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Transverse effects in stimulated Raman scattering
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We formulate the quantum theory of stimulated Raman scattering in three dimensions. The spatial
coherence function of the Stokes pulse is found as a function of the Fresnel number. The pulse-energy
distribution function is calculated and compared with recent measurements.

Stimulated Raman scattering (SRS) is one of the best
known nonlinear optical processes. It amounts to the
transformation of the pump field into Stokes photons which
have a different (smaller) frequency and propagate in the
direction parallel to the pump field photons. An interesting
feature of the SRS is the interplay of the spontaneous emis-
sion of the Stokes photons in the initial stage of the process
with the stimulated emission which dominates when the
density of Stokes photons becomes sizable. These two
processes lead to large observable effects which have been
called macroscopic quantum fluctuations. The quantum
fluctations of the electromagnetic field in the vacuum state,
which are responsible for the spontaneous emission of the
Stokes photons, are amplified during the process and mani-
fest themselves as fluctuations of the total Stokes pulse en-
ergy. This effect has been discussed by Raymer, Rzazewski,
and Mostowski! and Rzazewski, Lewenstein, and Raymer.?
These papers predicted large ( ~ 100%) fluctuations of the
output Stokes pulse energy in the transient regime and
smaller fluctuations in the steady-state regime. The distri-
bution of the Stokes pulse energies in the transient regime
was the subject of a recent study of Walmsley and Raymer?
who found qualitative agreement with the Raymer et al.!
theory.

The Raymer etal.! theory is restricted to a particular
shape of the amplifier, namely such that the Fresnel
number is equal to 1. Only in such case can the application
of the one-dimensional theory of the SRS as formulated by
Mostowski and Raymer* be justified. For larger and smaller
F the wave front of the Stokes pulse cannot be treated as
homogeneous, so the full three-dimensional theory of the
Stokes field propagation is needed. It should be noted that
even for F=1 the wave front is only approximately homo-
geneous and a three-dimensional theory is also required in
this case, although it leads only to small corrections.

In the present paper we will study the Fresnel number
dependence of the total Stokes pulse energy distribution in
the transient regime. Our analysis is restricted to the F > 1
region since we will neglect waveguide effects which play a
role for F <1.

As has been shown by Mostowski and Raymer,* the
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quantum theory of SRS has its counterpart in the quantum
theory of superfluorescence initiation, formulated by Haake,
Haus, and Glauber® and Polder, Schuurmans, and Vrehen.$
In fact, all equations of the SRS case can be translated to
the superfluorescence case by a suitable substitution of con-
stants. Such a comparison can be found in Ref. 4.

Recently, we have formulated a three-dimensional theory
of superfluorescence initiation.” This theory is a direct ex-
tension of the Haake et al.® theory to three dimensions.
This theory can be now translated, by the same substitu-
tions as in the one-dimensional case, to the SRS case.

The Raman equations read
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where Q is the two-photon polarization field (see Ref. 4),
Es, E; are the positive frequency components of the Stokes
and the pump field, respectively, » is the number density of
atoms and
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Here d; denotes a transition dipole moment in the active
atom, w is a corresponding transition frequency, w,; and wg
are the laser pump and the Stokes field frequencies. Such a
definition of the coupling constant x; was used in Refs. 1-4.

Assume that the pump field E; is a constant over the
cross section of the cylinder and constant in time. If the
waveguide effects are neglected, the solution of these equa-
tions reads

Es(F.0)= [K(F, F.00%(0, F) , @

where
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I is the modified Bessel function, a = 167k |k\E |*ws/c, =1t —z/c.
This is the solution of the Heisenberg equations for the Stokes field operator.

The constant « is closely related to the steady-state Raman gain constant g. If T’ denotes the relaxation rate then we have
g =%F—la. In this paper, however, we consider transient effects only, in other words all relaxation times are longer than

the duration of the pumping pulse. Therefore, the characteristic time scale is not I' ! but rather the ““Raman time”’ (aL) ~!
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and we do not use the concept of the steady-state gain constant g.
The average intensity of the Stokes pulse can be found directly from (2) by taking the average value of |Eg|? for T at the
right-hand side surface of the sample. Making use of the commutation relation

[0*(F1,0),0( Fz,0)1=%8(3)( Fi— )]

we find
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In the high-gain limit this reduces to
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where T = (x,y,L).

This formula, in fact, has been derived by Raymer and
Mostowski (Ref. 4) with the help of the one-dimensional
theory and some hand-waving arguments. Here it has been
rigorously derived.

The three-dimensional theory can, in fact, predict new
features of the Stokes pulse. An interesting quantity is the
correlation function G (T, Tp,t) = (Est (T ,0) E(T 1)) cal-
culated for T'; and T, on the right-hand side surface of the
cylinder. This function is a measure of the field variations
over the output area. The formula for G (T, T,¢) is rath-
er complicated but in the high-gain limit it simplifies to

2J1[(F/2a)|T1— Tall
(F/2a)|T1— Tl
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where J, is the Bessel function, a is the radius of the output
surface, and p'1= (x;,y;) for i=1, 2.

This result shows that the output Stokes field wave front
is not homogeneous, even for F=1. The coherence func-
tion is just the same as if the left-hand side of the amplifier
were a classical incoherent radiation source.! The larger the
F the smaller the ratio of the correlation length to the radius
of the perpendicular cross section of the amplifier.

The notion of diffraction modes is connected with the
correlation function G. If the field is purely coherent, i.e.,
emitted in one mode, the correlation function factorizes:
G(T, Tut)=E(T,t)EY(Tyt). If the field is emitted in
several modes, the correlation function takes the form
G(Ty, Tpt)=3E(T,t)E*(Tt). Generalizing, by the
diffraction mode we will mean an eigenfunction of
G (T}, Tyt) treated as an integral kernel.

In our case these eigenfunctions and their eigenvalues
depend on F. If for some F the kernel has N nonzero
eigenvalues we will say that emission takes place in N dif-
fraction modes. As we will show the eigenvalues do tend to
zero rapidly for 1 < F <10, therefore the notion of the
number of the diffraction modes has a rather precise mean-
ing.

In Ref. 7 we have presented a method which reduces the
problem of diagonalizing the kernel G to the diagonalization
of finite (and small) matrices. As an example we give in
Table I the eigenvalues of the kernel 2J,[(F/2a)| T — 7|1/
[(F/2a)|T— T'|] for some values of F. We see that for
F=1 there is one leading eigenvalue, i.e., the emission
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takes place mostly in one mode. For larger F, however, the
emission takes place in several modes.

The number of diffraction modes in which the emission
takes place has a direct impact on the pulse energy statistics.
The pulse energy distribution function is defined as

p(w)=<5[w —j;rdt fdzr'Es( f",t)Es+(r",z)]> . (6)

This is a direct generalization of the formula (7) of Raymer
et al. We assume that the intensity is understood as the ra-
tio of the total flux to the area (this is the origin of the ex-
tra integration over the area).

Inserting the expression for Es [Eq. (2)] we find

p(w)=<8[w—fH(?1, Ty, T)
><Q+(i’1,0)Q(Fz,O)d3r1d3r2]> )|

with H=j(;Tdt JK(F', T)K (T, T2)dyr'. This distribu-
tion function can be expressed in terms of the eigenvalues
A1, Ag, ... of the kernel H. In the one-dimensional case it
was possible to diagonalize this kernel numerically, but oth-
erwise exactly. Here we will restrict ourselves to the high-
gain limit only. In this limit the integration can be per-
formed and we find that
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H(T, T T)=K"W(z,25,T)

(8)

where K is the kernel from the one-dimensional theory
(Ref. 1). It has been shown by Raymer, Rzazewski, and
Mostowski! that KV has in the high-gain limit only one

TABLE 1. Eigenvalues of the kernel 2J,(F|p—p"|/2a)/
(FIp—7'l/2a) for F=1 and F=2.5. Asterisks denote doubly

degenerated eigenvalues. Eigenvalues larger than 10~3 are listed
only.

A F=1 F=25
A 1.9780 0.5003

b 0.5065 0.4709

A3 5.9968 x 10~ 2 0.3534

As 2.1118x10~2 0.2909

A% 5.8141x 104 0.1767

b4 8.454x 1072
A7 5.649x 102
A§ 1.299x 102
AS 1.2096x 10~ 2
Ao 1.8229x 103
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nonzero eigenvalue. Therefore the eigenvalues of H are
determined by the eigenvalues of the diffraction kernel
2J1[(F/2a) |51 = p2l )/ (F/2a) | 51— 7).

The distribution p (w) is given by
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Contrary to the one-dimensional case several eigenvalues
give a comparable contribution to p (w), especially for larger
F. Plots of p(w) for F=1,2.5,8 are given in Fig. 1. Ob-
serve that the larger the Fresnel number the narrower the
distribution becomes. The distribution functions have value
zero at w =0, the maxima occur for w significantly larger
than zero. This feature of the distribution functions pro-
vides the fundamental difference between the present and
the one-dimensional approach. One-dimensional theory
predicts that the distribution function has a maximum
essentially at w =0 in the high-gain limit (or at 0.05 of the
mean value, at most, in the intermediate-gain case).

In their measurements Walmsley and Raymer (Ref. 3)
found the tendency of the distribution function to lie below
the theoretical (from one-dimensional theory) values for
small values of the argument. A similar tendency was ob-
served in measurements of the Essen group.” No convinc-
ing explanation was given, although Walmsley and Raymer
suggested that the three-dimensional effects could play a
role.

Although both experiments were performed for amplifiers
with F =1, the present three-dimensional theory presents a
natural and straightforward explanation of the observed
shapes of the Stokes pulse energy distribution functions.

Our theory predicts also a new feature of the distribution
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FIG. 1. Pulse energy distribution functions for F=1, 2.5, 8.

function, namely, the narrowing of the distribution for
larger Fresnel numbers. A related phenomenon in super-
fluorescence, the narrowing of the delay times distribution
function with increasing Fresnel numbers has been mea-
sured by Vrehen and der Weduwe!® and attributed by
Drummond and Eberly,!! Watson et al.,'? Mostowski and
Sobolewska’ !® to the transverse effects in light propagation.
Stokes pulse energy statistics measurements for various
Fresnel numbers are called for.
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