
PHYSICAL REVIE% A VOLUME 30, NUMBER 1 JULY 1984

Direct calculation of interfacial tension for lattice models
by the Monte Carlo method
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We present a novel application of Monte Carlo sampling techniques for the direct evaluation of the inter-
facial tension that is applicable over a wide range of system sizes and temperatures. The results for the
two-dimensional Ising model with system size up to 32&&32 for temperature at and below T, have been
analyzed within scaling theory. An accurate estimate for the surface-tension amplitude in excellent agree-
ment with Onsager's exact result is obtained.

Despite extensive current interest in the statistical
mechanics of surfaces and interfaces, ' there has not yet ap-
peared a simple Monte Carlo method for the direct evalua-
tion of interfacial tension that is applicable to large systems
and over a range of temperatures. Standard thermodynamic
integration techniques are very useful far be.ow the critical
temperature (T,), but become difficult to apply near T, .

Recently, an elegant method based on studies of the order-
parameter distribution has been introduced by Binder. ' The
approach appears to be quite successful, but, as was noted, '
it is limited to temperatures close to T, and in system size.
In this paper we present a novel extension of Monte Carlo
sampling techniques for direct evaluation of the interfacial
tension, applicable over a wide range of system size and
temperature. This method has been applied to the two-
dimensional Ising model for system size up to 32&&32 and
for temperature at and much below T, . The results have
been analyzed within finite-size scaling assumptions and are
in excellent agreement with exact results. The approach and
results from this initial application are presented here.

A method for evaluation of the surface tension or its ana-
log is also of interest in field-theoretic applications. A class
of ferromagnetic Ising models will allow construction of dual
models. As noted, for example, by Bricmont, Lebowitz,
and Pfister3 the surface tension of the original Ising model
relates to the asymptotic behavior of certain spin correla-
tions in the dual model. For d =3 the dual is the Ising
gauge model and the surface tension of the "direct" model
equals precisely the coefficient of the area-law decay of the
Wilson loop. In d =2 the surface tension equals directly
the mass gap or inverse correlation length at the dual tem-
perature.

We consider here a nearest-neighbor ferromagnetic Ising
model on a square lattice with X» x %„(X»—= X,
=N +2) spins (o-„"=o-„»= +1) with exchange coupling J
at temperature T in zero magnetic field. The Ising system is
considered under two sets of boundary conditions, as shown
schematically in Fig. 1. Periodic boundary conditions are al-
ways taken for the top and bottom edges as shown in Figs.
l(a) and 1(b). The boundary conditions (++) then refer
to the situation shown in Fig. 1(a) in which the first and last
columns of spins are fixed with value o. = +1. The alterna-

where Z+ and Z++ are the partition functions for the
W&& (IV+2) lattice systems described above. Equation (1)
may be rewritten in a form more suitable for Monte Carlo
sampling as

Xr~= —ksT ln(exp[ —(1/ksT)(~+ —M+~) ]) ++

= —ksT ln(exp[ —(2J/ks T)m, ]) ++
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FIG. 1. Boundary conditions for P ++ and P +

tive set of boundary conditions (+ —) then refer to the sit-
uation of Fig. 1(b). For T ( T, the interfacial tension r is
taken to be' the difference of free energies

Z +-r = —ksT/W ln (as X ~)
Z++
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where rn, = $," &
a.n+t; is the magnetization of the layer ad-

jacent to the fixed "all minus" layer shown in Fig. 1(b),
and the ensemble average ( ) ++ is generated by the Hamil-
tonian ~ ++ defined by the (+ + ) boundary condition.
The interfacial tension can then be evaluated as an ensem-
ble average.

This formulation represents direct sampling of the differ-
ence in free energy between two systems by weighting con-
figurations generated by (+ +) ensemble. Such a method
is useful only when there is sufficient overlap in the con-
figurations sampled by the two ensembles. This then limits
its usefulness to very small systems and near T, .' To cir-
cumvent this difficulty, observe that Eq. (2) can be rewrit-
ten by considering

(exp[ —(I/ksT)(~+ —4 ++)]) +~

(exp[ —(I/kttT)(P + —W')])
(exp [ —( I/ktt T ) ( A ++ —4 ') ])~

where now the ensemble is generated by some Hamiltonian
(defined by some boundary conditions) which c:an be

chosen such that overlap of configurations generated by P '

with those of P + and P ++ is a maximum. Observe that
both ensemble averages on the right-hand side of Eq. (3)
can be evaluated simultaneously within one single ensemble
generated by P '. Although only one stage is used, this
formulation is in the spirit of the well-known multistage
sampling technique. Its application to the evaluation of the
interfacial tension is novel and, as shall be shown below,
can be an efficient method for calculating the interfacial ten-
sion, even in large systems and well below T, .

The optimum choice for ~' is found by considering
boundary conditions which yield sampling, with comparable
frequency, of configurations generated by both P + and

One such boundary condition which leads to rather
efficient sampling is a hybrid boundary condition. The spins
on one edge are fixed to be all "+",say, while the spins on
the other edge are fixed to be + or — (with numbers
X+ + N = X) in an alternating sequence (see Fig. 2).
Although this kind of boundary condition is unbiased with
respect to A + and ~++, configurations with an inter-
face (i.e., those with P'+ ) occur with probability reduced
by —exp( —rX/ksT), where r is the interfacial tension.
This becomes important at low temperature and for large

systems, where rX/kttT is large. This difficulty can be re-
duced in part by choosing on the mixed edge the number of"+" and "—"spins, N+ and X, such that %+ & X
which (then) favors sampling more configurations with an
interface. We note that the choice of boundary condition
(or A ') should only affect the sampling efficiency or the
rate of convergence. It does not affect the final results, if
sufficiently long sampling is employed to ensure equilibri-
um. Furthermore, the boundary condition considered here
need not be optimum and better choices may exist. Howev-
er, we have found that for the two-dimensional Ising model,
this scheme suffices for size up to W = 32 with ~ 106
Monte Carlo steps per site. This represents the largest sys-
tem considered in a surface-tension computation.

Our results for the interfacial tension of the two-di-
mensional Ising models is given in Fig. 3. A few low-
temperature cases have been considered for the purpose of
illustrating that the method works well in that region. Note
that there is excellent overall agreement with Onsager's ex-
act result. By considering a system size N from 2 to 32, for
temperatures near and at T„we have been able to use the
finite-size scaling behavior of the interfacial tension. In
analogy with the usual assumptions, we make a scaling an-
satz:

v =-~pt~ x

with

Here p, and v are the appropriate critical indices for the in-
terfacial tension and correlation length, respectively, and 7-p

and cL are nonuniversal constants. The universal scaling
function g (x ) has the asymptotic limits, g (x = ~ ) = I
and $ (x 0) —x ". For the two-dimensional Ising
model, tt, = t = 1. The limiting forms of $ (x) are such that
v. —t" in the thermodynamic limit, and that at the bulk crit-
ical temperature, 7 —X ""—X '. The critical tempera-
ture J/ks T, = 0.44068. . . is, of course, known exactly; ac-
cordingly, a plot of v.X vs X at T, is made in Fig. 4. The
asymptotic limit appears to be reached for X & 8, the results
being consistent with 7 —X

It is of considerable interest to evaluate as precisely as
possible a universal ratio involving the surface-tension am-
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FIG. 2. Boundary conditions for ~' of Eq. (3). N+ is the
number of sites fixed in the + configuration and N is the number
of sites fixed in the —configuration. Note that N+ need not equal
N
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FIG. 3. Comparison of representative Monte Carlo results with
exact solution for the infinite system by Onsager (Ref. 6).
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FIG. 4. Finite-size scaling analysis for T= T, or t=0, for N=2
to 32. Results for N = 2 and 4 are exact.

plitude ~p, Such information is needed, for example, in dis-
cussions of critical wetting. The simplest relation involves
the specific heat, which may be written analogously to (4)
as

with W(x) 1 as x ~ (thermodynamic limit) and as
usual W(x) x as x 0. The ratio is, in the thermo-
dynamic limit, given by'

r(r)/ks T,
-o I~r'C(r)f'~ "~'

rp/ks T,

~ (e—i)/d
0

(6)

Unfortunately, a finite-size extrapolation at T = T, is not
sufficient to extract U, because subdominant parts of the
scaling functions as x 0 are required but cannot be deter-
mined with the size systems one may realistically treat.

By probing away from but near T = T, one may plot ~t
vs X' 't. One must reach the scaling limit; according to Eq.
(4) the asymptotic value for large N'~"r yields vo. This plot
is shown for the d =2 Ising model in Fig. 5. For size
32& 32 (with t = 0.05) the value is still about 20'/o above the
exact value. Nonetheless, this represents considerable pro-
gress, and larger systems can in principle be considered
within this approach. Also shown in Fig. 5 are points corre-
sponding to t =-0.1 and 0.2. The danger of trying to reach
the scaling limit (large tN'~") by taking too-large values of r

is clearly demonstrated. The amplitude Ap is exactly known
in d = 2, but more generally it would have to be determined
from a finite-size analysis as well (off T, )

Further progress can be made without using excessively
large system by considering alternative means of analysis.
This is motivated by the following observations. The diffi-
culty with g (x) is related to its slow approach toward the
large x limit of g (~) = l. One may surmise that this is re-
lated to the x 0 limits where g(x 0) =—Bx "diverges.
This limiting property incorporates the scaling of the surface
tension at t =0 which is, ~~(t =0) =—7oBcL»N " '. Here,
cL is a nonuniversal amplitude related to the correlation
length and 8 is a universal constant. We will consider re-
moving this singular part from g(x) by adding and sub-
tracting Bx " and introducing Y(x) with g(x) =Bx

FIG. 5. Finite-size scaling analysis for T ( T, with N & 32. The
ratio 7./t& approaches Tp in the limit of large x (N~ "t~). The exact
result (Ref. 7) is indicated and the solid line is an extrapolation of
data at t =0.01 using Eq. (10). The dash-dot line indicates some
deviations when using data far from T, (t & 0.20).

+ Y(x). The surface-tension expression Eq. (4) becomes

v~(t ) = v Jv(r = 0) + r pr» Y(x ) (7)

N" "rg(t) =N»" ~r(r =0) +N» 't»roY(x) (9)

and a plot of N»~"r~(t) vs N»~"t» to obtain ro as the limit-
ing slope with large x. N» "r~(r =0) would also be ob-
tained as the intercept by extrapolating back to x =0. With
this analysis for the data at t = 0.01, we found that for
N ~ 16(N»~"r" ~ 0.16), Y(x) has reached its large-x limit.
We obtain ro=3.96+0.2 and N» "r~(t =0) =2.9+0.2.
The exact result of Onsager is rp=3.99. . . , and the esti-
mate for N»~'r~(t = 0) from scaling analysis of the data at
t =0 is 3.0+0.3. (See Fig. 4.) An "approximant" for
W" "t"& 0.16 is then suggested,

$(x) =—1+Bx

= 1+0.7323 (N'i" r ) (10)

which is shown as the solid curve in Fig. 5.
Observe that Eq. (10) has the correct large and small x

limits. These suggested results are obtained in the finite-
size region and may shed some light on the structure of the
scaling function in that region. Such information may prove
useful for simulations of Ising and other systems.

We have described a method for direct evaluation of in-
terfacial tension which is applicable to large systems at or
below T, . Although for the system sizes and temperatures
considered the one-stage formulation suffices, for much
larger systems (N &) 32) and lower temperatures, multi-
stage extension of Eq. (3) would be necessary, but is
straightforward. The important observation is that computa-
tional efforts (or number of stages) would only increase
roughly linearly with system size or on lowering tempera-

The limiting forms are Y(x) 1 as x ~, and as x 0
with t 0, t»Y(x) 0. It is sufficient to assume

/

Y(x 0)=—B'x " asx 0

with 0~ p, '( p, and 8' is an additional amplitude, which
merely asserts a power law for the subdominant part of the
original g(x). This then suggests considering
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ture. Thus, this method should be a useful technique in the
study of interfaces for large system. s and in three dimen-
sions where a considerable number of important problems
await solution. Preliminary work on the d = 3 case is en-
couraging.
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