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Viscoelastic and non-Newtonian effects in shear flow

James W. Dufty
Department ofPhysics, University of Florida, Gainesville, Florida 3261l

(Received 16 February 1984)

The time-correlation functions characterizing linear viscoelasticity and nonlinear transport in shear flow

are compared for a low-density gas of Maxwell molecules. It is shown that the relationship between
viscoelasticity and nonlinear transport given by the Goddard-Miller rheological equation of state does not

apply, and the principle of objectivity on which this equation is based is not valid.

I. INTRODUCTION

Recent applications of mode-coupling theory to nonlinear
transport in uniform shear flow suggest that the nonlinear
shear viscosity is not an analytic function of the shear
rate. ' The predicted dependence on shear rate has the
same form as the nonanalytic frequency dependence of the
linear shear viscosity. A similar relationship between fre-
quency and shear rate nonanalyticities has been observed in
nonequilibrium computer simulations of shear flow. 4 Since
the anomalous frequency dependence is associated with the
asymptotic behavior of equilibrium time-correlation func-
tions for linear transport (the "long-time tails" ), it is of
some interest to see if there is a simple connection to the
anomalous shear rate dependence for nonlinear transport.
Such a connection would imply a close relationship, for ex-
ample, between viscoelasticity and shear thinning. In the
study of rheological fluids, models have been proposed on
the basis of the principle of objectivity that directly relate
the frequency and shear rate dependence of the shear
viscosity. The simplest of these is the Goddard-Miller
"rheological equation of state. " ~ Zwanzig has noted that
the implications of the Goddard-Miller model in fact agree
with those of mode-coupling theory in two dimensions,
although they do not agree in three dimensions. In a relat-
ed context~ (nonlinear diffusion in shear flow), the mode-
coupling theory for both finite frequency and shear rate has
been studied in three dimensions. Although qualitatively
similar, it was found that the Goddard-Miller and mode-
coupling results are quantitatively different. The purpose
here is to show that this failure of the Goddard-Miller equa-
tion of state is not limited to the peculiar nonanalytic
features above, but also occurs under simpler circumstances
where such features are suppressed. Specifically, the
Boltzmann limit for a low-density gas of Maxwell molecules
(r 5 force law) is chosen, since the nonequilibrium statisti-
cal mechanics can be carried out exactly. ' Again, it is
found that the Goddard-Miller model fails. More generally,
the principle of objectivity does not apply in this case."

The linear viscoelastic properties of a fluid may be
described in terms of local equilibrium time-correlation
functions using the methods of linear response. In particu-
lar, for small velocity gradients the linear relationship of the
irreversible stress tensor t~&(t) to the strain tensor y(((t) is
(for simplicity, only incompressible flow is described)
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Here G((k( (t, r) is the local equilibrium autocorrelation func-
tion for a microscopic volume stress tensor, and U, ( r, t) is
the macroscopic velocity field. In general, Eq. (1) must be
replaced by a nonlinear relationship of t(t(t) to both the
strain tensor y(((t) and the vorticity w((.
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where now G((k((t, r) is a functional of the velocity field gra-
dients. In continuum mechanics, explicit models are intro-
duced for G((k((t, r) to characterize the viscoelastic and
non-Newtonian properties of complex fluids. One such
model is that of Goddard and Miller, which relates
G((k((t, r) to the linear-response function G(tk('(t, r) in a
simple way. The basic idea is that the linear relationship (1)
holds in the corotating frame, from the principle of objec-
tivity (invariance under the Euclidean group). The corotat-
ing frame is that for which the local vorticity vanishes and
consequently the linear approximation (1) is presumably
more reasonable. The resulting expression for G(( (kt,(~) is
then found to be

[ G((k(( t, r ) ]oM = G((~„' ( t, r )R~ ( t —r )R„((t —T )

where R(((t) is the rotation tensor for transformation to the
corotating frame.

The direct, or even approximate, calculation of G(((d(t, r)
from its formal definition in nonequilibrium statistical
mechanics is a formidable problem, except in isolated limit-
ing cases. One such limit is a low-density gas, for which

G((k((t, r) can be determined from a solution to the non-
linear Boltzmann equation. This equation can be solved ex-
actly for the special case of Maxwell molecules and uniform
shear flow. ' The latter is defined in terms of a flow field of
the form

U, ( r, t) = Up+ a((r~ (4)

where U~o is a constant vector and a& is a constant tensor
with the properties agajk aJI aAJ

= 0. To be more specific,
the x axis is chosen along the direction of shear and the y
axis is taken along the direction of the gradient. Then a&
has the representation

a~ = a5~5J

where a is the magnitude of the shear rate. The linear-
response function G((k('(t, r) is particularly simple in this
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limit: '
Gtlkl'( r, ~ ) = e "" 'p (~)&gkl

~gkl (Bllsjk+ gikBJI Tsijskl)
2

(6)

The Goddard-Miller model for G&kl(t, v) is now easily
determined from Eqs. (3) and (6). To simplify the nota-
tion, define the time difference s—= t —v", the results are
then

Here v is an eigenvalue of the Boltzmann operator and p(t)
the pressure at time t. The pressure increases due to
viscous heating and is determined from the energy conser-
vation law for uniform shear flow:

Bp(r)
Qt

= —T~vru «)

where use has been made of the low-density equation of
state e = 3p/2.

[Gtlkl(t, ~)]oM= cos(as) GIJkI (t, r) + a 'sin(as)

&& [Gggm(t, ~)yml GtIlm (r ~)ykk]

The first term in Eq. (8) is symmetric in the indices (k, l)
and therefore only couples the strain rate in Eq. (2). The
second term is antisymmetric and couples to the vorticity.

The exact expression for G&kl(t, 7 ) based on the
Boltzmann equation is easily identified from the analysis in
Appendix A2 of Ref. 10. The result is

Gtlkl(t, ~) =cos(aas) G~&kl (t, ~) —(aa) 'sin(aas) [Gg (t, r)(y I+ w I) —
G~&~ '(t, ~)(y~+ w~)]

Here a = (Be/Bp)„= ~.
Although Eqs. (8) and (9) are surprisingly similar, their

qualitative differences are significant. The additional factor
of o. in the Boltzmann result is due to a dependence of the
correlation function on the heating rate beyond that which
occurs through GtIkl'(t, 7). This is missing in the Goddard-
Miller model since the rotation tensors introduce only the
vorticity of the flow field, and the heating rate is indepen-
dent of voriticity. Uniform shear flow consists of both a ro-
tation and a dilation, but the nonlinear effects due to dila-
tion are not included in the Goddard-Miller model. The
second difference between Eqs. (8) and (9) is the additional
dependence on the vorticity in the second term of Eq. (9).
This represents a nonlinear dependence of the stress tensor
on the vorticity that cannot be removed by transformation
to the corotating frame, and therefore constitutes a violation
of the principle of objectivity. This principle has been criti-
cized in Ref. 11 where it is pointed out that the symmetry
group associated with the underlying microscopic dynamics
is the Galileo group. The Boltzmann equation is invariant
under Galilean transformations, but not under the larger
group of Euclidean transformations required by the principle
of objectivity. A third difference is the overall sign of the
second term in (9). Although this does not affect the non-
linear shear viscosity, it leads to a different sign for the first
viscometric function Wt(a), as compared to the Goddard-
Miller model. The sign in Eq. (9) and functional form
agrees with the independent Chapman-Enskog solution of
the Boltzmann equation to Burnett order. "

Although the viscometric functions implied by Eqs. (8)
and (9) are quite different, the associated nonlinear shear
viscosities are more similar. From Eq. (8) one finds

Pt
[q(a) ]oM= „d7 e "'cos(as) p (T ) (10)

whereas the Boltzmann equation gives

q(a) =„d~e "'cos(aas)p(r)

The only difference here is the thermodynamic factor,
a2= (Bp/Be)„. It is interesting to note that this factor is
unity for two dimensions, which could explain the accidental
agreement of the Goddard-Miller model with mode-coupling
calculations for two dimensions. 7 Clearly there is no funda-
mental significance to this agreement since there is no rela-
tionship of the parameters of the corotating frame to the
thermodynamic properties of the fluid.

The conclusion is that the qualitative features of models
like that of Goddard and Miller which relate viscoelastic and
non-Newtonian properties of a fluid, while often useful in
practice, are phenomenological rather than fundamental.
Their application for the interpretation of nonequilibrium
computer simulation should be considered also as
phenomenological.
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