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Information entropy and Thomas-Fermi theory

Shridhar R. Gadre'
Department of Chemistry, Vniversity of North Carolina at Chapel Hill,

Chapel Hill, North Carolina 27514
(Received 20 December 1983)

Informational entropies S = —f plnpd r and S = —f ylnydp have been computed from neutral-

atom Thomas-Fermi coordinate-space density p and momentum density y. These entropies turn out to be

S = N(5.59 —2lnN) and S = N(1.06+lnN) leading to S +S„=N(6.65 —lnN), strikingly similar in

form to the rigorous bound S +S„~3N(1+1nm) —2N lnN due to Bi+nicki-Birula and Mycielski. It is

conjectured that the informational entropies for atoms may be we11 represented by S = N(o. +P lnN), u

and P being universal constants.

An interesting uncertainty relation for informational entropy
in quantum mechanics has been obtained by Biafynicki-
Birula and Mycielski. For wave functions normalized to
unity

—(In(P( r )(') —(In)p(p) )') ~ (1+ln7r)n (2)

Here, t[I ( r ) and P ( p ) are the wave functions in n

dimensional position and momentum spaces, respectively.
On simplification Eq. (2) leads to

S~(N) +Sy(N) ~ 3N(1+In7r) —2N lnN

= N (6.43 —2 lnN ) (3)

Information-theoretic concepts have been employed' in
recent years for synthesis and analysis 1 of electron densities'
and electron momentum densities' of atoms and molecules.
Many measures of information-theoretical entropy of a con-
tinuous probability distribution have been proposed, the
most widely used one being the Shannon entropy. The
Shannon entropy for an absolutely continuous distribution
with a probability density p (x) on [a,b] is defined as

f b

S = — p (x) lnp (x)dx (1)

@3/2(x)
3 3/2 3/29' x x

(5)

Here, @(x) is the universal TF function, N ( = Z, the nu-
clear charge) the number of electrons, and x = r/b the
scaled distance, where
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On evaluation of integrals one finds

(6)

variable forms the basis of the density functional formal-
ism. The first approximate density functional model, viz. ,
the Thomas-Fermi (TF) theory, dates as early as 1927. TF
theory5 leads to the correct atomic energies in the limit
Z ~ and is also capable of yielding quick yet fairly good
estimates of atomic expectation values. Another attractive
feature of the TF theory is that the solution @(x) of the TF
equation is universal for neutral atoms. Thus, the TF
theory forms a natural starting point in a systematic study of
informational entropies for atoms and molecules.

The informational entropy S~(N) is given by (4a). For
neutral atoms, within TF theory

Here, S~(N) and S„(N) are information entropies in coor-
dinate and momentum spaces:

S~(N) = —N
& @ Jx (InK + ~ In@ —

2 lnx) dx

= N (5.59 —2 lnN) (7)

and

S~(N) = —
J p( r )lnp( r )d r

S (N) = —
J y(p)lny(p)dp

(4a)

(4b)

The corresponding entropy in the momentum space, viz. ,
S„(N) can be evaluated by the procedures of Coulson and
March, recently used in a convenient form by Gadre and
Matcha. The final expression for S„(N) is

The densities p( r ) and y(p) in (4a) and (4b) are normal-
ized to the number of electrons, N, in the system.
Biarynicki-Birula and Mycielcki describe this inequality as a
new, stronger version of the Heisenberg uncertainty rela-
tion. The physical meaning of (3) is transparent: the more
concentrated the wave function is in coordinate space and
the lower the uncertainty in localizing a particle, the lower is

S~. However, the corresponding uncertainty in momentum
space is high, due to y being a more diffuse distribution.
Thus, S~+S~ cannot be decreased belo~ a limit —as given
by (3). The bound (3) is attained by Gaussian wave func-
tions.

The bound (3) is interesting from another point of view:
it stresses the fundamental role played by the electron den-
sities p( r ) and y(p). The treatment of density as a basic

f
S„(N) =N In(37r2) —N + 3 p( r )lnr d r

1
fO

= N In(3vr2) —3 lnb —1 —2 @3/'In(x) Jxdx
t aJ !

= N (1.06+ lnN) (8)

Combining (7) and (8), the TF theory for neutral atoms
yields

S~(N) + S„(N) = 6.65N —N lnN (9)

This result is strikingly similar to the universal bound (3) of
Biarynicki-Birula and Mycielski. However, (9) is asymptoti-
cally correct, whereas the bound (3) becomes weak in that
limit.

The present study brings out an interesting feature of in-
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S =nN+PN lnN (10)

where n and P are more or less universal constants.
The calculations of S~ and S„ from good quality (such as

Hartree-Fock) wave functions involve large computational

formational entropies, S~ and S~: the TF theory as well as
the bound (3) leads to entropies which incorporate N and

N lnN linearly. One may conjecture that the information
entropies S~ and S„extracted from excellent quality wave

functions for atoms and, perhaps, molecules can be
represented as

efforts and are currently being undertaken. Our preliminary
results on a few atoms seem to vindicate the conjecture
(10).
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