ERRATA

Erratum: New values for some ⁴HeI 1*snl* energy levels, ionization energies, and Lamb shifts [Phys. Rev. A 29, 1883 (1984)]

W. C. Martin

The mass-polarization $(-\epsilon_M)$ energies for four levels in Table III are incorrect in the fourth or fifth decimal place because, in adjusting the values calculated by Pekeris and co-workers to the current value of m_e/M_{α} , the author inadvertently used R_{∞} instead of R (⁴He) in the conversion factor $2(m_e/M_{\alpha})R$ (⁴He). The correct value of this factor, 30.08439 cm⁻¹, is thus smaller by 1.37 parts in 10⁴ than the factor used. The correct value of $-\epsilon_M$ for the 2¹S₀ level is -0.2859 cm⁻¹, instead of -0.2860 cm⁻¹, but the change is insignificant compared with the assumed uncertainty of 0.0020 cm⁻¹ for the $T_r(2^1S_0)$ value. The correct values of T_{mr} , $-\epsilon_M$, and T_r (in cm⁻¹) for the other three affected levels are

	T _{nr}	$-\epsilon_M$	Τ,
$2^{3}S_{1}$	38 453.131 385	-0.223 892	38 454.829 73(10)
$2^{3}P_{1}^{-}$	29 222.155 40	1.94262	29 223.783 37(20)
$2^{1}P_{1}$	27 176.689 91	-1.385 22	27 175.772 26(20)

The $T_{nr}(2^{3}P_{1})$ and $T_{nr}(2^{1}P_{1})$ values are slightly different from the previous values, being obtained from the extrapolated values in Tables III and V, respectively, of Ref. 7. The uncertainty of 0.000 20 cm⁻¹ given here with the $T_{r}(2^{3}P_{1})$ and $T_{r}(2^{1}P_{1})$ values should be conservative, since the extrapolated T_{nr} values differed from the final (560-term) calculated values by only 0.0001 cm⁻¹. The net corrections to the $T_{r}(2^{3}S_{1})$, $T_{r}(2^{3}P_{1})$, and $T_{r}(2^{1}P_{1})$ values in Table III are 0.00003, -0.00023, and 0.00026 cm⁻¹, respectively.

These changes in the T_r values are too small to affect the corresponding ionization energies (E_I) in Table III, and the corrections of the predicted Lamb shifts in Table IV are insignificant because of the present ionization-energy uncertainty; the Lamb shifts (values of $T_{expt} - T_r$) for 2^3P_1 and 2^1P_1 in Table IV are altered to 0.0449(40) and 0.0022(40) cm⁻¹, respectively. The corrected T_r values should, however, be used in evaluating the Lamb shifts of energy separations involving these levels. Predicted values for the Lamb shifts of the $2^3S_1 - 2^3P_1$ and $2^3P_1 - 2^1P_1$ separations, which are of current interest, are obtained as the differences of the experimental separations (from Table I) and the corresponding calculated separations obtained from the T_r values. The corrected values of the Lamb shifts $\Delta_L(2^3P_1 - 2^3P_1)$ and $\Delta_L(2^3P_1 - 2^1P_1)$ thus obtained are -0.17775(55) cm⁻¹ and 0.04268(30) cm⁻¹, respectively.

The value of $T_r(1s^{21}S_0)$ quoted in the final paragraph is increased by 0.0006 cm⁻¹ to 198312.0367(5) cm⁻¹ by application of the correct mass-polarization conversion factor.