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A general upper bound is obtained for the nonexponential contribution to the time-dependent occupa-

tion amplitude G(t) for an autoionizing state just above the continuum threshold in the limit of narrow

widths. This upper bound is shown to be inconsistent with some recently published results predicting new

observable nonexponential effects in
~ G(t) (2, but is consistent with earlier long-accepted theory. It is also

shown how some nonexponential contibutions to the decay might, in principle, still occur as a consequence
of close proximity between the autoionizing state and the ionic threshold, although these contributions
now have a different form than those recently proposed.

The problem of determining the time dependence for the
occupation of an isolated initially populated state coupled to
a continuum has a long history, and the theory of "virtual
states" of this kind, including effects arising from the ab-
sence of continuum states below some critical threshold en-
ergy, is summarized, for example, by Goldberger and Wat-
son (GW). ' Possible effects arising from the existence of a
continuum threshold have been reexamined by Nicolaides
and Beck (NB)2 who conclude that the occupation probabili-
ty should obey the law

h2(G(t) ~'= e-r'is+ (I)
(4E$ + I'2) rr't'

in the limit of long times t, where I is the width characteriz-
ing the coupling to the continuum, Eo is the energy above
threshold, and G is the occupation amplitude of the isolated
state. In particular, NB predict that for realizably small
values of I', the second term in (1) should produce observ-
able nonexponential decay (NED) contributions to ~G(t) ~2

at large times t. It should also be noted that the nonex-
ponential part of Eq. (1) fails to exhibit the intuitively
reasonable behavior of approaching zero as I'/Ea approaches
zero, also in contrast with the results of GW. This behavior
is crucial since NB assume the width I to be very small.
NB attribute the disagreement between their results and
those of GW to their different choice of integration contour,
emphasizing that the relevant integral over energies should
be evaluated starting only from the continuum threshold.

To the extent that the particular integration contour con-
trols the predicted time dependence, the contour to be used.
is not subject to choice on the basis of intuition, but is sub-
ject to restrictions following logically from the initial model
assumptions, and it becomes useful to employ an alternative
derivation which avoids any apparent ambiguity about the
integration contour. This derivation leads to an upper
bound for the NED contribution and allows reexamination
of the prediction regarding observable deviations from ex-
ponential decay in autoionization. Although some function-
al forms of NED (such as t "dependence) require, in prin-
ciple, that NED be the dominant surviving contribution at

very large t, a small enough upper bound would allow NED
to dominate only after the total excitation probability is no
longer of physical significance; furthermore, our upper
bound substantially reduces the estimates of NB by at least
a factor of order (I'/Eo)2.

The time dependence of the occupation probability for a
state (@i) given that ~4I) was initially occupied, where

~@i) and (tpI) are members of a set of sparsely spaced
states coupled to each other and to a quasicontinuum of
discrete states (~qr, )), has already been shown' to be given
by (nII(t) (2, Where ctII haS the fOrm

. () [F '(z)]IIexp(izt/lr)dz . (2)
27K I

The closed integration contour in Eq. (2) includes within it
all of the (real) energies Extol of the quasicontinuum states
and the real energies EI of the sparse states, and the ele-
ments of the matrix F are given by

ot(I(t) =—

(tIittIIt)r
FIJ(z) (z El)8IJ+ (I 81I) VII (&)

4 —oo Z —g
with (ttittIJI)s an average (over many quasicontinuum states
in the neighborhood of Ã) involving the coupling tttt

between sparse state (4I) and quasicontinuum state (Wt),
and with Vzz the coupling between (tpt) and (4I). The cor-
responding problem involving sparse states coupled to a true
continuum can correctly be regarded as merely the idealized
limit of the discrete-state problem, since any actual quantum
system always has finite spatial extent and therefore
possesses only a discrete spectrum. The derivation of (2)
and (3), which leaves no ambiguity whatsoever in the allow-
able choice of contour, is obtained by expanding the true
eigenstates of the system as linear combinations of the
zero-order states ((4I)) and ((Wt)), and by assuming that a
quasicontinuum spacing, small compared with h/I', allows
replacement of certain sums by integrals. The reader in-
terested in this derivation and in a more extensive discus-
sion of the assumptions involved is referred to Ref. 3.

Consider therefore the special case of one initially popu-
lated state coupled to a dense quasicontinuum, so that the
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occupation probability of the discrete state at energy Ep is
(a)

1 1G(t) =
27ri & — E —Eo w—( i(E)

1
E —Eo w—(+ & (E)

where

(4)
pq E Eb Pg

"" P(@')(~(')s
dS

z —8'w(+)(E) = lim
z EXIe & —

dS' +imp(E)(v )b.
) (~(') s

with the integration contour (infinitesimally close to the real
axis) illustrated in Fig. 1(a). Of course, we assume
p(S') (v&') s to be nonzero only from S'=0 to Eb, where the
limit Eb ~ will ultimately be assumed. The coupling I of
the autoionizing state (which differs from the I of Ref. 3)
is defined to be some mean value of mp(E) (v, ) b. which
need not be specified precisely for our purposes; 2I is an
actual width when mp(w(2) is only weakly dependent on en-
ergy, so that the line shape for excitation of the discrete
state coupled to a nonabsorbing continuum would be
Lorentzian.

We now assume that w(z) in the continuum limit is reg-
ular everywhere except on the real-axis segment [O,Eb], and
except possibly for isolated poles elsewhere, this behavior
being suggested before the continuum limit is taken. The
discontinuous change in the imaginary part of w(z) across
the real-axis segment suggests that [O,Eb] is a branch line.
It is possible to show that no poles of [z —E —w(z)] ' oc-
cur on the first sheet, except possibly for (at most two)
solutions of

" b p(S) ("()s' dS, (6)E—S'

along the real axis below E, and above Eb [as illustrated,
respectively, by Pi and P2 in Fig. 1(b)]. These real solu-
tions do not give exponential decay, and will be considered
later. There might (and generally will) be at least one com-
plex pole on a second Riemann sheet reached by analytic
continuation of wi(z) [w(z) on sheet I] across the branch
cut. We therefore deform the contour in stages as illustrat-
ed in Fig. 1(c), where Pii denotes the complex pole on sheet
II. The final step is to let Eb approach ~, so that the con-
tributions associated with the Eb contour integrals are as-
sumed to go to zero. Then G(t) has a contribution G, (t)
from the contour (on sheets I and II) associated with the
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FIG. 1. Deformation of the integration contour used in the text.

continuum edge at E—= E, =O, a possible contribution Gi(t)
associated with the possible pole Pi along the real axis, and
a contribution G~(t) associated with the complex pole on
sheet II. The contribution G~(t) should by itself give sim-
ple exponential decay [if only a single pole contributes to
Gs(t)] and, under idealized circumstances of a continuum
unbounded at both ends, this would be the only contribu-
tion that need be considered. Our primary concern, howev-
er, is with the contributions G, (t) and Gi(t) produced by
the continuum edge. For any arbitrary functional form of
w(z), let

w(z) = Cu(z)
where u(z) is dimensionless and where the scaling factor C
has units of energy. We adjust the width I by adjusting C
with u(z) held fixed. Then G, (t) is given by

i

izt ui(z) —uii(z)
dz

ti [z —Eo Cui(z) ] [z —Eo —Cuii(z) ]—

(Eo4 t ui((Eo) un(4Eo)
t (g —1)' d

Therefore, if B is an upper bound for Iui! and Iuii! along

As I is decreased by decreasing C, IG, (t)l' approaches
zero, in disagreement with the results of NB. If we make
the slightly restrictive assumption that I ui(z) I and I uii(z) I

are bounded along the relevant part of the contour and con-
sider ICuI small compared with IEoI over the relevant in-

tegration region, expansion of the integrand to the lowest
order in C/Eo gives

c '
2m. G, (t) = exp

Ep ~ —/oo

I

the contour, G, ( t ) satisfies

or

~ p

mEp

rs oo

exp
nEp «

Ep0 dy

, II —iy I'

—Epty

IG.(t) I' (9)~E EI,
where we identify CB with I . This identification is justified
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FIG. 2. Graphical illustration of the solution of Eq. (6) to find
the real pole Pi, (a) for a case in which solutions might sometimes
not exist, and (b) for a n p(uj) dependence on energy that always

yields a solution.

by the meaning of I as a representative value of np( u,').
Equation (9) gives an upper bound for ~G, (t)~2 under the
general conditions of small I'/Ep for all times t ) 0 (and not
merely asymptotically for large values of t as in NB and
GW). This upper bound is inconsistent with the results of
NB [being much smaller than the results presented in Fig. 2
of NB and smaller by order (I'/Ep)2 than Eq. (16) of NB]
but is consistent with the results of GW. Examination of
the final contour in Fig. 1(d) furthermore shows it to be
equivalent to that employed by GW, but not to the contour
employed by NB. The small value of our upper bound
arises in Eq. (7) from cancellation between corresponding
points of the continuum-edge contour on sheets I and II;
the NB choice of contour omits the sheet-I contribution,
making cancellation impossible.

As seen graphically in Fig. 2, the solution to Eq. (6) (and
therefore the real pole Pi) might or might not exist,
depending on the specific functional form of p(I')(v&')s
and possibly on the value of E0. When the pole exists,
Gi(t), given by

r

,

I' [p(s')(,') 1„
dE" (E—8')

leads to an additional nonexponential contribution to G(t).
The ~eaker the coupling in comparison with E0, however,
the greater is the magnitude of the slope of

" p(')(vi')~
d&g

at the intersection point in Fig. 2, and the smaller is the
contribution of the pole, for small enough coupling I'/Ep.
The previous conclusions about G, therefore apply also to
Gi, at least semiquantitatively.

It is also necessary to consider the possibility of additional
complex poles on the second sheet. If p(S') (v& ) s is essen-
tially constant over the width of the state (as expected for

narrow widths), and therefore constant over the part of the
original contour [Fig. 1(a)] contributing significantly to the
integral, replacement of p(v,') by this constant value elim-
inates the problem of continuation onto a second Riemann
sheet and leads to simple exponential decay (arising from
G~ alone), again consistent with the previous results for the
other possible contributions to G(t).

Finally, it should be noted that the values E0=10 eV
and I = 10 5 eV considered by NB, when applied to the il-
lustrative example discussed by GW, 4 give a branch-point
contribution G, equal in magnitude to the exponential-decay
contribution G~ only after 41 lifetimes, at which point ex-
perimental observation of the decay would be extremely dif-
ficult. (If 10'5 atoms could be excited, as suggested, the ex-
citation would be depleted completely at about 35 lifetimes
for simple exponential decay. ) The numerical estimates
considered by NB, 2 on the other hand, give a NED contri-
bution 104 times larger than our upper bound.

The model thus far considered ignores the bound states
of negative energy converging to the ionization threshold
and therefore strictly applies, not to atomic ionization, but
to such phenomena as the decay of an impurity state into a
band of continuum states in a solid. When the bound states
are included (for atomic autoionization) w(z) takes the
form

2

'w(z) = g tp) +
Z — j

(12)

where the first contribution is a summation over the zero-
order bound states (i.e. , for negative Etp~). Coupling to the
autoionizing state shifts the bound-state energies to values

E„ that are solutions of the secular equation

E Ep= w(E)— (13)

[as seen by generalizing Eq. (7) of Ref. 3, or Eq. (3) of Ref.
5, to include a continuum above the threshoM, or by recog-
nizing that the new eigen values must be poles of
[z —Ep w(z)] 'j. It can —easily be seen graphically that
each interval (Ep, E,+p) ) between successive zero-order
bound-state energies then contains exactly one eigenvalue
E„. Therefore every neighborhood of the branch point at
threshold contains arbitrarily many poles of
[z —Ep w(z)] ' (corre—sponding to the eigenvalues E„),
making it difficult to evaluate the G, (t) contour integral
along the small semicircular arc around the branch point. A
possible solution to this difficulty involves considering only
the case in which ~& approaches zero as the branch point is
approached from below the origin; in this case, however, all
of our results presented earlier for the behavior of G, (t)
are recovered.

In summary, the results presented here impose an upper
bound on the possible nonexponential contributions to
G(t) arising from the existence of an ionization threshold,
showing that these contributions approach zero as I /Ep be-
comes small for coupling width I and energy E0 of the au-
toionizing state above threshold. Our upper bound is incon-
sistent with some recently published predictions ~ but con-
sistent with earlier long-accepted results. We attribute this
inconsistency to the arbitrary choice of an integration con-
tour (in the more recent work') that is inconsistent with re-
quirements imposed by mathematical considerations. Our
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analysis nevertheless does identify a number of other
sources for deviation from simple exponential decay which
might be of significance in certain physical applications.
The overlapping of several states, close compared with their
widths, can also provide an additional mechanism. It
should be noted, in particular, that simple exponential decay
is not a universal law, and that deviations from this law
have, for example, been observed experimentally in the cor-

responding molecular radiationless decay problem in a
number of instances.
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