or the
Gaussian pulse, share the same property with the
hyperbolic-secant pulse, although the zero transition prob-
ability is attained for values of the pulse area which are
not equally spaced, as is the case for the hyperbolic-secant
pulse shape. Moreover, Robinson has recently pointed
out that, in general, the lack of zero transition probability
is a direct consequence of the asymmetry of pulses and
was not peculiar to pulses of the class described above.

It is of interest, therefore, to see the asymptotic
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f(r)=f(p, A, iz)

for —oo & t &t,„(i.e., for 0 & z &z,„)and

(33)

behavior of the upper-level amplitude when the two-level
system is subject to pulses of a time-symmetric nature.
This can be done by symmetrizing the pulses of the family
and looking for the transition probability they cause. To
this end, we consider a pulse shape which is given by

On the other hand, pulses with positive values of A, have a
flat maximum but decrease faster to zero in their tails.
Thus they sho% R Gaussian-like bchav101.

Now we address the problem of finding the asymptotic
behavior of the two-level system interacting with a poten-
tial whose time behavior is given by any member of our
one-parameter family. We assume that the system at
t = —ac has the initial conditions

f(r) =f ( r+2—r,„) (34) a)( —oo)=1,

for r,„&r&+ oo. These pulses are symmetric in time,
although their maximum is not achieved at t=o. These
pulses are not analytical functions of r, as in the previous
case, because of the matching at r =r,„. However, both
the function and its derivative are continuous through
t =t,„and no jump occurs in Eq. (13).

The area of the pulse is twice the area from —oo tot,„bec auseof symmetrization of the pulse. In terms of
the variable z we find

8=2p I f(r)dr

where the value zmgx at, which the function attMIls its
maximum is given by

a2( —oo ) =0
Rnd 'wc look fof a1 Rnd Q2 Rt t =+ oo. To th1s cnd, wc
first write the general solution for a&(z) and a2(z) in the
first half of the interaction, i.e., from z=0 to z =z,„.
The solution for a

~ is given by (30),

a&(z) =A, F(a,b;c;z)

+B~z' 'F{a—c+ l, b —c+1;2—c;z) . {39)

The parameters a, b, and c which enter the hyper-
geometric function can be evaluated solving (22), (23), and
(31). We find

1/2
lQA 2 tz A

2 4

IRx (36)
2p+ A,

In Fig. 1 a few examples of pulse shapes are reported.
Here, each pulse is identified by the value of the parame-
ter A„and the other two parameters p and P have been
determined in such a may that the area 0 is equal to a and
the peak amplitude is equal to 1. Thus p and P satisfy the
relations

for each value of X.
Pulses with negative values of A, have sharp peaks and

long tails, thus displaying R I.orcntzian-like behavior.

(40)

The general solution for a2 can be easily found if we note
that changing the sign of a in (1) is the same as inter-
changing a~ and az. Thus

a2(z) =A2F(a, b;c;z)

+Bzz 'F (a c+ l, b c+—1;2—c—;z),
where a, b,c are obtained from a, b, and c of (40) by
changing n to —a.

The four constants of integration A &, 8&, A2, and 82
which appear in (39) and (41) cannot be independent; they
are linked by system (1), which determines two of them in
terms of the remaining two. Inserting (39) and (41) into
(1), and using the initial conditions (38), we find

A1 ——1,
8) ——0,

(42)

-2 -1.5 -1 —0.5 0.5 1

~ max

I r

3.5

Details of this calculation are shown in Appendix A. At
the pulse maximum, a1 and a2 have the value

a ~ F(a,b;c;z,„), ——
FIG. 1. Pulse shapes of three symmetrized pulses with

X=2.5, —0.6, and —1.1. Areas of the pulses are normalized to
K and thc peak amplitudes alc sct to 1.0.

z',„'F(a c+ l, b —c+1;2—c;z—,„) .
I —c
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V('hen I; & t,„ the level amplitudes a~ and a2 still satisfy
system (1), but f ( t) must be evaluated from the symmetry
condition F(——a, b;c;z~,„), (51)

t =t,„, i.e., at z =z,„. We denote by W~ and W2 the
two quantities

f (t)=f ( —& +2t,„) .

Thus the change of variables

7 =2fmax
iat

b, =aze

(44)

(45)

z',„'F(a c+—l, b c—+1,2 —c;z,„),
I —c

(52)

and setting

—iatmax
b2 ——a2e

brings system (1) into the system

db) =iPf (r)e' 'bz,
d7.

db2
=iPf (~)e '~'b, .

d7

(47)

(48)

X =V), (1—c)v2
( b)1/ 2

and noting thai

F(a,b;c;z,„)=W&,

z' „'F(a —c+1,b —c + 1;2—c;z,„)=P 2,
1 —c

we obtain the system

(53)

(54)

Comparing (48) with (1), we see that b, will have the
same solutions as a2 and b2 the same solutions as a&.
Thus we obtain

bz(r) =v,F(a,b;c;z)

iW2X +W]y =e '"W],

K tX + l P 2p = —le
(55)

+v2z' 'F(a —c+ 1,b —c+1;2—c;z),

b)(r)=vgF(a, b;c;z)

+v4z F(a c+ l, b —c+1;2——c;z) .

(49)

Since system (1) is unitary,
l
a,

l

z+
l
a2

l

2

=
l
a~( —oo)

l
+ la~( —oo)

l
=1. Thus, because of (43)

1~ii'+ I~2I'=1
and the solution of (55) is

The relation between v&, v2 and vz, v4 is

Vg=— (1—c)v2,
b)1/2

x = 2i Re(P ~ P—2e "),
iatmax ~2 —iatmax ~y=e ~&—e

(56)

(57)

v&——— (ab)' v~—I /2

C

(50)

(see Appendix A). Thus we can match the solutions at

We can easily evaluate the asymptotic behavior of the
two-level system under the action of a symmetrized pulse.
The value of ihe upper-level amplitude at t =+~ can be
obtained from the value of b2(r) evaluated at t = —oo, or

TABLE I. Symmetrized pulse shapes with unit peak amplitude and area equal to m..

0.0
0.2
0.4
0.6
0.8
1.0
1.2
}.4
1.6
1.8
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

1.QXK)

0.8720
0.7151
0.5978
0.5107
0.4435
0.3899
0.3459
0.3089
0.2774
0.2502
0.1550
0.0992
0.0642
0.0418
0.0273
0.0178
0.0116
0.0076
0.0050

A, = —0.8

1.9XIO
0.9179
0.7869
0.6705
0.5754
0.4979
0.4340
0.3805
0.3352
0.2963
0,2626
0.1474
0.0844
0.0486
0.0280
0.0162
0.0093
0.0054
0.0031
0.0018

k= —0.6

1.9XO
0.9440
0.8363
0.7257
0.6266
0.5413
0.4686
0.4066
0,3534
0.3078
0.2683
0.1369
0.0704
0.0363
0.0187
0.0097
0.0050
0.0026
0.0013
0.0007

k = —0.45

1.00CO

0.9591
0.8694
0.7660
0.6658
0.5751
0.4952
0.4258
0.3659
0.3144
0.2701
0.1264
0.0592
0.0277
0.0130
0.0061
0.0028
0.0013
0.0006
0.0003
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TABLE II. Symmetrized pulse shapes, with unit peak amplitude and area equal to ~.

~max

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
4.0
5.0
6.0
7.0

A, =2.5
1.0000
0.9894
0.9542
0.892 1

0.805 9
0.703 8
0.596 3

0.493 0
0.4004
0.3211
0.255 4
0.2020
0.1592
0.125 2
0.098 4
0.007 2
0.022 9
0.006 77
0.00201
0.005 9

A, =1.5
1.0000
0.988 5
0.951 3
0.8870
0.7994
0.697 3
0.591 1

0.489 8
0.339 1

0.321 5
0.256 9
0.2042
0.161 8
0.128 0
0.101 1

0.079 8

0.024 3
0.007 38
0.002 25
0.000685

1.0000
0.987 1

0.946 5
0.878 6
0.788 9
0.6870
0.583 0
0.484 7
0.387 1

0.321 9
0.259 1

0.207 7
0.165 9
0.132 3
0.105 3
0.083 8
0.026 62
0.008 44
0.002 676
0.000 845

1.0000
0.985 9
0.942 3
0.871 4
0.780 2
0.678 6
0.576 3
0.480 5

0.395 2
0.322 1

0.260 8
0.2103
0.169 1

0.135 8

0.108 8
0.087 2
0.028 64
0.009 39
0.003 078
0.001 012

z=O. Since E(a,b;c;z) ~, o
——1, we obtain from (47) and

(49)
'CZtmax &CXtmax

a2( oo ) =b2( —ao )e "=xe (58)

It is interesting to notice that x is imaginary for any pulse
shape of our family. Its square modulus gives the transi-
tion probability for system (1).

ab a(a+1)(b ~1)b zF a, ;c;z =1+ z+ +''
C c(c+ 1) 2!

which is absolutely convergent when Re(c —a b) &0, a-
condition which is satisfied in both cases.

In Tables I and II we report numerical values of sym-
metrized pulses for A, = —0.45, —0.6, —0.8, —1.1 and
0.5, 0.8, 1.5, 2.5. The values of p and P have been chosen
in order to keep the area of the pulses equal to n. and their
peak amplitude equal to I. Pulses with A. &0 display a
sharper peak than the A, =O pulse [the hyperbolic-secant
pulse (HSP)] and a longer tail. For this reason they will
be called Lorentzian-like pulses, although they do not ap-
proach the Lorentzian for any finite or infinite vaIue of A..
On the other hand, pulses with I, & 0 display a flat peak at
their maximum but go to zero faster than the HSP. As a
prototype af these kinds of pulses one may choose the
Gaussian function normalized to have unit peak ampli-
tude and an area equal to w. Thus, one may caH these
pulses Gaussian-like pulses.

In Fig. 2 the pulse shapes with A, = —1.1 and —0.6 are
shown by the solid and dashed-dotted lines respectively; in

IV. EVALUATION OF TRANSITION
PROBABILITIES AND DISCUSSION

Numerical evaluation of (56) requires the evaluation of
the hypergeometric functions P i and W2. This can be
done by means of the series

the same figure the Lorentzian pulse is also displayed.
Figure 3, on the other hand, shows the pulse shape with
A, =2.5, and the Gaussian pulse is also reported for com-
parison. At exact resonance, a=0, the only relevant
feature of the pulse is its area; pulses having the same area
determine the same transition probability. When a&0
however, different segments of the pulse are sampled by
the two-level systein with different phases. One may ex-
pect that the Lorentzian-like pulses will behave in much
the same way as the proper Lorentzian pulse. This has
been checked and verified. In Table III we report transi-
tion amplitudes for pulses with A, = —1.1 and a=0.2, at
various valves of the pulse area. W'e have chosen to re-
port the quantity x of the formula (56). The phase factor

iat
e '" which appears there is a mere consequence of the
fact that the pulse maximum is not located at t=O This.
factor, however, does not enter the transition-probability
formula, which in any case is given by

~

x
~

. For com-

O,S

FIG. 2. Comparison between the line shapes of the I.orentzi-
an pulse and two simulating symmetrized pulses with A, = —0.6
and —1.1. Areas and peak amplitudes are equal.
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TABLE IV. Transition-probability ampbtude for Gaussian
and Gaussian-like pulse shapes. Detuning a has been chosen to
be 0.2.

1.0

0,5

2

t-&mom

Area
(x~-')

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Imx
(Gaussian pulse)

—0.569
—0.920
—0.916
—0.560
+ 0.014
~ 0.586
+ 0.935

Imx
(Gaussian-like
pulse, A, =5)

—0.566
—0.915
—0.913
—0.561
+ 0.006
+ 0.574
+ 0.923

FIG. 3. Comparison between the line shapes of the Gaussian
pulse and simulating symmetrized pulse with A, =2.5. Areas and

peak amplitudes are equal.

parison, transition amplitudes are reported for the
Lorentzian pulses with the same area and detuning.
These have been evaluated as explained in Appendix B.
We note the transition-probability amplitudes are ima-
ginary, a feature which is common to any time-symmetric
pulse with its maximum located at /=0.

Table III shows that transition amplitudes for the two
cases are indeed similar, though not the same. In both
cases, for instance, the first nonzero values of the area for
which the transition amplitude vanishes is greater than ~,
and actually the two values do not differ more than a few
percent. For a HSP this would be equal to ~, independent
of the determining a.

In Table IV transition amplitudes are reported for a
symmetrized pulse with A, =1.5 (a Gaussian-like pulse)
and, for comparison, a Gaussian pulse. In both cases,
a=0.2. Here again the results in the two cases are simi-
lar.

Whether these results may be useful in calculating tran-
sition probabilities for actual pulse shapes is a question-
able matter. It is, however, much faster to fit an actual
pulse shape to a symrnetrized pulse and then to evaluate
transition probabilities for the latter one than to perform
direct numerical integrations over very long time intervals
with the time pulse shape. It is also quite clear that a
Lorentzian or a Gaussian pulse shape may often represent

only an approximation to the pulse shape one has to deal
with.

On the other hand, the symmetrized pulses allow for a
fast numerical evaluation of transition amplitudes, some-
thing which may be useful if many calculations have to be
performed for different physical situations. The matter is
also complicated by the fact that transition amplitudes ap-
pear to depend critically on the pulse shapes.
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APPENDIX A

The level amplitude a& satisfies the hypergeometric
equation

z (1—z)a i'+ [c —(a +b + 1)z]a,' aba i
——0, —(Al)

where a, b, and c are parameters given by Eqs. (40). The
general solution is

a, (z) =A,F(a,b;c;z)

+B,z' 'F(a —c+ l, b —c+ 1;2—c;z), (A2)

Area
(x~-'j

Imx
(Lorentzian)

Imx
(Symmetric pulse,

A, = —1.1)

TABLE III. Transition-probability amplitude for Lorentzian
and Lorentzian-like pulses. Detuning a has been chosen to be
0.2.

where A I and B& are constants.
The other level amplitude az satisfies the same equa-

tion except that a, b, and c are replaced by their complex
conjugates a, b, and c. It is easy to see that changing a to
—a is equivalent to exchanging ai and a2 in (1). Hence
az is given by

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

—0.487
—0.822
—0.902
—0.706
—0.302

0.176
0.574
0.770

—0.502
—0.820
—0.840
—0.558
—0.085
+ 0.399
+ 0.711
+ 0.737

a2(z) =A2F(a, b;c;z)

+P2z 'F(a c,b —c+1;2—c;z)—.
We point out the relations

c —a =a —c+1, c —b =b —c+1,
c =1—c, 1 —c+a+b =c—a —b .

(A3)

(A4)
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The four coefficients Ai, A2, Bi, and B2 are not indepen-

dent because (1) must be satisfied. Indeed, using (1), (24),
(26), and (40), we can write

p1(0)=1,

p2(0) =0
(85)

(A5) anda2(z) =z'(1 —z)'+'+~ c a', (z) .
( ab—)'/

The derivative can be evaluated using the relations

d abF(a,b;c;z)= F(a + l,b + 1;c+ 1;z},
dz c

(A6)

[z' 'F (a,b;c;z) ]= (c —1)z' F(a,b;c —1;z), (A7)
Z

(A8)F(a,b;c;z)=(1—z)' ' F(c —a,c b;c;z—) .

Equation (A5) gives us

o i(0)=0,

cr2(0) = 1 .
(86)

We can relate the p solution to the 0. solution by noting
that —a2,a 1 also satisfy the system (1). Thus

O1(t) = P2—(t),

a2(t) =P1(t) .
(87)

+B,(1—c), F(a,b;c;z) .1

(ab)1/2

Comparing (A3) and (A9) we find

b)1/2
B2 ——AI c

A
1 —c

(A9)

a 1 (z) =A, z F(a c+ l,b——c+ 1;2—c;z)
c

a 1(t)=A 1P1(t)+bozo 1(t)=—A ipi(t}—A2P2(t),

a 2( t} ~lp2( t) +~2~2( t) =~lp2(t) +~2pl ( t)
(88)

where pi, p2 satisfy the condition (83). We can now use
the symmetry properties (82) to establish the relations

This is true for any pulse shape. The general solution of
system (1) is therefore given by

1 —c . c
A2 ——B) ——i—BI .

(ab)1/2 P

(A10) P1( —t) =P1(t),

P2( —t) =P2(t)
(89)

APPENDIX B

Numerical integration of system (1), starting from its
initial conditions

a2 ——0
(81)

at t = —00, may lead to numerical errors, since t = —00

is a singular point for the system. These difficulties can
be avoided if we are dealing with time-symmetric pulse
shapes such that

a, ( —~)=x,R', —x2R2,

a2( —oo ) =~1R2+~2R1,
(810}

and we choose A, 1,A,2 in order to have ai( —oo)=1,
a2( —oo)=0. This gives

(811)

which, along with (87), enable us to completely solve our
problem in terms of the functions pi(t} and p2(t) to be
known in the range t =0—+ ao.

Denoting by R1,R2 the (complex) values of pi(t} and
p2(t) at t =+ oo, we have, using (88) and (89),

f( t)=f(t) . — (82) A, = —R*

Indeed, if (82) is satisfied, then the solutions of the system
(1) display several symmetries and we can evaluate the
transition amplitudes by means of a single numerical in-
tegration from t=O to + oo. This can be done as follows.
System (1) possesses two linearly independent solutions,
the so-called fundamental solutions, namely,

a 1 ( oo }=R 1+R2

a2( oo ) =R1R2 R1R2 . —
(812)

since
~ pi ~

j
~ p2 ~

=1. Substituting (Bl 1) into (88) we
find the asymptotic values of a1(+ oo) and a2(+ oo) as

and

with

a 1
——p, (t),(I)

a 2 P2(t)(I)

a 1
——o.i(t),(2)

(83)

(84)

Equations (812) show that the asymptotic amplitude at
t = + oo of the upper level a2 is purely imaginary if a1 is
chosen to be 1 at t = —00.

We have numerically integrated system (1) for Lorentzi-
an pulse shapes f (t) =1/(1+t ) and for Gaussian pulse
shapes f (t) =exp( t ln) with the detuning —parameter a
set equal to 0.2. Initial conditions have been chosen at
t=O as a 1

——1 and a2 ——0 (the p solution), and we have in-
tegrated the system up to values of t where the two ampli-
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tudes do not change appreciably. The step of integration
has been chosen in such a way to keep the norm

~
a~

~
+

~
a2

~

equal to unity within the required accura-
cy. Then the asymptotic values of p~(t) and p2(t) so ob-

tained have been inserted into (B12) in order to evaluate
a

& (+ 0e ) and a2(+ oo ). In the text the imaginary part of
the transition amplitudes, rather than the transition prob-
abilities, are reported.
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