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The hyperfine structure of the 4$, 4p» and 3d states lIl Ca has been evaluated With the use of
many-body perturbation theory. Core-polarization and correlation effects have been included by
solving inhomogeneous one- and two-particle differential equations. By solving these equations

iteratively, these effects have been treated also to higher orders. Certain correlation effects have

been accounted for by modifying the valence orbitals to approximate "Brueckner orbitals. "Relativ-

istic effects were estimated on the basis of relativistic calculations including core polariza-
tion. The final results for 4 Ca are A(425l~2)= —819 MHz, A(42Plq2)= —148 MHz, A(4283~2)
= —30.9 MHz, 8( O' P3gg)/ Q=155 MHz/b, A(3~D3g2)= —52 MHz, 8(3 D3g2)/Q =68 MHz/b,
3 (3 D5y2) =—5.2 MHZ, and 8 (3 D5yp )/Q =97 MHz/b.

I. INTRODUCTION

Calcium is a commonly occurring element in systems of
biological importance and its abundance can be studied by
means of nuclear-magnetic-resonance methods. ' The
understanding of the relaxation processes requires a
knowledge of the nuclear quadrupole moment of 3Ca,
which is the only naturally abundant Ca isotope with
nonzero nuclear spin. The quadrupole moment can be ob-
tained from a study of the electric hyperfine structure
{hfs) in free Ca atoms, provided the electronic factors in-
volved are known. However, the strong correlation be-
tween the two valence electrons calls for extreme care in
the theoretical treatment. Calculations for the Ca atom
will be presented elsewhere and we concentrate here on the
study of the alkali-metal-atom-like system Ca, extending
earlier work where extensive calculations were performed
on the hyperfine structure of the alkali-metal atoms.
Results are presented for the 4s, 4p, and 3d states of Ca+.

If a central-field model is used to describe the alkali-
metal-atom-like system, the hfs is determined to lowest
order by the expectation value (r ) of the valence elec-
tron {for a non-s state). However, the interaction with the
valence electron disturbs the core and this perturbation in-
fluences differently the so-called contact, orbital, spin-
dipole, and quadrupole ( r ) parameters, commonly
used to analyze experimental hfs data. Sternheimer used
the inhomogeneous differential equation technique to cal-

culate the first-order core polarization contribution, from
which he deduced "shielding factors" to be used in the
evaluation of nuclear quadrupole moments from hfs data.
His method has been extended to treat the polarization ef-
fects to all orders by means of an iterative procedure.
Pair correlation effects, which involve the simultaneous
modification of two orbitals, have been included, as
described in Ref. 2, by solving inhomogeneous two-
particle equations. The double summation over large
basis sets is thus avoided.

Lindgren et a/. have demonstrated that certain impor-
tant pair correlation effects can be taken into account by
modifying the orbitals to approximate "Brueckner" orbi-
tals. A reevaluation of the contributions with these orbi-
tals has lead to a significant improvement of the theoreti-
cal results. Further improvement has been obtained by
solving also the pair equation iteratively. ' The pro-
cedure used in this paper has been described in detai1 in
earlier work and is also presented in a recent book by
Lindgren and Morrison. A brief summary is given in
Sec. II.

In Sec. III the results obtained for the 4s, 4p, and 3d
states in Ca+ are presented. The value obtained for the 4s
state, A (4 S,/2) = —819 MHz, agrees well with the result
—817+15 MHz obtained by Kelly et al. ' The 3d state,
having lower energy than the 4p state, is metastable and
can thus be studied, e.g., by radio-frequency spectroscopy.
However, to our knowledge no experimental hyperfine-
structure results are available for any of the excited states.

II. CALCULATION GF THE HYPERFINE STRUCTURE

In the nonrelativistic formalism used here, the hyperfine operator is given (in atomic units) by
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where pl ——gipz I is the nuclear magnetic moment and Q is the electric quadrupole moment of the nucleus. The terms
in the hfs operator are referred to as orbital, spin-dipole, contact, and quadrupole terms, respectively. For systems with
one valence electron, the hfs operator can be replaced by an "effective operator"

In lowest-order perturbation theory, illustrated by the dia-
gram in Fig. l, all (r & parameters (except the contact
parameter (r &~o) have the same value. However, Har-
vey found that it is necessary to use different values to
reproduce experimental data. " This can be explained by
terms appearing in higher orders in the perturbation ex-
pansion.

A. Core-polarization contributions
to the hyperfrne structure

For a one-particle perturbation, like the hfs, the
second-order contributions, shown in Fig. 2, involve only
slnglc-part1clc cxc1tRtlons. Thcsc CRn bc dcscf1bcd Rs
"core polarization. " The calculation of the effect involves
the summation over' all excited states includin. g the contin-
uum. The contribution from the exchange core-
polarization diagram [Fig. 2(c)], e.g., is given by

However, the infinite summation can be circumvented
through the inhomogeneous differential equation method,
first used by Sternheimer. A "single-particle function"

can be obtained as a solution to the inhomogeneous dif-
ferential equation

(».—~o)P. =hhf. Io &
—y Ib&&&

I ~hf; Io& .

The closure relation, g;." I
i & (i

I

= l, has been used to re-

move the 1nfinite summation over excited states on the
right-hand side. The summation over all core orbitals
makes the right-hand side orthogonal to the core and will
hereafter be referred to as "orthogonality terms. " With
the use of the single-particle function p, the contribution
from Fig. 2(c) can simply be expressed as

The inhomogeneous differential equation (3) is converted
to a set of one-dimensional radial equations by separating

p, into parts with excitations nl~l' to a well-defined or-
bital angular momentum l' and by defining different
single-particle functions for the different terms in the hfs
operator in (l).

The perturbation of orbital a due to the hfs operator, as
described by p„will in turn polarize the other orbitals
through a change in the electrostatic interaction. As
shown by Garpman et al. the core-polarization effects
can be treated self-consistently, "to all orders, "

by means
of an iterative procedure. The single-particle functions pb
can be used to modify the right-hand side of Eq. (3) to

(».—~0)p. =I hf. I
o &+ g [( & 6

I
~ iz'

I ph &+ &ph I
~ |2'

I
& & )

I
o &

—( & &
I
r iz'

I

o &eh+ &s b I
& iz'

I
o & I

b & ) &—

where the ellipsis represents the orthogonality terms. This
procedure i.s repeated until convergence. The recursive
equation (5) can be represented by the diagrams in Fig. 3.
When the single-particle functions from (5) are inserted in

(4), higher-order core-polarization contributions are au-
tomatically included. This method of calculating the
core-polarization effects to all orders has recently been ex-

FIG. 1. First-order contribution to the hyperfine structure in
diagrammatic form. The lines with double arrows represent the
valence orbital and the dashed line with a triangle the hyperfine
interaction.

FIG. 2. Second-order (lowest-order core-polarization) contri-
butions to the hyperfine structure. The dashed line represents
the electrostatic interaction and a down- (up-) going line with
one arrow represents a core (excited) orbital.
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FIG. 3. Recursive relation, corresponding to Eq. C,
'5), for the

"effective" single-particle function p, . The first term on the
right-hand side represents the first-order single-particle func-
tion. A double dashed line with a triangle is used to represent
the "effective'* hyperfine interaction.

(a) (c)

FIG. 4. Examples of third-order correlation diagrams.

tended to the relativistic case. ' Our definition of higher-
order polarization effects differs slightly from that used
by Das and co-workers. They exclude the so-called "con-
sistency effects, " corresponding to the terms b&a in Eq.
(5) above. Their "ladder correction" includes, however, in
addition to the a =b terms in Eq. (5), also higher-order
interactions with the valence electron. These are treated
together with the correlation effects in our calculations.

The different values of the (r & parameters in (2) can
be understood by inspection of the angular momentum re-
strictions on the core-polarization contributions. Only
nl —+I, I &0, excitations contribute to the orbital parame-
ters, whereas the spin-dipole and quadrupole interactions
both involve the somewhat looser restriction

I
l —l'

I (2,
l+l'&2. However, the spin-dipole interaction differs
from the quadrupole interaction in the presence of the
spin operator, which prevents the direct diagrams [Figs.
2(a) and 2(b)] from contributing. Thus all (r & parame-
ters involve different excitations and can take different
values.

In first order the contact parameter enters only for s
states. However, ns~s excitations in the core give rise to
an induced contact parameter also for states with I &0.
In higher orders also nl~1 ( l &0) core excitations are in-
duced by the ns ~s excitations.

B. Third-order contributions to the hyperfine structure

Although the core-polarization explains why all (r
parameters may be different, it often fails to account for
the numerical values of the hfs parameters. The
discrepancies are due to correlation effects. A few of the
correlation diagrams that enter in third order are shown
in Fig. 4. The evaluation of the third-order diagrams has
been described in Ref. 2. As an example we give here the
contribution from Fig. 4(a):

-" '"' &o ll hfs I f&«,a Ir»' Ir s&&r s Iri~' Io a&XX (e'0 Ei)(co+&a Er es)a rsf

the contribution from the diagram in Fig. 4(a) can be
written as

&c.a lr»'I U &.

The diagrams in Figs 4(b. ) and 4(c) require two pair
functions. The diagram in Fig. 4(d) is evaluated using one
pair function and one single-particle function describing
the excitation of one core orbital. Instead of using the
first-order single-particle function described by Eq (3),.we
have used the "all-order" single-particle function obtained
from Eq. (5). Thus third-order diagrams like the diagram
in Fig. 4(d) will implicitly include certain higher-order di-
agrams.

The evaluation of pair correlation effects is the most
time consuming part of the calculation due to the need to
describe (and solve the equation for) a two-dimensional ra-
dial function. To combine reasonable computing time
with relatively good accuracy we evaluate the effects us-
ing three different grid sizes and use Richardson extrapo-
lation to remove the O(h ) and O(h ) errors introduced
by the numerical procedure.

C. Correlation effects on the orbitals

Sometimes even the inclusion of all third-order contri-
butions to the hfs fails to reproduce the experimental
data. Instead of evaluating all fourth-order diagrams, we
have chosen to include certain important higher-order
correlation effects by modifying the orbitals. By adding
to the orbital, o, a corrections, 5o, which is described by
Fig. 5 and satisfies the equation

(e, —hp) I 5o&=(a I r, 2'
I
U„&—

where the ellipsis represents orthogonality terms, Fig. 4(a)
is automatically included in the expectation value
(0 +50

I
A gf I

o +5o & of the hfs operator. [As shown in

The infinite summation over t can be obtained through
the solution of the single-particle equation (3) above,
whereas the double summation over the excited states r
and s requires the solution of a two-particle equation

(e' +e —Ap(1) —Ap(2))U (1 2)=r]p
I o,a &—

where the ellipsis represents the orthogonality terms. The
pair equation has been solved numerically by the pro-
cedure described in Ref. 8. With the use of the single-
particle function p, from (3) and the pair function U„,

a &t )g s

FIG. S. Second-order correlation correction to the valence or-
bital described by Eq. (6). This type of correction is included in
"Brueckner" valence orbitals.
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in Ref. 4, a few more terms appear on the right-hand side
of (6), which account for other diagrams, analogous to
4(a), which have not been shown here. ]

By replacing the Hartree-Fock orbitals by these approx-
imate "Brueckner" orbitals, not only the expectation value
but also the polarization and correlation effects are modi-
fied. The lowest-order exchange polarization diagram,
Fig. 2(c), e.g., will include also the fourth-order diagram
shown in Fig. 6(a) and the third-order correlation dia-

gram, Fig. 4(b), will include the fifth-order diagram in

Fig. 6(b).
In the Hartree-Fock (HF) potential for the inert-gas-

like core, which has been used here, the core is not affect-
ed by the valence electron. The modification, 5o, of the
valence orbital, described by the diagram in Fig. 5, can be
interpreted as an adjustment in the valence orbital due to
the change the valence electron has induced in the core.
Figure 5 involves a pair excitation and only a part of the
excitation to the same angular symmetry can be taken into
account by using the HF potential with the valence elec-
tron included. This part is often very small and true pair
excitations, especially excitations where the angular
momentum is changed by one unit for each electron, dom-

inate the modification of the orbitals to approximate
Brueckner orbitals.

It can be noted that Ahmad et a/. in recent relativistic
calculations of the hyperftne structure of the ground
states in Mg+ (Ref. 13) and Ba+ (Ref. 14) evaluated

directly only correlation diagrams of the type in Fig. 4(a).
For Mg+ only AI =0 and 1 excitations were included.
The size of the remaining correlation diagrams in third
order was estimated from results obtained for other sys-
tems.

For the 5d state in K and the 4d state in Rb the in-

clusion of these orbital modifications caused a contraction
of the valence orbital leading to a doubling of the (r )
expectation value. " In this work we have evaluated the
modification of the orbitals towards approximate
Brueckner orbitals only for the valence electrons.

D. Higher-order correlation effects

The modification of the orbitals to approximate
Brueckner orbitals significantly improved the agreement
between theory and experiment. Nevertheless, some
discrepancies remained. Therefore, a procedure was

developed to treat pair correlation effects in a self-
eonsistent way in analogy with the iterative procedure for
core-polarization described above. The iterative procedure
has been applied to the correlation energy in He, and
Ne, ' and to the calculation of the hfs of s states in Na
(Ref. 16) and of the 41 state in Rb. Use of the iterated
pair functions brought the desired agreement between
theory and experiment for the 41 state in Rb.

III. RESULTS AND DISCUSSION

Of the naturally abundant calcium isotopes only Ca,
with an abundance of 0.14%, has a nonzero nuclear spin
giving rise to a hyperfine structure. The spin is I = —, and
the nuclear magnetic moment is pl gII =———1.317642(7)
nm. ' This value is corrected for diamagnetic screening (a
0.15% effect). It has been used to obtain the results for

Ca given in MHz. All other results are given in Hartree
atomic units (a.u.).

A. The 4s state

The ground state of Ca+, 4s S&&2, has only a contact
parameter (r ) io, due to the angular restrictions. It is

given in first order by —', R4, (0)=15.69 a.u. Of course,

this value is changed by higher-order contributions, as
shown in Table I.

The most important correction is due to single excita-
tions, "core polarization, " which contribute 3.3. As ex-

pected the 3s —+s excitations dominate and contribute 2.2.
The 2s —+s and 1s—+s excitations contribute 0.7 and 0.5,
respectively, and the indirect contributions from 3p —+p
and 2p~p excitations are very small. Our core polariza-
tion, giving a 21% increase of the (r )io parameter, is
somewhat larger than the results 14% and 19%, respec-
tively, obtained by Ahmad et al. for Mg+ (Ref. 13) and
Ba+.'" This is probably due to the abave-mentioned
difference in the definition of core-polarization effects.

The modification of the valence orbital to an approxi-
mate Brueckner orbital gives a slightly smaller increase,
about 18% or 2.8. Of this contribution 2.4 arises from
4s 3p excitations with 1.6 from 4s 3p~pd, 0.4 from
4s3p~sp, and 0.1 from 4s3p~ps. Excitations from
4s2p and 4s2s contribute about 0.2 each and excitations
involving two core orbitals 0.01. This orbital modifica-
tion contributed 11% of the first-order value for Mg+

TABLE I. Various contributions to the contact parameter (r ) &o for the 4s state in Ca+ (a.u.).

Hartree-Fock {Ca + core)
"Brueckner orbitals"
Pair functions used:

First order
1 iteration
2 iterations
3 iterations

3 R4, {0)

15.69

18.52
18.51
18.53
18.53

Polarization

3.28

3.69
3.71
3.71
3.71

Correlation

2.42'

—0.44
—0.38
—0.38
—0.38

Total

21.39

21.77
21.84
21.86
21.86

'2.78 of this value can be ascribed to the correction of the valence orbital to an approximate Brueckner
orbital and the rest, —0.36, arising from other correlation effects is the number to be compared to the
other values in the column.



ANN-MARIE MARTENSSON-PENDRILL AND STEN SALOMONSON

(Ref. 13) and 30% for Ba+, '" showing that its relative im-
portance increases with the nuclear charge. The contrac-
tion of the 4s electron orbital also causes the core-
polarization contribution to increase by about 13%, thus
increasing the first-order value by 2.7%.

The remaining correlation effects are very small (2.4%
of the first-order value) and, as could be expected from
this observation, very little is gained in this case by in-
cluding higher-order correlation effects. The total nonre-
lativistic result corresponds to an A factor of —785 MHz.

The radial pair functions used to calculate the modifi-
cation of the valence orbital towards an approximate
Brueckner orbital and the remaining correlation effects,
were obtained in three different grid sizes [59, 69, and 79
points, respectively, in the range exp( —7.1) to exp(4. 1)j
and grid extrapolation was applied to remove the O(h )
and O(h ) errors.

Table II shows the pair excitations included in the cal-
culation. All excitations from two core electrons to excit-
ed states involving at least one s, p, or d electron were in-
cluded. Excitations, where the I values were changed up
to 4 units were allowed for valence-core pair excitations.
All excitations involving a 1s electron have been neglect-
ed. No extrapolation was performed to estimate the con-
tributions from higher I values.

Use of relativistic Dirac-Fock orbitals instead of nonre-
lativistic Hartree-Fock orbitals increases both the first-
order (r ) value and the core-polarization contributions
by about 4.4% to 16.38 and 3.42, respectively. Adding
the nonrelativistic correlation contribution to these results
gives an A factor of —815 MHz. If 4.4% are added to
the correlation contribution as an estimate of the relativis-
tic effects, a final result of —819 MHz is obtained. The
value can be compared to the semiempirical result, —827
MHz (Ref. 18) obtained from the Fermi-Segre-Goudsmit
formula, ' and agrees well with the experimental result of
—817+15 MHz obtained by Kelly et al. '

B. The 4p state

All four hyperfine parameters enter for the 4p state.
Table III shows the results obtained with orbitals created
in the Hartree-Fock potential from the Ca + core. In first
order the contact parameter is zero and the orbital, quad-
rupole, and spin-dipole parameters are all equal and given
by the expectation value (r ) =1.0231 a.u. of the 4p or-
bital. The effect of core polarization, evaluated to all or-
dc1S, ls given ln the second linc ln Table III. This cffcct ls
the most important correction to the (r } parameters,

4s-core 4s3p~sp» ps pd, dp, df, fd, fg, gf, g&

4s2p sp ps pd, dp, df, fd, fg gf, gl

4s2s~s, p, dt, f~, g2

4p-core 4p3p i~I» Il~ —1I &4* 14—1I &4
4p2p~l(12,

I
lg —1

I
&4,

I
lp —1I &4

4p3s~lgl2,
I

1) —1I &4,
I

12 —0I &4
4p2s~lgl2,

I
Jg —1I &4,

I
l2 —0I &4

3d"core 3d3p~ltlg,
I

1) —2I &4,
I

lp —1I &4
3d2p~l~l~,

I
l~ —2I &4,

I
l2 —1I &4

3d3s lgl2,
I

lg —2
I

&4,
I

l2 —OI &4
3d2s —+1,12, Ilq —2I &4,

I
lq —0I &4

increasing them by 25—40%. The largest contributions
come from the 3p —+p and 3s —+s excitations.

As for the 4s state, the dominating correlation contri-
bution is the modification of the valence orbital to an ap-
proximate Brueckner orbital, which increases the expecta-
tion value, (r ), by 20% to 1.2232. This value includes,
in addition to the third-order diagrams, also fifth-order
diagrams like the diagram in Fig. 6(c). It is thus different
from the sum of the results in the first and third line of
Table III. The most important pair excitations are
4p 3p —+sd, 4p 3@~d, and 4p 3p —+p, contributing 0.054,
0.062, and 0.025, respectively, to the (r ) value. Exci-
tations from 4p 3s contribute 0.016 and from 4p2p 0.013.
Excitations involving two core electrons are again very
small, contributing only 0.007.

The remaining correlation effects, not taken into ac-
count by modifying the valence orbital to an approximate

TABLE II. List of pair excitations included in the calculations.

3p ~s2, p, d, sd, pf, dg

3p 2p~s, p', d, sd, ds, pf, fp, dg, gd

2p ~s, p, d, sd, pf, dg

3p 3s ~ps, sp, dp, pd, fd, df
3p 2s ~ps, sp, dp, pd, fd, df
2p 3s ~ps, sp, dp, pd, fd, df
2p 2s ~ps, sp, dp, pd, fd, 1f

2 g 2 p 2 d 2

3s2s —+s, p, d
$2 S2, p2

TABLE III. Contributions to the (r ') parameters for the 4p state of Ca+ using orbitals created in
the Hartree-Fock potential from Ca +. The polarization contributions are evaluated to all orders. All
third-order and some higher-order effects are included in the correlation contributions {a.u. ).

Spin-dipole

Polarization
Correlation:

"Brueckner orbital"
Qther correlation

Total

0
—0.1781

0.1769

1.0231
0.2656

0.1943
—0.0320

1.4510

1.0231
0.3033

0.1943
—0.0269

1.4938

1.0231
0.4371

0.1943
—0.0684

1.5861



30 HYPERFINE STRUCTURE OF THE 4s, 4p, AND 3d STATES. . . 717

TABLE IV. Results for the various hyperfine parameters in the 4p state of Ca+ using approximate Brueckner valence orbitals.
The pair functions and Brueckner orbital obtained in one iteration were used to create the pair functions in the next iteration. The
pair excitations included are shown in Table II (a.u.).

First order
Pair functions used

1 iteration 2 iterations 3 iterations

Contact &r ')
Polarization
Correlation
Total

0
0.3890

—0.2010
0.1880

0
0.3876

—0.2007
0.1869

0
0.3878

—0.2036
0.1842

0
0.3878

—0.2037
0.1841

Orbital &r '&

Polarization
Correlation
Total

1.2232
0.2976

—0.0378
1.4830

1.2234
0.2969

—0.0295
1.4908

1.2258
0.2972

—0.0284
1.4946

1.2261
0.2973

—0.0281
1.4953

Spin-dipole
Polarization
Correlation
Total

1.2232
0.3400

—0.0331
1.5301

1.2234
0.3391

—0.0303
1.5322

1.2258
0.3398

—0.0292
1.5364

1.2261
0.3399

—0.0290
1.5370

Quadrupole (» '&

Polarization
Correlation
Total

1.2232
0.4774

—0.0754
1.6252

1.2234
0.4766

—0.0749
1.6251

1.2258
0.4770

—0.0764
1.6264

1.2261
0.4770

—0.0766
1.6265

Brueckner orbital, contribute about 3—7%%uo of the first-
order value (except for the contact parameter, whose
first-order value is zero). Owing to the spin operator in
the spin-dipole interaction certain diagrams are forbidden
that enter for the quadrupole interaction. The difference
in polarization effects for these two parameters, e.g. ,
shows that the direct polarization diagrams [Figs.
2(a)—2(b)] give only about 40% of the exchange polariza-
tion diagram [Figs. 2(c)—2(d)] that give identical contribu-
tions to the two parameters. The correlation effect (other
than the orbital modification) for the quadrupole interac-
tion is more than twice the size of the effect for the spin-
dipole interaction, but the magnitude is small. This effect
reduces the difference between the two parameters leaving
them only 6% different.

Use of the approximate Brueckner valence orbitals in
the evaluation of the diagrams changes both the polariza-
tion and correlation effects. The new values are given in
Table IV, which also shows the convergence in the itera-
tion procedure.

Of more direct experimental interest are the A and B
factors. They are related to the &r & parameters as [C
and D have been reevaluated using up-to-date values of a,
ao, and mz/m, (Ref. 20)]

A(j )=C (21+2)&r &o)+ &r &~2
gr 2l+2

2l+1 2l —1

A(j()=C 2l&r &0, — &r
2l

2l +1 2l +3

+&

where C =95.4107(4) if A is given in MHz, gI in nuclear
magnetons, and & r & in atomic units, and

B(J»=DQ &r '&02
2l

2l+3

B(j ) =DQ [2(l —1 ) &r &pp]
1

2l+1

(8)

C. The 3d state

The core-polarization and correlation effects are more
important for the 3d state in Ca+ than for the 4p state, as

where D =234.9649(8) if B is given in MHz and Q is
given in b (10 m ). The values of the A and B factors
at different stages are given in Table V.

As for the 4s state we have estimated the relativistic ef-
fects by performing also relativistic calculations of the
core-polarization effect, as described in Ref. 12. The re-
sults of these calculations are shown in Table V. For the
4p&&2 state the HF expectation value and the polarization
contribution are both increased by about 4%. The total
nonrelativistic contribution from correlation effects is
22.0 MHz and adding 4% to this value as an estimate of
relativistic effects leads to a final value, A (4 P~/2)
= —148 MHz. Although the relativistic effect on the HF
values for both the A (4 P3/2) and B(4 P3/2) values is less
than one percent, the core-polarization effect is increased
by 4% and 2%, respectively. Since it is then difficult to
estimate the effect of relativity on the correlation contri-
butions, we add the nonrelativistic correlation contribu-
tions to the relativistic results including core polarization
to obtain the final values A (4 P3/2)= —30.9 MHz and
B (4 P3/2 )/Q = 155 MHz/b.
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TABLE V. A and B factors for the 4p states in Ca+ evaluated with HF orbitals and approximate
Brueckner valence orbitals. The values in parentheses are corresponding relativistic results.

Hartree-Pock

+ polarization

+ correlation
Total with "Brueckner orbitals"
Pair functions used:

First order
1 iteration
2 iterations
3 iterations

A (4 I i/r2)

(MHz)

—98.0
(—101.6)
—121.0

(—125.4)
—138.9

—142.1

—142.5
—143.0
—143.0

A (4 I3y2)
(MHz)

—19.6
(—19.6)
—28.8

(—29.1)
—29.7

—30.4
—30.6
—30.6
—30.6

8 (4 P3yt ) /Q
(MHzrb)

96.2
(97.1)
137.2

(138.9)
149.1

152.8
152.7
152.9
152.9

can be seen from Table VI. The expectation value is
(r ) =0.5889 a.u. if the 3d orbital is created in the HF
potential from Ca +. The exchange core polarization
gives large negative contributions to the parameters in
contrast to the positive values for the 4p state and the po-
larization effects on the quadrupole and spin-dipole pa-
rameters are drastically different, with the direct and ex-
change terms nearly cancelling for the quadrupole interac-
tion. The use of an approximate Brueckner valence orbi-
tal increases the (r ) expectation value by about 30%.
The largest contributions come from the valence-core ex-
citations 3d 3p —+dp, + 0.11, and 3d 3p~fd, + 0.065,
and the core-core excitation 3p ~d which contributes
—0.054. Also the remaining correlation effects are im-
portant, particularly for the spin-dipole parameter, where
they amount to about 30% of the first-order value.
Again, the use of Brueckner valence orbitals changes both
the polarization and the remaining correlation effects.
These results are given in Table VII. Owing to the large
cancellations, the quadrupole parameter is quite sensitive;
the polarization contribution is increased by about 40%
and the correlation contribution is reduced by about 40%.
The correlation contribution to the contact parameter is
increased by about 30%, whereas the contributions to the
other parameters undergo less drastic changes.

The A and B factors for the 3d states were evaluated
using the formulas (7) and (8) and the results are given in
Table VIII, showing that the values are very well con-
verged. The changes between the last two lines are very
small. The largest change (2%) occurs for the A (3 D5i2)

parameter, which is rather sensitive to small changes in
the (r ) values due to large cancellations between the
orbital and induced contact parameters.

As shown in Table VIII, the relativistic effects lead to a
reduction of the expectation value of all the parameters
for the 3d state in contrast to the situation for the 4s and
4p states. The relativistic correction factors are quite dif-
ferent for the expectation values and polarization contri-
butions. %e are thus not in a position to estimate the re-
lativistic effects on the correlation contributions and
choose again to add the nonrelativistic correlation contri-
butions to the relativistic results including core polariza-
tion. The final results are 2 (3 D3/p ) = —52 MHz,
8 (3 D3iz)/Q =68 MHz/b, 2 (3 D5i2 ) = —5.2 MHz, and
8(3 Dgy2) =97 MHz/b.

The valence 3d electron has a relatively large probabili-
ty of being within the core. Thus it may influence the
correlation among the core electrons more than, e.g., a 4s
or a 4p valence electron does. These effects have been
neglected and we feel that the omitted effects may not be
negligible for the 3d state. Table IX shows the Hartree-
Fock and Dirac-Fock values for the ionization energies,
the nonrelativistic correlation energies obtained from the
Brueckner orbital modification procedure, and a compar-
ison with experimental data. ' For the 4s and 4p states,
the correlation contributions are about 5% larger than the
difference between the experimental results and the
Dirac-Fock ionization energies, whereas for the 3d state
the nonrelativistic correlation energy is 14% larger than
this difference. Thus the hfs results obtained for the 3d

TABLE VI. Contributions to the (r ) parameters for the 3d state of Ca+ using orbitals created in
the Hartree-Fock potential from Ca +. The polarization contributions are evaluated to all orders and
all third-order effects are included in the correlation contributions (a.u.).

&r-')
Polarization
Correlation

"Brueckner orbital"
Other correlation

Total

Contact

0
—2.1598

0
0.4482

—1.7116

Orbital

0.5889
—0.1982

0.1827
0.1057
0.6791

Spin-dipole

0.5889
—0.3896

0.1827
0.1903
0.5723

Quadrupole

0.5889
—0.0721

0.1827
0.0537
0.7532
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TABLE VII. Results for the various hyperfine parameters in the 3d state of Ca+ obtained with approximate Brueckner valence or-
bItals. The pa1r excltatIons Included are shown in Table II (a.u.).

First order
Pair functions used

1 iteration 2 iteratIons 3 iterations

Contact

Orbital

(~ ')
Polarization
Correlation
Total

(~ ')
Polarization
Correlation
Total

0
—2.3037

0.4648
—1.8389

0.7725
—0.1985

0.1025
0.6765

0
—2.2999

0.5696
—1.7303

0.7915
—0.1969

0.1134
0.7080

0
—2.3008

0.5941
—1.7067

0.7972
—0.1965

0.1223
0.7230

0
—2.3008

0.5939
—1.7069

0.7987
—0.1964

0.1255
0.7278

Spin-dipole (~ ')
Polarization
Correlation
Total

0.7725
—0.3747

0.1904
0.5882

0.7915
—0.3692

0.1861
0.6084

0.7972
—G.3679

0.1919
0.6212

0.7987
—0.3676

0.1928
0.6239

Polarization
Correlation
Total

0.7725
—0.0976

0.0564
0.7313

0.7915
—0.0990

0.0388
0.7313

0.7972
—0.0996

0.0341
0.7317

0.7987
—0.0997

0.0321
0.7311

TABLE VIII. A and 8 factors for the 3d states in Ca+ evaluated with HF orbitals and approximate
Brueckner valence orbitals. The values in parentheses are corresponding relativistic results.

Hartree-Fock

+ polarization

+ correlation
Total with "Brueckner

orbitals"
PaIr functIons used

First order
1 iteration
2 IteratIons
3 iterations

A (3 83')
(MHz)

—33.8
(—33.2)
—35.2

( —34.6)
—49.8

—50.8
—51.7
—52.3
—52.6

A (3 D5y2)
(MHz)

—14.50
(—14.14)

5.11
(6.02)

—4.87

—3.81
—5.42
—5.96
—6.09

55.4
(54.5)
48.6

(47.9)
70.8

68.7
68.7
68.8
68.7

& (3'&sniiQ
(MHz/b)

79.1

(77.2)
69.4

(68.3)
101.1

98.2
98.2
98.2
98.2

TABLE IX. Ionization energies for the 4s, 4p, and 3d states of Ca+ (a.u.).

Hartree-Pock (Ca +)
Dirac-Fock (Ca +}
Correlation
HF + correlation
DF + correlation

Experiment (Ref. 21)
%'eighted average

0.4150
0.4167
0.0207
0.4357
0.4374

0.4363

0.3101

0.3221

0.3215

0.3093

0.0120
0.3213

0.3208

0.3091

0.3211

0.3205

0.3310

0.3800

0.3741

0.0490
0.3821

0.3309

0.3799

0.3738
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(c}

FIG. 6. Examples of higher-order correlation diagrams that
are automatically included (a) in the polarization diagram 2(c),
(b) in the correlation diagram 4(b), and (c) in the first-order dia-
gram in Fig. 1 when the Hartree-Pock orbitals are replaced by
approximate Brueckner orbitals.

FIG. 7. Example of a third-order energy diagram not includ-
ed in the present calculations.

IV. CONCLUSION

state are probably not quite as accurate as the 4s and 4p
results. It should be noted, however, that our hfs calcula-
tions include all diagrams up to third order, whereas the
calculations of the correlation energies are complete only
to second order and we have not yet attempted to include
all third-order diagrams for the correlation energies. Fig-
ure 7 shows an example of a third-order energy diagram
not included.

Although polarization and correlation effects for the 3d
state in Ca+ are important, this state is still relatively un-
perturbed compared to the d states in the isoelectronic
system K. A calculation of the hfs for the 5d state in K
(Ref. 4) showed both polarization and correlation effects
comparable to the HF expectation value of (r ). The
use of Brueckner orbitals rather than HF orbitals doubled
the expectation value and brought changes to the polariza-
tion and the remaining correlation effects as large as these
effects evaluated with HF orbitals. The different charac-
ter of the d states in K and Ca+ is of course evident also
from experimental data, e.g. , the fine structure of the d
states in Ca+ is normal, whereas it is inverted for K. The
quantum defect changes by about one unit in going from
Ca+ to K, while remaining relatively unchanged when go-
ing to higher nuclear charges. The difference has been
explained by observing that the d orbitals in K are
mainly located outside the centrigual barrier in the poten-
tial, whereas the nuclear attraction in Ca+ is sufficiently
strong to pull the d orbitals inside the barrier, which is a
more stable arrangement.

We have used many-body perturbation theory to calcu-
late the hyperfine structure of the 4s, 4p, and 3d states of
Ca+. These states are relatively well described by a
central-field model, but it is still essential to include both
polarization and lowest-order correlation effects—these
give changes in the A and B factors of up to about 50%.
The inclusion of higher-order correlation effects changes
the results by only about 2—6% [except for the small
A (3 D&~2) factor, which is changed by 25%]. The results
obtained appear to have converged well. Relativistic ef-
fects were found to be less than about 5% but were quite
different for the expectation values and the core polariza-
tion for states with j & —,.

The result for the 4s state is in agreement with experi-
mental data. No experimental information is yet available
for the hyperfine structure of the excited states of Ca+.
However, the calculations performed here are also a part
of the evaluation of the hyperfine structure in Ca, which
is presented elsewhere. "
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