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Relativistic equal-time wave equations obtained from field theory which describe bound states of
N Dirac particles inevitably involve Casimir-type positive-energy projection operators A .(i). For
N >2, these operators are vital if the equations are to admit normalizable solutions. Such equa-
tions, which are of integro-differential form, have been used in the past to obtain relativistic correc-
tions to, e.g., level shifts for a variety of simple atomic systems, and to provide a theoretical basis for
the Dirac-Hartree-Fock type of equations for many-electron atoms. Here we initiate a study of such
equations without making an expansion in powers of v/c. We work in momentum space, where the
free-particle projection operators are simple functions of P and the wave equation is essentially no
more complicated than in the nonrelativistic case. In the present paper we describe techniques for
finding the eigenvalues of A (1,2)=hp(1)+hp(2)+A, VA, ,, where hp(i) is the free-particle
Dirac Hamiltonian and V is a local potential with a | T,—T, | ~! singularity. Numerical results are
presented for the case of a pure Coulomb potential and a Coulomb-plus-Breit potential, for a wide
range of mass ratios m;/m, and coupling strength e;e,/4m. In the m,= oo limit, comparison is
made with the Dirac equation. The results are used to discuss the magnitude of level shifts associat-
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ed with virtual-pair production in such two-body systems.

I. INTRODUCTION

The relativistic treatment of bound states in quantum
theory is a problem of long standing. In this introductory
section we first briefly review the old and relatively fami-
liar approaches to the relativistic two-or-more—body
problem for spin- particles. We then describe the ad-
vantages of more recent methods based on “no-pair equa-
tions,” involving projection operators. Finally we state
the purpose of this paper and give an outline of the fol-
lowing sections.

A. Historical review

A charged spin-% fermion moving in an external elec-
tromagnetic field is well described by the Dirac equation.
If the fermion is an electron and the field is the Coulomb
potential provided by a point charge, this equation pro-
vides a highly accurate description of the spectrum of hy-
drogen and H-like ions. To take into account both radia-
tive and nuclear-recoil effects, one can turn to the two-
body Bethe-Salpeter (BS) equation, an integral equation
which is an exact consequence of quantum field theory.!
For the case of purely electromagnetic interactions, the
kernel entering the BS equation is well approximated by
the first few terms in an expansion in powers of
a=e?/47. Because of this the two-body BS equation has
been extensively used in the calculation of energy levels of
hydrogen, positronium, and muonium.?

Older and much simpler in form than the  four-
dimensional BS equation for two fermions is a two-body
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Dirac-type equation which, for a stationary state, has the
form

h(1,2)y=Ev¢, (1.1a)
2
h(1,2)= E hp(D)+Viy . (1.1b)
i=1
Here
hpli)=a;P P+Bim; (1.2)

is the free Dirac Hamiltonian and ¥V, is a local interac-
tion between particles 1 and 2, V|, =V (7). In particular,
suppose that ¥, is taken to be the sum of the Coulomb
interaction

c G182 1
27 4r r

(1.3)

and the Breit operator representing exchange of a trans-
verse photon,

(1.4)

(& Ay + A FAyF) .
4 2p P TETTLTTR

Then with 1 denoting an electron and 2 denoting a proton
or muon, Eq. (1.1) is sufficiently accurate to give all the
corrections of order a*m, to the nonrelativistic energy
levels as well as some of the higher-order corrections.

“Such an equation was used long ago by Breit and co-

workers to study recoil corrections in hydrogen.’
The first attack on the relativistic three-body problem
in quantum theory appears also to have been made by
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Breit,* at least in the limiting case where one of the parti-
cle masses is regarded as infinite. Thus, he took as a
starting point for the study of the spectrum of helium, the
Hamiltonian

2 2
H(1,2)= E HD;ext(i)+_ ’

e
i=1 r12

(1.5a)

where

Hp.ex(i)=hp(i) 4 Veu(i) . (1.5b)
Subsequently, the obvious generalization of (1.5a) to N-
electron atoms was (implicitly) used to obtain the Dirac-
Hartree-Fock (DHF) equations, as relativistic analogs of
the Hartree-Fock equations.” With the advent of the
computer age, the DHF type of equations became a major
tool in the theoretical study of relativistic effects in
many-electron atoms.®

Yet, it was pointed out over thirty years ago that Ham-
iltonians such as (1.5a) have no normalizable eigenfunc-
tions.” This makes their use in the study of bound states
suspect, to say the least, and obscures the physical signifi-
cance of the DHF equations. These facts have been dis-
cussed extensively in recent years,>® and proposals have
been made for the use of equations which do not have the
difficulties associated with (1.5a) and which, concomitant-
ly, have a clear origin in quantum field theory.!%!!

B. Relativistic equations with projection operators

Analysis based on quantum field theory shows that
equal-time equations describing bound states of two or
more fermions inevitably involve Hamiltonians which
differ from (1.1) or (1.5a) in that the interaction term ap-
pears with Casimir-type positive-energy projection-
operator factors. Although these factors make the Hamil-
tonian nonlocal they prevent the disease with which the
natural looking equal-time equations are afflicted when
there are more than two interacting particles.

For example, the two-body BS equation for two Dirac
fermions interacting electromagnetically leads, in the
ladder approximation and with neglect of transverse pho-
tons, to an equal-times equation of the form (1.1), with
V1, given by'?

Ayt —A_ V(A +A_).
Here A, , =A_(1)A_(2) and

EP+(d; PP +Bim;)

Asl)= 2% : (1.62)
with
EP=E{(B{P), E(B)=(m}+B)'". (1.6b)

If we neglect the terms involving negative-energy projec-
tion operators, we are led to the equation

h, $=Eo , (1.72)
where A<, is a “no-pair Hamiltonian” defined by
hé =hp()+hp(2)+A, VAL, . (1.70)

A similar approximation to the external-field BS equation
describing two electrons moving in the electrostatic field
provided by an infinitely heavy nucleus leads to the no-
pair external-field Coulomb-ladder equation'?

H_ y=Evy, (1.8a)
where
H  (1,2)=Hp,exi(1)+Hp,ext(2)
+L, VL, . (1.8b)

Here L, , =L (1)L (2) and L (i) is the projection
operator onto the space spanned by the positive-energy
eigenstates of Hp...(i). For two electrons (e; =e, = —e),
the Hamiltonian H  (1,2) defined by (1.8b), in contrast to
H(1,2) defined by (1.5a), does have normalizable eigen-
states which correspond physically to the discrete spec-
trum of helium or heliumlike ions. Moreover, its general-
ization to N electrons provides a suitable starting point
for the derivation of relativistic Hartree-Fock-type equa-
tions.!”

Although in the pure two-body case the projection
operators are not necessary in order for normalizable solu-
tions to exist, even in this case they are useful. Equation
(1.7a) enjoys two properties not shared by Eq. (1.1): @) it
has a simple field-theoretic origin and (ii) it may be re-
duced to Pauli form without making any nonrelativistic
approximations.?

The problem of “continuum dissolution” from which
(1.5a) suffers is of relevance not only for the treatment of
relativistic effects in atomic systems but also in hadronic
systems. Thus, an attempt to study such effects in the
quark model for the nucleon by replacing the nonrelativis-
tic three-body Hamiltonian

3 3
b= 3, (BPP/2mi+ 3, Vi,
i=1 i,j=1
i<j

where Vj; is a local potential, by
3 3
h(1,2,3)= 3 hpli)+ 3, Vy

i=1 ij=1
i<j

(1.9

is bound to fail because 4(1,2,3) has no bound states. In
contrast, the Hamiltonian

3 3
h (1,2,3)= 3 hp()+AY 3, V,-,-At_,‘ft , (1.10)
i=1 ij=1
i<j
where AY'=A (1)A (2)A(3), has no such problem. In
principle, one can try to use BS-type equations even for
N >3, but these are very complicated indeed'* and few
practical results have been obtained from them.

C. Outline

The purpose of this paper is to make a start on the nu-
merical study of equations involving projection operators,
such as (1.7) or (1.8). As a first example we shall study in
Sec. II a modified external-field Dirac equation of the
form!®
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IW=Ey, (1.11a)
where
h, (D)=hp(1)+A (DHUMA,(1), (1.11b)
with
Ul)=—Za/r, . (1.11¢)

The eigenvalues of (1.11b) can be shown to differ from
those of the ordinary Dirac equation only by terms of or-
der (Za)® or higher for /540 states and for /=0 states by
terms of order (Za)’m.'* Study of (1.11) therefore pro-
vides a sensitive check on the accuracy of the numerical
methods we shall employ. From a computational point of
view, the main complication is that the projection opera-
tor A (1) is a nonlocal operator in coordinate space. We
therefore choose to study (1.11) in momentum space,
where A is a simple matrix function of B. The interac-
tion U is then represented by a kernel U(F—B ') (i.e, by a
nonlocal operator in P space), but this is not different
from the nonrelativistic case. Thus, at least when free-
particle projection operators are involved, the relativistic
P-space equation is almost as simple as its nonrelativistic
counterpart,

=2
Ti= ~—>_—>;~—>, B T = .
—L2m1¢(p)+fU(p BB AP '=Wa(P) (1.12)

In Sec. III we study the pure two-body no-pair equation

h,(1,2)9=Ey, (1.13a)

where

+(1,2)=hp(1)+hpQ)+AL  VioAy (1.13b)
and V, is a local potential. For the classical two-body
bound systems such as hydrogen and positronium, such a
study is mainly of methodological interest. However, be-
fore one tackles the case of more than two particles, not to
mention equations involving external-field projection
operators,® it seems wise to study the simpler problem
posed by (1.13). Moreover, by the use of equations such
as (1.13) one can analyze the importance of relativistic ef-
fects in systems such as charmonium without resorting
. immediately to an expansion in powers of v/c. It is
known that for some matrix elements relativistic correc-
tions can be appreciable in this system, which makes a
v /c expansion questionable. In the present paper we only
consider the choices of V|, of most interest in pure elec-
trodynamics: a Coulomb potential or a Coulomb poten-
tial plus the Breit operator. Our results are summarized
in Sec. IV and used to discuss the magnitude of level
shifts associated with virtual-pair production in two-body
bound states.

II. NO-PAIR EXTERNAL-FIELD EQUATION
A. Reduction to Pauli form

We are interested in normalizable eigenfunctions of
h (1) [Eq. (1.11b)] which reduces to eigenfunctions of

BY
ho ()= am, +U(1) (2.1
in the nonrelativistic limit. Since
[A (1), R (1)]=0 (2.2)

we can and do restrict our attention to solutions of (1.11a)
which satisfy

AL (DD =(1) . (2.3)

The reduction of (1.11) to Pauli form is then straight-
forward, since (2.3) can be used to express the lower com-
ponents 3~ of ¥ in terms of the upper components .
Thus, with ST =(1+/3;)/2 and ¢——Bl Y,

apr

=gt =(14+EP)yyt P —LT1 (2.4)
V=97 +9¢ EPWT, &7 E® tm,
On setting!®

(=AY (1), (2.52)
where

E®1+m 172
AP = -*1TE‘OP—L (2.5b)
1

and substituting (2.4) and (2.5) into (1.11a), one finds that
¢(1) satisfies

heg(1)@(1)=E¢(1) , (2.6a)
where the effective Hamiltonian A . is defined by
heii(1)=E{" + Ueg(1) , (2.6b)
with
Ut D) =APB (1+EPIU(D(1+EPIBT AT (2.6¢)

If U(1) is diagonal in Dirac indices, which is the case
for a Coulomb potential, only even powers of @ contri-
bute in (2.6¢) and, acting on ¢,

Uete(1)—>AP[U (D +EPU(DEF]AP
2.7

— = 0p

o
£P= __;_pl__ ,
EP +m,

where &' is the doubled Pauli matrix vector. In the stan-
dard representation of the Dirac matrices, ¢(1) has van-
ishing third and fourth components, so that we henceforth
regard ¢(1) as a Pauli spinor and & as the ordinary Pauli
matrix vector, without changing the notation. For U’s of
this type then, the P-space form of (2.6a) is

E\®)$B)+ [dB'K(B.BI18B)=ESH), (2.8
where
K(B,B"N=4,BUB—-B")
+&HBTB-B (B N4,1(B")
(2.8b)
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Here

U(p _”)—(plU(l)l

Jdre " F-F0Tum@ (9

- (27T>3
and A4, and ¢ are the P-space forms of 4 and &P
172
. E(B)+m . a'p
Ap)= |22 e =— T
El(p) El(p)+m1
(2.10

B. Radial equations for a Coulomb potential

For spherically symmetric U(T), ip=T °p+01/2
commutes with A.4(1) so that we may look for T-space
eigenfunctions of the form

SEV=R (MY} (F) @.11)

where Y is a two-component Pauli spinor, which is an
eigenfunction of (j °°)2, (T °P)2, and j with eigenvalue
j(G+1), I(I+1), and j,, respectively. The corresponding
P-space function then has the form

3B =g D)Y711P) ,

where p=P/|P| is a unit vector, the analog of 7, and
g(p) is a Bessel transform of R (r):

g =v/mi' [ dr ri(priR (7).

(2.12a)

(2.12b)

We shall concentrate on S states. For /=0, j = %, Yis
a constant spinor and we may perform the angular in-
tegration over the p’ angles in (2.8). We therefore define
a simplified kernel by

Kop.p')= [dp'K(B,B") - (2.13)

Using the relation 6P P '=P B’ +io"PXP’, in (2.8b)
and noting that for spherically symmetric U(T) the
P XP ' term makes no contribution, we get

dp' U(B—3")
BB’
(Ey+mE]+m,)

Ko(p’p,)=A (p) f

X |14 A(p") .

(2.14)

For a Coulomb potential, U(1)=—aZ /| T |, we have

o aZ 1

Uk)=——5——, (2.15)
2 |k|2
and (2.14) yields
Kolp.)=— L ko(p,p")

with

P"*ko(p,p")g (p")=C(

ko(p,p) = A(p) A(p)
p P
(2) P P , (216
Qolz)+ E\+m; E\4+m, :(z) 2.16)
where
z=(p>+p*)/2pp’ . 2.17)

Here the Q;(z)’s are Legendre functions of the second
kind:

Qo(z)z_gln%, 01(2)=2002)—1.  (2.18)
The equation to be studied then takes the form
Eilpl(p)— % [.7 dp' pkolpp" g (") =Eg (p) . (2.19)

C. Taming the Coulomb singularity

To obtain reasonable accuracy in the numerical solution
of (2.19) it is vital to deal with the logarithmic singularity
of the kernel at p =p’, corresponding to z=1. This
singularity is the same which arises in the nonrelativistic
counterpart of (2.19), viz.,

2 ) (Z)
p _‘_Z__Z_ dn’ 'Z_QO_ "= Wi 2.20
2m]g(p) - fo p’p - gp)=wg(p). (2.20)
We may therefore adapt a method due to Landé to the
case at hand.!” Thus, inside the integral in (2.20) we write

p'2(p)=[p*g(p’)—p*(P)]1+p%e(p) . (2.21)

The integral arising from the difference term in (2.21)
now has an integrand which is no longer divergent at
p'=p and the integral arising from the last term in (2.21)
may, in this case, be carried out explicitly. Since

N —L =—7, (2.22)

P +P
Eq. (2.20) can be written

22 . aZmp

om; 2 8P

2

oZ = dp’, [p7% (0" —p’g (p)]

27 Y0 pp’ p+p

=Wg(p). (2.23)
On introduction of a mesh (py,p,, . . ., Pmax) and associ-
ated integration weights (wi,w,, ..., Wn.,) In p space,
(2.23) reduces to a finite matrix eigenvalue problem which
may be handled by standard techniques.

Essentially the same approach can be used for Eq.
(2.19). We make the following repartition of the in-
tegrand:

Qolz) (2.24a)
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where, with b;=p/(E;+m,), b1 =p'/(E{ +m,), we de-
fine

Cp,p')= };;iL)[A (p")pg(p’)—A(p)p’g (p)]1Qo(2)

+4};;,*‘flbl[zA (pb1p % (p")

—A(p)b,p2g (p)]Qo(2)
_ AR 4By o2 (pr) (2.24b)
p p
and
N(p)=AXp)p(1+b?). (2.24¢)

The C(p,p’) term in (2.24a) is nonsingular at p’=p and
the contribution of the second term in (2.24a) to the in-
tegral in (2.19) can be evaluated analytically by use of
(2.22). Substituting (2.24) into (2.19) we get

Z r* ., '
g(p)——%r— fo dp’C(p,p")

E1<p)—g—§—7~N(P>

an equation whose eigenvalues may be found numerically
just as in the case of (2.23),'® for which, of course, an ana-
lytic solution is available.

For P waves and higher-angular-momentum states we
can proceed in a similar manner. Thus, the equations
analogous to (2.19) for the /=1, j =+ 5 states are

Z ® ’ ’ ’ ’
Ei(p)g(p)— == [ dp'pKi (p.p" g (") =Eg (p) ,

(2.26a)
where
k1i(P,P')=A( )A'( ")
pp
P )
X Q1(2)+ (E1+m1) (E,1+m1)Q111(Z) .
(2.26b)

Again the logarithmic singularities in the Q;(z)’s can be
extracted as before and the eigenvalues of (2.26) can be
found just as for S states.

D. Numerical results and analysis of accuracy

1. Results for h . (1) and hp(1)

To solve (2.19) we first scale the momentum variable p
via

p=ymik, (2.27)
where
y=aZ (2.28)

controls the relativistic corrections to the nonrelativistic
binding energy W. The resulting equation reduces to the
S-wave Schrodinger equation (2.20) in the limit y —0, so
that if we define

ey)=(E —m)/y’m, , (2.29)

then
€(0)=-0.5

for the ground state. Shown in Fig. 1 are the numerical
values of e(y) for the S-wave ground state as a function
of y. For comparison, also shown in Fig. 1 are the corre-
sponding eigenvalues of the Dirac equation

21172
ep(y)=U=r2"=1 (2.30)
14

As can be seen, the binding is always stronger for 4 (1)
than for Ap(1).

To assess the accuracy of our numerical method we
may make a number of checks. We first solve the nonre-
lativistic Schrodinger equation in momentum space, e.g.,
(2.20), using the techniques described above to handle the
singularities; we find, for the ground state,

W™m =0, 500001 85y%m, .
This coincides with the exact value
W =—0.5y*m,

to better than 1 part in 10°,

To test the method in a relativistic context when the
answer is known, we have also solved numerically the
momentum space Dirac equation

(@ F+Bm 9B - 25 [ —TB G5 =Erd(H),
2 | PP’

(2.31)

for the S-wave ground-state energy Ep. We then com-
pare ep=(Ep—m,)/y*m,, given by (2.30), with
ey =(Ep"™ —m,)/y*m,. We find that the relative error

in €p™(y),

€p™(y)—ep(y)

Erp(y)= ()

’ (2.32)

1 | 1
0] ol 02 03

1 1 1 1 | 1
04 05 06 O7 08 09 1.0

Y
FIG. 1. Scaled eigenvalue €(y) for the ground state of 4 (1),
defined by Egs. (1.11) and (2.29), shown as a function of y =aZ;
the dashed line connecting the numerically obtained points is
drawn as a guide to the eye. Also shown are the corresponding
numerically obtained eigenvalues for the Dirac equation; the
solid curve is the exact function €p(y).
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is of order 10~ for 0<y <0.9. Thus we can expect that
the relative error in €™™(y),

eMm(y)—ely)

Er(y)= Y =€¥) (2.33)
) e(y)

also remains near its value for y =0 (about 10~°) when y
becomes larger. Furthermore, we find that, for

1073<y <1072,

Erp(y)=Erp(0)(14ay?), (2.34)

with a ~0.28; this dependence of Erp(y) on y for small y
is also expected on theoretical grounds.!” Thus, we shall
assume that a similar relation holds for Er(y).

2. Expansion in powers of aZ

We now turn to a further analysis of the eigenvalues
e(y) of the h . equation, shown in Fig. 1, and their rela-
tion to €p(y). Clearly €p(y) is analytic in y for |y | <1
and can be expanded in a power series

oY) =—3 -5V — v+ . (2.35)

It is therefore tempting to try a similar expansion for
ely),

E(‘}’)zco+c17/+6‘z?’2+03y3+c47/4+ e,

It may be tempting, but it would be wrong. Indeed, it is
straightforward from Eq. (1.11) to show that for the 1s
state we have

co=€0)=—+, ¢;=€(0)=0, czzzl'—e"(O)z_% ,

(2.36)

in agreement with the first few terms of (2.35). However,
this similarity fails when pushed farther. In particular, it
can be shown that for S states,!?

ely)=co+c 7> +c37*+0 (y'Iny) . (2.37)

Thus, (i) e(y) is not analytic in ¥ near y =0 and, further,
(ii) a term of order y° appears in the total energy
E =m,+e(y)y*m,. The coefficient c3 can be found ex-
plicitly in terms of the nonrelativistic wave function via

4y? o
c3y5m1=-—z7|(¢n0|8(r)|¢n0)|2. (2.38)
3m1
For the 15 state this implies that
= 0.42441. (2.39)
37

Armed with the theoretical results (2.37)—(2.39) we can
see to what extent our numerically determined €™™(y) can
reproduce the values of ¢, and c3; we have already seen
that ¢, is reproduced to 1 part in 10°. To find ¢, from
our (numerical) data, we extrapolate values of the quantity

M (y) =[€™™(y) —e™™(0)] /72
to ¥ =0 and find
clvm _ _0,125418 ,

which agrees very well with the exact value ¢;=— -;—
= —0.1250. To find c3"™, we extrapolate

3 () =3 (r)—e3 " 1/
to ¥y =0 and find

c3"™=—-0.408 ,
in good agreement with (2.39). A least-squares fit with a
cubic polynomial in y gives similar results.

It should be noted that the contributions to the level
shift of the ¥ term in the binding energy is, for y ~ 1073,
only 1 part in ~10° of the main term, whereas our calcu-
lation of €""™(y) was only claimed to be accurate to 1 part
in ~10°. The reason that we have, nevertheless, been able
to extract the coefficient of the 73 term by our extrapola-
tion procedure is that the error Er(y) defined by (2.33)
indeed satisfies an equation of the form (2.34), with an a
of order unity. Thus Er(y) is constant to 1 part in 10° in
the range y~0.001 to 0.005 and the quantity
€"™(y) —€™™(0) is accurate to at least 1 part in 10'! for ¥
in the indicated range. We have obtained results of simi-
lar precision for P states. We can thus feel confident of
the accuracy of the numerical methods employed and are
ready to turn to the two-body problem.

III. NO-PAIR TWO-BODY EQUATIONS

A. Preliminaries

In this section we study the low-lying bound-state spec-
trum of the two-body Hamiltonian A (1,2) discussed in
Sec. I, viz.,

h (1,2)=hp(1)+hp(Q)+A  VipAyy . (3.1
We consider only the choices

Vie=V1 (3.2a)
and

V=ViL+Vh, (3.2b)

where V¢, and V1, are the Coulomb potential and Breit
operator, respectively, given by Egs. (1.3) and (1.4). The
reduction of the equation

h,(1,2)9=Ey

to Pauli form proceeds as described in Ref. 16. We set, in
the c.m. system and in momentum space,

Y=2S515,¢, (3.3a)

where, with
R 172
£— a;'Pi 4= Ei(ﬁ)tmi
Ei(p)+m; 2E;(B)
(3.3b)

Si=(1+&)6 4 ,
and

Pi=—D2=D -

The resulting equation for ¢ has the form



30 RELATIVISTIC WAVE EQUATIONS IN MOMENTUM SPACE 709

had(B)=E¢(P), (3.4)
where

ha=E(B)+E,(B)+ Ve (3.52)
and the interaction operator Vg has a kernel

Ver(B,8)=(5:5)"V1,(8,8)S:S; . (3.5b)

For the choice (3.2a) V, is diagonal in Dirac-matrix
indices and (3.5b) reduces to

Veir(B,B ) =41 (B)A2(BNV 4+-EiV 80+ 6V 5285
+E6V L8 A(B42(B)
(3.6a)

oo
og1'p

E\(B)+m,’

o2'p

G1= 2=,
E(P)+m,

(3.6b)

and the ¢} are similarly defined, with B—p’; V¢, is the
Fourier transform of (1.3), given by

Ve p—B)=—a/Qr|3—3"]% (3.6¢)

for e; = —e, = —e. For the choice (3.2b) we must add the
contribution from the Breit operator; to spare the reader
we do not write it out explicitly.

For the choice (3.2a) there is no tensor-force term in
V(P,p ') and the bound-state wave function can be tak-
en to be an eigenfuilction of T gp, Jop $2, and Tf,p, where
S=G1/2+452/2, 1,,=i(3/3B)XB, and jop=S+ I op
Thus we may write, as in the one-body problem [Eq.
(2.12)],

#(B)=g (P Y1, (P) , (3.7)

where s=1 or 0 and Y is an angular momentum eigen-
function. The resulting equation for g(p) may be solved
in the same way as (2.19).

For the choice (3.2b) there is a tensor-force term in
Vesr(B,P ') and [ is, in general, not a good quantum num-
ber. Thus, there will be mixing between, e.g., 3S and 3D
states, etc. For simplicity we therefore consider only 'S
states, which do not mix.

B. Numerical results

Before solving (3.4) we first scale the momentum vari--
able, as in the one-particle case, via

p =am1k ’

where a, now regarded as variable, controls the relativistic
corrections to the nonrelativistic binding energy W. We
define the two-particle binding energy, scaled by a?m ,

ea)=(E —m;—m,)/a*m, . (3.8)

For a—0, the resulting equation then reduces to the
Schrédinger equation for a particle of mass
u=mym,/(m;+m,) and the scaled ground-state binding
energy has the limiting value

Shown in Fig. 2 are the numerical values of e€(a) for the
singlet S-wave ground state as a function of a, for the
choices (3.2a) and (3.2b), with m;=m,=m. As can be
seen, for choice (3.2a) e(a) is almost independent of a in
the range considered. This is surprising—it would be nice
to understand it on physical grounds.

As a test of the numerical accuracy we compare our
€™™(a) in the region |a| << 1 with the first few terms of
the expansion of e(a). For the choice (3.2a), with
m | =m,=m, one can show that

ela)=co+ca’+c3a0°+0 (a*na) , (3.9)
with
co=—1%, C2==0.046875, (3.10)
and
a |7 5 — 2 2
CG3=—"5 ~+3 I(¢n0]8<r)|¢n0>|n=l/am
m 2 3
S /81‘1’ —0.12881 (3.11)
> +3 ~—0. . .

We expect our accuracy to be comparable to that ob-
tained for the m, = « case in Sec. II, and indeed we find

cBim — _0.2500014 ,

so that our nonrelativistic solution is again reproduced to
better than 1 part in 10°. To get c3"™ and c3"™ we extra-
polate to @ =0 the same expressions as in the one-particle
case and get

U™ —0.046 746 ,
M= _0.127,

in excellent agreement with the theoretical results (3.10)
and (3.11).
For the choice (3.2b) the values of ¢ and c; in the ex-

pansion (3.9) are
Co=—7, c;=——=-—0.328125. (3.12)

The numerical values found were

-0.20 T L m— T T
(@) V=V,
—0.25%= =gz == —Xm — — X = X = X X —
Txa
Sxo S
-0.30+ SN -
~
S ) VeV +
€ N *Vig* Bz
-0.35- \ -
\
x
<
-040} \ _
\
\
\
-045- \ i
\
\
~0.50 I I I 1 I 3

[o} oA 02 03 04 05 OfG 07
a
FIG. 2. Scaled eigenvalue e(a), defined by Eq. (3.8), for the
1So ground state of h.(1,2) [Eq. (3.1)], as a function of a, re-
garded as variable, for m; =m; and for two choices of V,.
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FIG. 3. Scaled fine-structure energy €, defined by Eq. (3.13),
for the S, ground state of 4 (1,2), as a function of the mass ra-
tio m,/m,, for two choices of V,.

cd"™ =—0.2500014, c3"™=—-0.327936,
in good agreement with (3.12). We also find
e —0.188 ,

but have not calculated the theoretical value of c;.

If ms£m, there is still some interest in obtaining accu-
rate solutions to Eq. (3.4). The numerical method can be
used in this case just as easily as in the equal-mass case.
Figure 3 shows the quantity

e=[ela)—e(0)]mu~! (3.13)

as a function of the ratio m,/m;, for the choices (3.2a)
and (3.2b), with a=3;. We have verified that in either
case e(a) converges to the corresponding eigenvalue of
h (1) with Z=1, when m,— o, as expected. This fig-
ure can be used to read off some of the recoil corrections
for pu-mesic hydrogen (m,/m~9).

IV. SUMMARY AND DISCUSSION

Three-dimensional relativistic wave equations derived
from field theory which describe a system of N interact-
ing Dirac particles inevitably involve projection operators.
In this paper we have shown that the presence of these
operators need not be a barrier to obtaining accurate
eigenvalues for two-body bound states, even when the in-
teractions involve 1/r singularities—as they do for most
cases of physical interest. Although we have not stressed
it, the method of solution also supplies wave functions of
corresponding accuracy. This should provide encourage-
ment for the use of such no-pair equations for the case
when N >3, e.g., even for moderately heavy atoms, where
further approximations, of course, have to be made to
reduce the problem of tractable form, but where free-
particle projection operators can still be used. For very
heavy atoms one must either deal with the external-field
projection operators (which are nonlocal even in P space)
or use an approach such as that described in Ref. 8.

Apart from this, the no-pair equations are of interest
even for the relatively few-body problem, e.g., N=3, be-
cause of the absence of continuum dissolution. Their ap-

plication to the quark model of the nucleon remains to be
explored.

Even for the two-body problem the no-pair equations
studied in Sec. III are of interest because of the physical
insight they give on some aspects of level shifts in elec-
tromagnetically bound systems such as hydrogen, muoni-
um, and positronium.

In this connection let us pursue a bit the question of
contributions arising from intermediate states involving
fermion-antifermion pairs. As we have seen earlier, in the
one-particle case (m,= o) there is a y° contribution to
the total energy E =m,+¢€(y)y*m,. However, no such
term exists in the expansion of the exact Dirac eigenvalue
Ep=(1—y»'2m,. For this one-particle case the y° term
coming from (2.19) can be shown to be precisely canceled
by pair-correction terms, so that there is complete agree-
ment among results obtained from the Dirac equation, the
theoretical values obtained from 4 (1) and the pair dia-
gram, and our numerical results, at least to order 'y5.

It is interesting to analyze this problem for the case of
m;<mj, < «. The time-ordered diagrams which need to
be considered are shown in Fig. 4. The o’ contributions
from these diagrams may be written in the form

F.
AE]':‘—‘Wa2 I <(]f’nO l 8(?) l ¢n0> I 2-'1{ ’
mi
where the F; are integrals over algebraic functions, which
we need not record here. For n=1 we have

3
my

Calculation shows that for m; =m,,

F,=1, Fy=1, F,=— li—f—

’

3 2

whereas for m,= o0,

F,=%, F,=0, F,=0.

But there is also an a’ contribution AE; in the general
case, coming from the power-series expansion of the
eigenvalue E of h_, of the same form as (4.1), with an in-
tegral Fy replacing F;. We find

5
Fd — 3‘-{——721" (ml'::mz); Fd=_% (m2=00).
1 2 1 l;q |’\|JZ\J

(a) (b) (c)

FIG. 4. Time-ordered Feynman diagrams associated with
virtual-pair creation and annihilation arising from the Coulomb
interaction.



It follows that for m;=m,,

5 T
SF,=141— | = ——
a=1+ {3 2

and there is a net a’m term, whereas for my= o0,
SF,=4++4+04+0—%+=0 4.3)

and there is no net a’m term, as already mentioned in Sec.
III. The analytic form of =F is given by

EFa=——§-(m1/m2) 5

consistent with (4.2) and (4.3).
In conclusion, we hope to have demonstrated that the
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(free) positive-energy projection operators which make the
no-pair equations look a bit daunting are not an impedi-
ment to the accurate numerical solution of such equa-
tions. The application of Hamiltonians such as h(1,2)
to bound states of (g,7) systems without the use of a v/c
expansion would seem to be a worthwhxle extension of the
techniques presented in this paper.?
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