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Relativistic wave equations in momentum space
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Relativistic equal-tiIIlc wave cqURtions obta1ncd from field theory %hichdcsci"1bc boUnd stRtcs of
X Dirac particles IIlevltably 111volvc Caslmlr-type posltlve-CIICI'gy plo)ectloll operators A+{I). For
X ~2, these operators are vital if the equations are to adrmt normalizable solutions. Such equa-

tions, which axe of integro-differential foxm, have been used in the past to obtain relativistic correc-
tions to, e.g., level shifts for a variety of sixnple atomic systems, and to px'ovide a theoretical basis fox'

the Dirac-Hartrce-Fock type of equations fox many-electron atoms. Hex'e we initiate a study of such

equations %ithout IDakiIlg Rn cxpans1on 1Il p0%'cis of U/c. %c %'ork 1n momentum space, %hcI'c thc
free-particle projection operators are simple functions of p and the wave equation is essentially no
more complicated than in the nonrelativistic case. In the present paper %C desex'ibe techniques fox'

finding thc cigcnvalucs of A+ ( 1,2)=Ag)( I )+Ay) (2)+A++ VA++, where AD(l ) 1s thc frcc-pR1 ticlc
Dirac Hamiltonian and Vis a local potential with a

~
r1 —r,

~

singularity. Numerical results are
plcscIltcd foI' thc case of R pu1c Coulomb potential Rnd R Coulomb-plus"Brclt potcnt1al» for R wide

I"ange of IIlass ratios fPsl /Pl2 Rnd coUpllng sticngth 8l82/4''. In thc PI2 = (x) 11m1t» comparison is

made %ith the Dirac equation. The x'csults axe used to discuss the magnitude of level shifts associat-

ed %1th virtual-pair pioduction 1n such two-body systems.

I. INTRODUCTION

The relativistic treatment of bound states in. quantum
theory 18 a problclll of long stalldlllg. In tllls llltroductol"y
section we first briefly review the old and relatively fami-
liar approaches to the relativistic two-or-more —body
problem for spin- —,

' particles. We then describe the ad-

vantages «more ~ecent methods based on "no-pair equa-
tions, " involving projection operators. Finally we state
the purpose of this paper and give an outline of the fol-
lowing scct1ons.

A. Historical rcvic%'

A charged spin- —, fermion moving in an external elec-

tromagnetic field is well described by the Dirac equation.
If the fermion is an electron and the field is the Coulomb
potential provided by a point charge, this equation pro-
vides a highly accurate description of the spectrum of hy-
c!1ogcn and H-11kc 1ons. To take 1nto account both rM4a-
tive and nuclear-recoil effects, one can turn to the two-
body Bethe-Salpeter (BS) equation, an integral equation
which is an exact consequence of quantum field theory. '

For the case of purely electromagnetic interactions, the
kernel entering the BS eqoation is well approximated by
the first few terms in an expansion in powers of
a=e /4Ir. Because of this the two-body BS equation has
bcc11 cxtcllslvcly llscd ln tllc calclllatlon of cIlcrgy lcvcls of
bydfogcn, positronium, and 1Tluoniu1Tl.

Older and much simpler in form than the four-
dimensional BS equation for two fermions is a two-body

Dirae-type equation which, for a stationary state, has the
o~

h(1,2)= g hII{i)+VII . (1.1b)

hII(i)= a; p;'—u+P;rrt; {1.2)

is the free Dirac Hamiltonian and Vlz is a local interac-
tion between particles 1 and 2, VII = V(r). In particular,
suppose that VII is taken to be the sum of the Coulomb
lntcl act1on-

and the Brelt operator representmg exchange of a trans-
VCI SC Photon,

—e e
~~2 =&lZ —= ( ct I'txl+ cx I'r ct2'r ) .

O'TT' 2l"

Tllen witIIl I denoting an clcctfon and 2 clcnot1ng a ploton
or muon, Eq. (1.1) is sufficiently accurate to give all the
corI cct1ons of ofder A m~ to thc Qonrclat1vlst1c cncfgy
levels as well as some of the higher-order corrections.
Such an equation was used long ago by Breit and co-
workers to study rcco11 coffcctloQs 1n bydfogcn.

Thc f11st attack on tIlc rclat1v1st1c t4fcc-body pfoblcHl
in quantum theory appears also to have been made by
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Breit, at least in the limiting case where one of the parti-
cle masses is regarded as infinite. Thus, he took as a
starting point for the study of the spectrum of helium, the
Hamiltonian

2 2

H(1,2)= g IID ,„,(i. )+
l =1 r 12

where

A similar approximation to the external-field BS equation
describing two electrons moving in the electrostatic field
provided by an infinitely heavy nucleus leads to the no-
pair external-field Coulomb-ladder equation'

(1.8a)

H+ (1,2) =H~. ,„,{1)+Hg). ,„,(2)

HD ,„,(i. )=hg)(i)+ V,„,(i) . (1.5b) (1.8b)

Subsequently, the obvious generalization of (1.5a) to X-
electron atoms was {implicitly) used to obtain the Dirac-
Hartree-Fock (DHF) equations, as relativistic analogs of
the Hartree-Fock equations. With the advent of the
computer age, the DHF type of equations became a major
tool in the theoretical study of relativistic effects in
many-electron atoms. '

Yet, it was pointed out over thirty years ago that Ham-
iltonians such as (1.5a) have no normalizable eigenfunc-
tions. This makes their use in the study of bound states
suspect, to say the least, and obscures the physical signifi-
cance of the DHF equations. These facts have been dis-
cussed extensively in recent years, * and proposals have
been made for the use of equations which do not have the
difficulties associated with (1.5a) and which, concomitant:-
ly, have a clear origin in quantum field theory. ' "

B. Relativistic equations with projection operators

Analysis based on quantum field theory shows that
equal-time equations describing bound states of two or
more fermions inevitably involve Hamiltonians which
differ from (1.1) or (1.5a) in that the interaction term ap-
pears w1th Cas1m1r-type pos1t1ve-energy project1on-
operator factors. Although these factors make the Hamil-
tonian nonlocal they prevent the disease with which the
natural looking equal-time equations are afflicted when
there are more than two interacting particles.

For example, the two-body BS equation for two Dirac
fermions interacting electromagnetically leads, in the
ladder approximation and with neglect of transverse pho-
tons, to an equal-times equation of the form (1.1), with

V12 given by'

(A++ —A )V)2(A~++A ) .

Here L++ L+(——1)L+(2) and L+(i} is the projection
operator onto the space spanned by the positive-energy
eigenstates of HD ,„,(i) . For. two electrons (e, =ez ——e),
the Hainiltonian H+(1,2) defined by (1.8b), in contrast to
H(1,2) defined by (1.5a), does have normalizable eigen-
states which correspond physically to the discrete spec-
trum of helium or heliumlike ions. Moreover, its general-
ization to X electrons provi. des a suitable starting point
for the derivation of relativistic Hartree-Fock-type equa-
tions. '

Although in the pure two-body case the projection
operators are not necessary in order for normalizable solu-
tions to exist, even in this case they are useful. Equation
{1.7a) enjoys two properties not shared by Eq. (1.1): (i) it
has a simple field-theoretic origin and (ii} it may be re-
duced to Pauli form without making any nonrelativistic
approximations.

The problem of "continuum dissolution" from which
(1.5a) suffers is of relevance not only for the treatment of
relativistic effects in atomic systems but also in hadronic
systems. Thus, an attempt to study such effects in the
quark model for the nucleon by replacing the nonrelativis-
tic three-body Hamiltonian

3 3

h„,= g (p';~) f2m;+ g v, ,
i=1 i j =1

l Qj

where Vj is a local potential, by
3 3

h(1, 2,3)= gh (~)+ g V,,

is bound to fail because h(1,2,3) has no bound states. In
contrast, the Hamlltonlan

Here A++ =A+(1)A+(2) and

EP+(a; p,'~+P;m;)
A+(i) =

2E,'P

with

E "=E;(p,'"), E;(p)=—(~ +p')' '.

{1.6a)

3 3

h (1,2,3)= gh (~)+A'," g V,,A"', (1.1O)
l =1 ij =1

l +j
where A~+ ——A+(1)A+(2)A+(3), has no such problem. In
principle, one can try to use BS-type equations even for
X & 3, but these are very complicated indeed' and few
practical results have been obtained from them.

If we neglect the terms involving negative-energy projec-
tion operators, we are led to the equation

where h+ is a "no-pair Hamiltonian" defined by

h + ——hD {1)+hD (2)+A++ Vt2 A++ . (1.7b)

The purpose of this paper is to make a start on the nu-
merical study of equations involving projection operators,
such as (1.7) or (1.8). As a first example we shall study in
Sec. II a modified external-field Dirac equation of the
form'5
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(1.1 la)

h+ (1)= ha(1) +A+(1)U(1)A+(1), (1.11b) 1Il thc nonfclativlstlc l11Illt. 81ncc

[A+(1),h+(1)]=0 (2.2)

p(p)+ I U(p —p')p(p')dp'=W{{I(p) .
2mI

IIl Scc. III vM stud/ thc pUI'c t&o-bocl.y no-palf equation

h+ (1,2)Q=EQ, (1.13a)

U( 1 )= Z—a/ri .

The eigenvalues of (1.11b) can be shown to differ from
those of the ordinary Dirac equation only by terms of or-
dcI' (Za) 01' lllgllcl fol' 1+0 s'tRtcs Rlld for 1=0 s'tates by
terms of order {Za) m. '1 Study of {1.11) therefore pro-
vides a sensitive check on the accuracy of the numerical
methods we shall employ. From a computational point of
view, the main complication is that the projection opera-
tor A+{1) is a nonlocal operator in coordinate space. We
therefore choose to study (1.11) in momentum space,
where A+ is a simple matrix function of p. The interac-
tion U is then represented by a kernel U( p —p ') (i.e., by a
nonlocal operator in p space), but this is not different
from the nonrclativistic case. Thus, at least when free-
paftiC1C pfo)CCtiOQ OpCI'RtOI'S 81C 1QVOlVCd, thC felativistiC

p-space cquatloll ls Rlnlost, as sinlplc as Its Iloilrclatlvlstic
countcrp8ft»

we can and do restrict our attention to solutions .of (1.11a)
which satisfy

A+(1)It{(1)=P(1) . (2.3)

The reduction of (1.11) to Pauli form is then straight-
forward, since (2.3) can be used to express the lower com-
ponents It of p in terms of the upper components g+.
Thus, with pi ——(1+pi)/2 and p +=pi f-,

4=4++0 =(I+Pi'W+* Pi'= .pE]"+m)

On Setting'

y(1) =—(~", )-'q+(1), (2.5a)

OP
' I j2E1P+m)

2E 1"

and substituting (2.4) and (2.5) into (1.11a), one finds that
P(1) satisfies

h, tt(1)(t (1)=EP(1),
where the effective Hamiltonian h, tt is defined by

h+(1,2) =hD(1)+hD(2)+ A++ V12A++ h.tt(1)=&i'+ U.It{1» (2.6b)

and Viz is a local potential. For the classical two-body
bound systems such as hydrogen and positronium, such a
study is mainly of methodological interest. However, be-
fore one tackles the case of more than two particles, not to
mention equations involving external-field projection
operators, it seems wise to study the simpler problem
posed by (1.13). Moreover, by the use of equations such
as (1.13) one can analyze the importance of relativistic ef-
fects in systems such as charmonium without resorting
lmmcdlatcly 'to Rn cxpRIlslo11 111 powcl's of u /c. It 1s

known that for some matrix elements relativistic correc-
t1ons cRIl bc appreciable in this systcIQ, %'hick 1Ilakcs 8
u/c expansion questionable. In the present paper we only
consider the choices of Viz of most interest in pure elec-
tfodynRIQics: 8 Coulomb potcnt18l of 8 CoU1OIQ4 potcn™
t18l plUS thC Bfelt OpCIRtof. Ouf 1CSUlts 81C SUHlmaf1ZCB

in Sec. IV and used to discuss the magnitude of level
shifts associated with virtual-pair production in two-body
bOUQCI, StatCS.

II. NO-PAIR EXTERNAL-FIELD EQUATION

A. RCdUCt10n tG PRU11 fOrm

We are interested in normalizable eigenfunctions of
h+ (1) [Eq. (1.11b)] which reduces to eigenfunctions of

U.tt(1)=~ i'Pi {1+Pi')U{1){1+PPNi'~i' (2.6c)

E]p+m1
'

where o 1 is the doubled Pauli matrix vector. In the stan-
dard representation of the Dirac matrices, {tI(1) has van-
ishing third and fourth components, so that we henceforth
regard P(1) as a Pauli senor and o 1 as the ordinary Pauli
matrix uector, without changing the notation. For U's of
this type then, the p-space form of (2.6a) is

Ei(p)P(p)+ f d p '&(p, p ')P( p ') =EP(p), (2 &a)

J:(p, p ') =&i(p)[U(p —p ')

+pl(p)U(p —p ')gi(p ')]&l(p ') .

(2.8b)

If U(l) is diagonal in Dirac indices, which is the case
for a Coulomb potential, only even powers of ai contri-
bute in (2.6c) and, acting on P,

U,tt(1)—+A 1~[U(1)+P(~U(1)PP]A;P,
(2.7)
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E)(p)+m)
2Eg(p)

, g)(p)=
O&'P

E){p)+m)

Here

U(0 —P') =&5 I
U{1)

I
P'&

Jdre '~ ~ ''U(r)
(2~)

and A
&

and g are the p-space forms of 3;~ and Pt~..
' 1/2

(p) A (p )
0 P~P

X Qo(z)+, Q)(z), (2.16)
E] +~/ EI +fn)

z = (p'+p')/2pp' . (2.17)

Here the Q;(z)'s are Legendre functions of the second
kind:

B. Radial equations for a Coulomb potential

(2.10) I Z
Qo(z) = ——,ln, Q((z) =zQ0(z) —1 .2+I '

The equation to be studied then takes the form

(2.18)

+

0( p ) g {P)~j;/,1/2(P) (2.12a)

where P= p/
~ p ~

is a unit vector, the analog of r, and
g (p) is a Bessel transform of R (r):

g(p)=&(2/m)r' J dr.r g~(pr)R(r) . (2.12b)

%e shall concentrate on S states. For' )=0,j= —,', I is
a constant spinor and we may perform the angular in-
tegration over the P ' angles in (2.8). We therefore define
a simplified kernel by

Ko(p,p')= J dp'K(p, p') . Q. 13)

For spherically symmetric U(r), j P= 1 P+ o ~/2
commutes with h,rr(l) so that we may look for r-space
eigenfunctions of the form

P( r )=R (r ) Fj~.
~ ~/2 (r ), (2.11)

where F is a two-component Pauli spinor, which is an

eigenfunction of ( j '~), ( 1
' ), and j,'~ with eigenvalue

j (j+ 1), l (l + 1), and j„respectively. The corresponding
p-space function then has the form

E|(p)g{p)— J, "p'p' ko{p p')g(p')=Eg {p) .

C. Taming the Coulomb singularity

To obtain reasonable accuracy in the numerical solution
of (2.19) it is vital to deal with the logarithmic singularity
of the kernel at p =p', corresponding to z=l. This
singularity is the same which arises in the nonrelativisti. c
counterpart of (2.19), viz. ,

aZ -, „Qo(»
g(p) — I dp'p', g(p')= Wg(p) . (2.20)

2p7l ) pp'

We may therefore adapt a method due to Lande to the
case at hand. ' Thus, inside the integral in (2.20) we write

p'g(p') = rp'g (p') —p'g (p) l+p'g (p) . (2.21)

The integral arising from the difference term in (2.21)
no% has an integrand which is no longer divergent at
p'=p and the integral arising from the last term in (2.21)
may, in this case, be carried out explicitly. Since

Using the relation o"p o'p ' = p p '+ jg p X p ', in (2.8b)
and noting that for spherically symmetric U(r ) the
p Q p

' term makes no contribution, eve get Eq. (2.20) can be written

{2.22)

For a Coulomb potential, U(1)= —aZ/
~
r, ~, we have

U(k) =-
2&

(2.15)

and (2.14) yields

Kp(p, p') =—CKZ
ko(p,p'),

Ko(p,p') =A (p) J dp
' U(p —p ')

p

X 1+, ~(p') .
(E)+m))(E(+m))

p cxZ17P
( )g' 5'

oe+,ln, gp —pgpss' s+a'
= Wg(p) . (2.23)

Qo(z)
p'ko(p p')g(p')=C(p p')+N(p), g(p), (2.24a)

On introduction of a mesh (p~,p2, . . . ,p,„)and associ-
ated integration weights ( w &, w2, . . . , w,„)in p space,
(2.23) reduces to a finite matrix eigenvalue problem which
may be handled by standard techniques.

Essentially the same approach can be used for Eq.
(2.19). We make the following repartition of the in-
tegr and:
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where, with b, =p/(E&+m&), bI p——'/(E~ +m ~), we de-
fine

e(y) =(E—m ) )/y m ),
then

(2.29)

C(pp') =, [A (p')p' g (p') —A (p)p g(p)]QO(z)
PP+, br [zA (p')b rp' g (p')& (p)

PP
—&(p)b/p g(p)]QO(z)

(P) A (P )
b bg g2

( P)
&P gP

P
(2.24b)

e(0) = —0.5

for the ground state. Shown in Fig. 1 are the numerical
values of e(y) for the S-wave ground state as a function
of y. For comparison, also shown in Fig. 1 are the corre-
sponding eigenvalues of the Dirac equation

eD(y) = ( 1 y2)1/2
(2.30)

y'
and

N(p) = A (p)p (1+bf ) . (2.24c)

=Eg (p), (2.25)

an equation whose eigenvalues may be found numerically

just as in the case of (2.23), ' for which, of course, an ana-

lytic solution is available.
For I' waves and higher-angular-momentum states we

can proceed in a similar manner. Thus, the equations
analogous to (2.19) for the 1=1,j= I+ —,

' states are

The C'(p, p') term in (2.24a) is nonsingular at p'=p and
the contribution of the second term in (2.24a) to the in-

tegral in (2.19) can be evaluated analytically by use of
(2.22). Substituting (2.24) into (2.19) we get

t

Ei(p) — &(p) g(p) — f dp C(p p )

As can be seen, the binding is always stronger for h+(1)
than for hD(1).

To assess the accuracy of our numerical method we
may make a number of checks. We first solve the nonre-
lativistic Schrodinger equation in momentum space, e.g.,
(2.20), using the techniques described above to handle the
singularities; we find, for the ground state,

8'"" =0.500001 85y m( .

This coincides with the exact value

8"=—0.5y m)

to better than 1 part in 10 .
To test the method in a relativistic context when the

answer is known, we have also solved numerically the
momentum space Dirac equation

Ei(p)g(p) — f, dp'p'ki (p p')g( ')=Eg(p),
(2.26a)

where

k+(, )
& (p)& (p')

T P~P
PP

(2.31)

for the S-wave ground-state energy ED. We then com-
pare eD (ED —m

&
)/——y m &, given by (2.30), with

ez" ——(ED" —m
& )/y m &. We find that the relative error

in eD" (y),

X Q)(z)+, Q)+)(z)Ei+mi (E)+m()

(2.26b)

Again the logarithmic singularities in the Qt(z) s can be
extracted as before and the eigenvalues of (2.26) can be
found just as for S states.

eD (y)-eD(y)
ErD(y) —=

eD(y)

—0.5+-

(2.32)

D. Numerical results and analysis of accuracy

1. Results for h+(1) attd ho(l)

To solve (2.19) we first scale the momentum variable p
via

-0.7—

-0.8—

-I.O—
X

where

(2.27)
I I I I I I I I I

O. l 0.2 0.5 0.4 0.5 0.6 0.7 0.8 0.9 l.0

f:—cxZ (2.28)

controls the relativistic corrections to the nonrelativistic
binding energy O'. The resulting equation reduces to the
S-wave Schrodinger equation (2.20) in the limit y —+0, so
that if we define

r
FiG. 1. Scaled eigenvalue e(y ) for the ground state of h+ (1),

defined by Eqs. (1.11) and (2.29), shown as a function of y =aZ;
the dashed hne connecting the numerically obtained points is
drawn as a guide to the eye. Also shown are the corresponding
numerically obtained eigenvalues for the Dirae equation; the
solid curve is the exact function eD(y).
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ErD(y)=Era(0)(1+ay ), (2.34)

with a =0.28; this dependence of ErD(y) on y for small y
is also expected on theoretical grounds. ' Thus, we shall
assume that a similar relation holds for Er(y).

2. Expansion in powers of aZ

We now turn to a further analysis of the eigenvalues

e(y) of the Ii+ equation, shown in Fig. 1, and their rela-
tion to eD(y). Clearly eD(y) is analytic in y for

I y I
& 1

and can be expanded in a power series

(2.35)

It is therefore tempting to try a similar expansion for
~(y),

~(y) =co+ciy+c2y +c3y +c4y +
It may be tempting, but it would be wrong. Indeed, it is
straightforward from Eq. (1.11) to show that for the ls
state we have

c,=—e(0)= ——,', c, =—e'(0)=O, c2 =—e"(0)= ——,
2!

is of order 10 for 0&y&0.9. Thus we can expect that
the relative error in e"" (y),

( y ) —e( y ) (2.33)
e(y)

also remains near its value for y=0 (about 10 ) when y
becomes larger. Furthermore, we find that, for
10 '&y&10 ',

which agrees very well with the exact value c2 ————,

= —0.1250. To find c3",we extrapolate

c3™(y)—= lc 2 (y) —c2™)~y

to y =0 and find

c 3" ———0.408,
in good agreement with (2.39). A least-squares fit with a
cubic polynomial in y gives similar results.

It should be noted that the contributions to the level
shift of the y term in the binding energy is, for y-10
only 1 part in —10 of the main term, whereas our calcu-
lation of e" (y) was only claimed to be accurate to 1 part
in —10 . The reason that we have, nevertheless, been able
to extract the coefficient of the y term by our extrapola-
tion procedure is that the error Er(y) defined by (2.33)
indeed satisfies an equation of the form (2.34), with an a
of order unity. Thus Er(y) is constant to 1 part in 10 in
the range y -0.001 to 0.005 and the quantity
e" (y) —e" (0) is accurate to at least 1 part in 10" for y
in the indicated range. We have obtained results of simi-
lar precision for P states. We can thus feel confident of
the accuracy of the numerical methods employed and are
ready to turn to the two-body problem.

III. NO-PAIR TWO-BODY EQUATIONS

A. Preliminaries

In this section we study the low-lying bound-state spec-
trum of the two-body Hamiltonian Ii+(1,2) discussed in
Sec. I, viz. ,

(2.36)

in agreement with the first few terms of (2.35). However,
this similarity fails when pushed farther. In particular, it
can be shown that for S states, '

h+(1,2) =hD(1)+hD(2)+A++ ViqA++ .

We consider only the choices

Vi2= Vi2

(3.1)

(3.2a)

e(y)=co+c2y +cgy +O(y lny) . (2.37) c T
V12 V12 + V12 (3.2b)

Thus, (i) e(y) is not analytic in y near y =0 and, further,
(ii) a term of order y appears in the total energy

E =m&+e(y)y mi. The coefficient c3 can be found ex-

plicitly in terms of the nonrelativistic wave function via

where V~2 and V~& are the Coulomb potential and Breit
operator, respectively, given by Eqs. (1.3) and (1.4). The
reduction of the equation

4 2

, I (4.o I

&(r)
I k.o) I

'.
377l )

(2.38)
h+ (1,2)Q=EQ

to Pauli form proceeds as described in Ref. 16. We set, in
the c.m. system and in momentum space,

For the 1s state this implies that

c3 ——— ——0.42441 .
3~

(2.39)

Q=SiSzg

where, with
1/2

(3.3a)

Armed with the theoretical results (2.37)—(2.39) we can
see to what extent our numerically determined e"" (y) can
reproduce the values of c2 and c3, we have already seen
that co is reproduced to 1 part in 10 . To find c2 from
our (numerical) data, we extrapolate values of the quantity

cz" (y)=[@"" (y) —e"" (0)]/y

to y =0 and find

and

&I' Pr'

E;(p)+m;

S;=(1+/, )P. A, ,

Pi= —P2=P .

E;(p)+m;
2E;(p)

(3.3b)

c2" ———0.125 418, The resulting equation for P has the form
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~,.i(I)( v) =E(t (p) (3.4) APL 2
e(0)=——

2 I)+Pl2

~,i =Ei(p)+Ez(P)+ V:Fr

and the interaction operator V,'Pq has a kernel

V ff(0 V ') =(~i~z)'Viz(V, V ')~i~z .

(3.5a)

(3.5b)

For the choice (3.2a) Viz is diagonal in Dirac-matrix
indices and (3.5b) reduces to

V ff( V* V ') =~ i( V)~z( V )( V iz+ 0i V izPi+ 0z V izkz

+0ik V izPi0z)~ i(p ')~z( V '»

Shown in Fig. 2 are the numerical values of e(a) for the
singlet S-wave ground state as a function of a, for the
choices (3.2a) and (3.2b), with mi ——mz ——m. As can be
seen, for choice (3.2a) e(a) is almost independent of a in
the range considered. This is surprising —it would be nice
to understand it on physical grounds.

As a test of the numerical accuracy we compare our
(a) in the region

I
a

I
«1 with the first few terms of

the expansion of e(a). For the choice (3.2a), with

m~ ——mq ——m, one can show that

E(rx) =co+czct +c3ct +0(tz intr), (3.9)

Or'P

Ei(p)+mi
kz=

Ez(p)+mz

co ———~, c2 ——~ ——0.046 875, (3.10)

and the g', are similarly defined, with p —+p '; V iz is the
Fourier transform of (1.3), given by

c3 ——— —+—
I (p„oI5(r) I(I)„o)I „

i/azmI
Viz(v —v ') = —~/(2~'I p —v

' I') 8~= —0.128 81 . (3.11)

for ei ———ez ———e. For the choice (3.2b) we must add the
contribution from the Breit operator; to spare the reader
we do not write it out explicitly.

For the choice (3.2a) there is no tensor-force term in
V,fr(p, p ') and the bound-state wave function can be tak-
en to be an eigenfunction of j,~, j',~, S, and 1,„,where

S=oi/2+oz/2, 1, =i(I)/t)p)&&p, and j, =S+1, .
Thus we may write, as in the one-body problem [Eq.
(2.12)j,

P(p) =g (p) +~,,(p), (3.7)

where s=1 or 0 and F is an angular momentum eigen-
function. The resulting equation for g(p) may be solved
in the same way as (2.19).

For the choice (3.2b) there is a tensor-force term in
V,ff(p, p ') and I is, in general, not a good quantum num-
ber. Thus, there will be mixing between, e.g., S and D
states, etc. For simplicity we therefore consider only S
states, which do not mix.

in excellent agreement with the theoretical results (3.10)
and (3.11).

For the choice (3.2b) the values of co and cz in the ex-
pansion (3.9) are

go ——~, e2 ———~ ———0, 328 125 .

The numerical values found were

(3.12)

We expect our accuracy to be comparable to that ob-
tained for the mz ——OD case in Sec II., and indeed we find

c()" ———0.2S0001 4,
so that our nonrelativistic solution is again reproduced to
bcttcI than 1 part 1n 10 . To gct cp and c3 wc extra-
polate to o;=0 the same expressions as in the one-particle
case and get

e 2" ——0.046 746,
num

B. Numerical results

Before solving (3.4) we first scale the momentum vari-
able, Rs in thc onc-particle case, via

where n, now regarded as variable, controls the relativistic
corIcctions to thc nonrclatlvlstlc binding cncr'gy 8 . Wc
define the two-particle binding energy, scaled by o, m ~,

e(a)=(E —mi —mz)/a mi . (3.8)

For a~0, the resulting equation then reduces to the
Schrodinger equation for a particle of mass

p =m i mz/(m i +mz) and the scaled ground-state binding
energy has the limiting value

I I I I I I

(a) v=v~~
—0 25x- ~=)(-—--x ~- ——-x- ——-x- —--x

X~
~x

-0.30—
X c(b) V=VI~+ BI2

-0,55—
x

-0,40—

-0.45—

050 I I I I I

0 G, l G.P. 0.3 0.4 0.5 0.6 0.7

FIG. 2. Scaled eigenvalue e(cx), defined by Eq. (3.8), for the
'So ground state of h+(1,2) [Eq. (3.1)], as a function of a, re-
garded as variable, for m ~

——m2 and for two choices of V~2, .
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FIG. 3. Scaled fine-structure energy e, defined by Eq. (3.13),
for the So gI'ound state of A+(1,2), as a function of the mass ra-
'tio Po 2 /PP2 1 ~ for t%'o choices of V12.

cni™=—0.2500014, c2" ——0.327936,

in good agreement with (3.12). We also find

I1MII
O l 88

but have not calculated the theoretical value of c3.
If m &+mz there is still some interest in obtaining accu-

rate solutions to Eq. (3.4). The numerical method can be
Used ln this case just Rs easily Rs ln thc equal-IDass case.
FlgQI'c 3 sho%'s thc quantity

plication to the quark model of the nucleon remains to be
explored.

Even foI' thc two-body problem thc no-palI' equations
studied in Sec. III are of interest because of the physical
insight they give on some aspects of level shifts in elec-
troHlagnctically bound systclns such as hydrogen, IQQoni-

Um, Rnd positroniQID.
In this connection let us pursue a bit the question of

contributions arising from intermediate states involving
fermion-antifermion pairs. As we have seen earlier, in the
one-particle case (mq ——co ) there is a y' contribution to
the total energy E=mi+e(y)y m~. However, no such
term exists in the expansion of the exact Dirac eigenvalue
ED ——(1—y )' m i. For this one-particle case the y' term
coming from (2.19) can be shown to be precisely canceled
by pair-correction terms, so that theI'e is complete agree-
ment among results obtained from the Dirac equation, the
theoretical values obtained from h+(I) and the pair dia-
grRGl, Rnd our numerical lcsUlts, Rt least to orclcr p .

It is interesting to analyze this problem for the case of
Thc time-ordered diagrRIDs which nccd to

be considered RIe shown in Fig. 4. The a contributions
from these diagrams may be written in the form

where the F~ are integrals over algebraic functions, which
we need not record here. For n = 1 we have

e = [e(a)—e(0)]m i@ (3.13)

as a function of the ratio m2/mi, for the choices (3.2a)
and (3.2b), with a= », . We have verified that in either
case e(a) converges to the corresponding eigenvalue of
Ii+(I) with Z= 1, when m2~no, as expected. This fig-
ure can be used to read off some of the recoil corrections
for p-mesic hydrogen (m2/m i -9).

Calculation shows that for m i
——m2,

Thlcc-dlmcnslonal I'clatlvlstlc wave cquatlons dcrlvcd
froin field theory which describe a system of X interact-
ing Dirac particles inevitably involve projection opeI'ators.
In this paper we have shown that the presence of these
opcI'atoI's nccd not, bc 8 barrier to obtalnlng RccUI'atc
clgcnvalucs foI' two-body bound states, cvcn when the in-
teractions involve 1/r singularities —as they do for most
cases of physical interest. Although we have not stressed
it, the method of solution also supplies wave functions of
corresponding accuracy. This should provide encourage-
ment for the use of such no-pair equations for the case
when N )3, e.g., even for moderately heavy atoms, where
further approximations, of course, have to be made to
reduce the problem of tractable form, but where free-
partlclc plojcctlon opcratoI's can still be Used. FGI' vcI'y
hcRvy atoms onc Hlust cltbcI' deal with thc cxtcrnal-flcld
projection operators (which are nonlocal even in p space)
or use an approach such as that described in Rcf. 8.

Apart from this, the no-pair equations are of interest
even for the relatively few-body problem, e.g., %=3, be-
cause of the absence of continuum dissolution. Their ap-

But thcI'c ls also Rn cf contrlbutlon ~+d ln thc gcncral
case, coming from the power-series expansion of the
eigenvalue E of h+, of the same form as (4.1), with an in-

tegral I'd replacing IJ.. %'e find

PIG. 4. Time-ordered Feynman diagrams associated with
virtual-pair creation and annihilation arising from the Coulomb
interaction.
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It follows that for m1 ——mz,
r

aIld tllclc 1s a net cx rn term, wlM1'cas fol' rn 2
= co,

XF~ = —, +0+0——, =0

(4.2)

(4.3)

(free) positive-energy projection operators which make the
no-pair equat1ons look a b1t dauntIng are not an lmpedl-
ment to the accurate numerical solution of such equa-
tions. The application of Hamiltonians such as h+(1,2)
to bound states of (q, q) systems without the use of a Ulc
expansion would seem to be a worthwhile extension of the
techniques presented in this paper.

and there is no net a m term, as already mentioned in Sec.
III. The analytic form of XF is given by

XF = ——', (mt/m1),

co11slstc11't w1tll (4.2) alld (4.3).
In conclusion, we hope to have demonstrated that the
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