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The form factor is a key parameter to be evaluated in most theoretical approaches currently avail-

able for the calculation of inelastic collisional cross sections involving Rydberg atoms. The binary-

encounter method is shown to offer a very powerful means for the rapid evaluation of this parame-

ter. Analytical expressions of the form factor are derived from hydrogenic wave functions. Many
comparisons between binary-encounter and quantal calculations establish the range of validity of the
former method. It is shown that, in most situations of practical interest, this approach provides an

easy and efficient way to compute the cross sections corresponding to inelastic collisions between

Rydberg atoms and atomic or molecular targets.

I. INTRODUCTION

Collisions between Rydberg atoms and atomic (or
molecular) targets have been the subject of numerous
theoretical and experimental investigations in the recent
past. ' Various theoretical approaches have been
developed and extensive comparisons between theory and
experiment allow some general conclusions to be drawn
concerning the interaction responsible for such processes.
In many cases it is now recognized that the interaction be-
tween the outer slow electron and the neutral target is re-
sponsible for the depopulation of Rydberg atoms. If this
interaction only is taken into account the n and I depen-
dences of the cross section can be reproduced reasonably
well. Moreover quantitative agreement between observed
and calculated cross sections has been obtained in most
cases. These calculations predict that Rydberg atoms are
mainly depopulated towards hydrogenic levels of high
multiplicity, a theory supported by experimental observa-
tions. More precisely, for Rydberg-atom —ground-state-
atom collisions it is the closest hydrogenic manifold
which represents the main exit channel, no potential ener-

gy change occurring for the ground-state atom. In the
case of molecular targets the situation is different because
of the internal degrees of freedom of the molecule (in fact,
rotation alone is involved at thermal energies) and hydro-
genic manifolds with significant energy changes can be
reached. Under these conditions the molecular target un-
dergoes an inelastic process also. This situation can
occur, in fact, as long as the target possesses bound (or
continuum) states which are energetically accessible in the
collision process; as, for example, in the case of excited
atomic targets.

Among the various approaches accounting only for the
(e -H) interaction (H perturber), those derived from the
impulse approximation have proved very efficient for the
cross-section calculations. ' According to the impulse
approach (the validity of which has been widely investi-
gated and will not be discussed here) the cross section
cr,f for the (i ~f) transition takes the form

K
o.,f—— f I f, (K)

I
F,f(K)KdK

min

(atomic units are used throughout the paper, unless speci-
fied), where v is the relative velocity of the colliding
partners, f, (K) is the (e -H) scattering amplitude for a
given momentum transfer K, and Ff(K) is the squared
form factor for the given transition, i.e.,

F'f«)=
I &f Ie'"' It) I'

r being the coordinate of the Rydberg electron. The in-

tegration range in Eq. (I) is determined from energy con-
servation consideration. Usually a very simple form for
f, (K) can be assumed, dependent on the nature of the
(e -H ) interaction (e -atom, e -dipole, e -quadrupole,
. . . ). Thus, form-factor evaluation is a key step in the
derivation of the cross section.

Many publications have been devoted to an evaluation
of the form factor. " For our purpose it is sufficient to
sum up the situation as follows: If hydrogenic wave func-
tions are used, the quantal expression of the squared form
factor for a n, I—+n', l' transition can be derived in analyti-
cal form, but the corresponding computations are very
time consuming. Moreover numerical catastrophic can-
cellations preclude the use of the method for n values over
about 35, even when double-precision algebra is used. For
higher n values it is necessary to rely on extrapolation
procedures, the validity of which is difficult to assess [the
situation is even worse if more sophisticated wave func-
tions are used, ' but for Rydberg states hydrogenic wave
functions seem to provide sufficient accuracy, though in
some cases numerical interpolations appear useful for
nonhydrogenic initial ( n, l) states' ]. The final states to be
considered being usually a hydrogenic manifold n it is
necessary to sum the corresponding cr„I „I values over I'

in order to obtain a cross section comparable to a mea-
sured quenching cross section. Quantal calculations have
been performed in this way for Rydberg-atom —ground-
state-atom collisions up to n —35. The case of Rydberg-
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atom —molecule collisions is still more complicated since
numerous n' manifolds can contribute significantly to the
quenching cross section' (even ionization has to be con-
sidered). Semiclassical methods, mainly based on the
correspondence principle, have also been used to over-
come the difficulty for obtaining a rapid evaluation of the
form factor but the approach seems to be limited. One
last interesting possibility appears to be the derivation of
the form factor from the binary-encounter theory (BET).'

This method has already proved useful for bound-free
transitions ' (i.e., for example, Rydberg-atom —molecule
collisions leading to ionization) and was also used recently
by Matsuzawa for calculations of bound-bound transitions
with large

I
n n'—

I
values, induced by molecular tar-

gets. ' The method is attractive because it yields the
squared form factor directly for a n, l~n' transition,
where n' is a hydrogenic manifold. The resulting lack of
information on n, l ~n', I' processes is not important since
most measurements only provide total depopulation cross
sections.

The main aim of this paper is to demonstrate that the
use of the binary-encounter form factor (hereafter referred
to as the BET form factor) enables the cross sections of a
wide class of collisional processes between Rydberg atoms
and neutral targets to be computed easily and efficiently, a
fact not yet recognized in the literature [i.e., the BET
form factor will be shown in most cases to give a good ap-
proximation of the quantal form factor over the integra-
tion range of interest in Eq. (1)]. To this end the paper is
presented as follows. Section II focuses on a derivation of
the BET form factor for bound-bound transitions, with
emphasis on the necessary assumptions. Section III gives
explicit expressions of the BET form factor. Section IV
discusses the cross-section calculations for some collision-
al processes involving Rydberg atoms. Finally, Sec. V is
devoted to the comparison between quantal and BET cal-
culations for various situations of practical interest.

II. SQUARED BET FORM FACTOR
FOR BOUND-BOUND TRANSITIONS

to be hydrogenic, i.e., all
I

n', 1',m') =—
I f ) substates have

the same energy Ef ———I/2n' . Let us for convenience
rewrite Eq. (3) as

(4)

where the summation over f covers all final states

I

n', 1',m') =
I
f) of energy Ef. For high enough n'

values we write

F„t„(K)= gg 35(Ef E; —E)—1 1

21+1 f n'

where E; is the energy of the initial (n, l) state. Here the
summation over f covers the whole energy spectrum
(bound and continuum states). Equation (5) holds only
for sufficiently high n' values since the n' factor ac-
counts for the density of final states per unit energy, the 5
function ensuring the selection of those hydrogenic bound
states with energy Ef. Note that this procedure is
equivalent to that used to obtain the continuity relation
for the density of generalized oscillator strengths at the
ionization limit. ' We now express the 5 function by its
Fourier transform, i.e.,

2'
where the integration variable may be interpreted as time.
Using this expression, the closure relation for the final
states

I f ), and the relations

e ' li)=e' 'li) (TV),
i K r (t) iHt i K r —iHt (HR)I

(where TV is the time variation and HR is the Heisenberg
representation) we finally obtain

It is useful here to give the explicit derivation of the
BET form factor in the case of bound-bound transitions
since the literature seems to contain little information on
the subject, unlike that of the bound-free case. The main
lines of the derivation follow more or less closely the work
of Vriens, ' which draws heavily on a mathematical
method first developed by Nijboer and Rahman' for the
slow neutron scattering theory. Finally, our derivation
neglects any correlation effects, ' holding strictly for
alkali-metal atoms, in order to avoid complications which
are most probably unnecessary for any atomic Rydberg
states.

We wish to calculate the following squared form factor:

+nin«)= 2 2 I
&n2l+1 mI m

with summation over the magnetic substates of the initial
state

I
n, l, m ) —=

I

i ). The final state n' is first assumed

—iEt i ~
i

—i K ~ r (0)

xe' '""
I

i )dt . (9)

The second necessary assumption (the first being that
n' is high enough) is that the excited electron in state

I
i )

is free during the collision, i.e.,

r(t)=r(0)+ vt (10)

to first order in time [note that Eq. (10) holds to all orders
for a free Hamiltonian]. Thus the approximation corre-
sponds to ignore the effect of the binding (Coulomb) po-
tential during the collision and consequently requires n to
be sufficiently large. It is clear from Eq. (8) that the use
of this first-order approximation [Eq. (10)] limits the va-

lidity of the derivation to small enough E values. For
high-K values, higher-order terms should be included in
Eq. (10) if the diagonal matrix element of Eq. (7) is to be
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calculated accurately. Using Eq. (4) and the Weyl's

operator identity, i.e.,

——[A B)A+B A B

which holds, provided that the commutator [A,E] com-
mutes both with A and with 8, we obtain

F„i„(&)=
3 g (i

I
5(K v+ , K—E—) Ii ), (12)(2l+1)n'

where v is the only variable. Note, as already pointed
out, the similarity between Eq. (12) and the Compton
profile (bound-free transition) obtained with the impulse
approximation. The final integration can now be per-
formed in the momentum (velocity) space, leading to:

+„i„(&)=,, g f dpp' f I
gal(p) I'&i'm«)Yim(&+«v+ 2&' &)—d&

(21 + 1)n' 0
(13)

where g„i(p) is the momentum wave function and Yi~(Q) represents the usual spherical harmonics. Finally, using the

summation of spherical ha~onics and choosing the polar axis along the momentum transfer K (ie writing

K.v =Kv cos8, with —1 & cos8 & 1), we obtain

1(po) 1I'.
&,.(&)=,, =,

,

Ig.i(p) I p p2n' K 2n' E Is'0

with

Ef —E, ——,sc 2

Po=

(14)

(15)

Equations (14) and (15) are the basic equations for the bound-bound BET form factor which will be used extensively in

the following sections. The necessary assumptions can be summarized as follows: n and n' large and K small precise

validity criteria for Fq. (14) are difficult to define; this point will call for a separate study and we shall therefore rely on

the comparison between BET and quantal calculations to check the accuracy of Eq. (14).

III. BET SQUARED FORM FACTOR
USING HYDROGENIC WAVE FUNCTIONS

' 1/2

g„i(p)= 2 + n 1! 2 (n —i —1)!
(n +1)!

(np)'

( 2p2+ 1)I+2

XC„1+1 n p —1
2 2

n p +1
(16)

where Cn+I 1 is a Gegenbauer polynomial, which may
be expressed in terms of hypergeometric functions. How-
ever, the corresponding expression leads to numerical
problems at high-n values when the integral in Eq. (15) is
evaluated. This difficulty can be overcome as follows:
taking

The problem reduces to the evaluation of I(po) [see Eq.
(14)]. We start from the well-known expression of the
g„i(p) function, ' namely,

with

xo arccos[——(n po —1)l(n po+1)],
po being determined by Eq. (15).

We now develop the procedure by which Eq. (17) can be
reduced to a finite series. First we expand the Gegenbauer
polynomial in terms of trigonometric lines, i.e.,

1V —1

C„'+&,(cosx) = g a;cos[(N —2i)x]
(1!)

with N =n —l +1 and

(i + 1 —1)!(n —i)!
(i —1)!(n i —I)!—

The symmetry property a; =a&; allows us to write

2~max

I
C„+i i(cosx)

I

=
2 g s(a)cos[2(N —a)x]

(l!)

cosx =(n p —1)i(n p +1)
and changing the range of integration accordingly we fi-
nally get

max

+ g d(P)cos[2(P —1)x]
P=1

(19)
2 '+ n ($!) (n —/ —1)!

I(po) =I(xo)=
(n +l)!

Zo
sin '+'x sin ( —,x)

X
I
C„+i i(cosx)

I
dx (17)

where i,„depends on n, l, and the parity of N. The s (a)
and d(P) coefficients are easily derived from the a; coef-
ficients. Thus the evaluation of I(xo) reduces to that of
the following integral:

~ ~
ZO

sin +'x sin ( —,'x)cos(2yx)dx,
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where y stands for N —a or P—1. It can be shown that
21+3

sin +'x sin ( —,'x)= g CI(j)sin(jx),
j=1

(20)

where the C~(j) coefficients are obtained from the recur-
sion equation

C~+ &(j ) = , CI(j—) —,C—I(j —2) ——,
' CI(j+2) (21)

starting from Cp(1)=+& Cp(2)= —
4 and Cp(3)=

with the additional convention that CI (j)=0 for
j&21+3, and taking C~( —j)=—CI(j). By using Eqs.
(17), (19), and (20) we finally obtain

n 2221 +3
( n —l —1 )!I(xp)=

n-(l!)' (n +l}!
21+3 max

X g C(j) g s(a)J(a)+ g d(p)J(p)
j=1 a=2 P=1

(23) can be useful]. No numerical difficulties have been
encountered even at the highest n values investigated
( n -80), owing to the symmetry property of the a; coeffi-
cients and also to their explicit expression which shows
that the terms of the summations over a and P are not
spread out over too many order of magnitudes, thus
avoiding numerical problems. This contrasts with the
case where the Gegenbauer polynomials are expressed in
terms of hypergeometric functions. Finally note that for
most cases of practical interest we are interested in initial
states of low angular momentum and therefore the sum-
mation over j contains few terms.

The case of s states (I =0) is somewhat apart, since all

a; coefficients are equal to unity and resummation of
trigonometric lines is possible. In this case only it is
better to start from the expression of the Gegenbauer po-
lynomial (i.e., C„&) in terms of hypergeometric function
[i.e., C„'

&
-F(l+n, 1 n; —,'—;1I(n p +1)}].The change

of variable

with

(22)
~ 2 1

sin y=
(n p +1)

J(a)
J(P)

sin [(—,
' k+a)xp] sin [(—,

' k —a)xp]

k +2a k —2a
(23)

where a =N —a for J(a) or a =P—1 for J(P). Equa-
tion (22) allows a fast evaluation of I(x0) for all xp values
[for x0~0, i.e., for small E values, an expansion of Eq.

leads to

8n
y

& sin y sin (2ny) d (24)
0 cosy

(s states), where yp ——arcsin(lln pp+1). After some
lengthy and tedious algebra we obtain, for s states,

4n
1(PO) =1(yp) = sin yp sin (2nyp) 1 sin [(2n +1)yp] 1 sin [(2n —1)yp] && „sin (kyp)

2
+ +-

2n 4 (2n+1) 4 (2n —1) k, k
( 1)k

For y0~0 (i.e., for small IC values) this expression reduces to

(25)

I(po)
3 6l6~~0 22 3P 44(1 nyp+» —n yp

. . ) asy0~0.
377

(26)

Equation (25) [or Eq. (26) if nyp (0.3] provides a very fast BET form-factor evaluation for s states. For other initial
states (with l&0) the BET form factor is computed from Eq. (22).

IV. CALCULATIONS OF THE CROSS SECTIONS
FOR VARIOUS TYPES OF INTERACTION

First of all our main intention is to discuss the possible
use of the BET form factor to compute cross sections ac-
cording to Eq. (1). We have carried out extensive compar-
isons between BET and quantal cross sections in more
than four hundred cases corresponding to various situa-
tions of practical interest. Before presenting some typical
examples in detail (see Sec. V) we shall briefly review the
cases investigated as well as the corresponding explicit ex-
pressions of Eq. (1).

For Rydberg-atom —atom collisions the (e -H ) in-
teraction is short range (Fermi-type potential), the corre-
sponding squared (e -H) scattering amplitude

~
f, (K)

~

being L with L the scattering length. This, in fact, cor-
responds to a first-order expansion of the scattering am-

cr,f——C F,J E I( dK
min

(27)

with C =(2nL )IU, where E;„=
~

k; kf ~

and—
E kf +kf the initial k; and final kf momentum be-

ing given by energy conservation factors:

k; +2PE; =kf+2PEf (28)

with p the reduced mass of the two colliding atoms. As
mentioned in the introduction the only final states to be
taken into account are the closest hydrogenic levels. For

plitude. Inclusion of further terms is possible, within
the scope of the scattering length approximation, but
leads to complications unnecessary for our purpose. The
scattering length being independent of K the integral in
Eq. (1) reduces to:
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example, Na(nd) states (quantum defect 5=10 ) will be
mainly depopulated towards the nf, ng, nh, . . . levels
Similarly, Rb(ns) states (quantum defect 5=3.1) will lead
mainly to the (n —3)f, (n —3),g, (n —3)h, . . . exit chan-
nels. This process will be referred to as I mixing, though
strictly speaking a change in the n value can also occur.
Accordingly this quasielastic process induced by short-
range interaction always involve small

~

n n—'
~

values.
In the case of Rydberg-atom —molecule collisions the

short-range (e -molecule) interaction is still present and
can be treated in a similar way, I. be ng deduced from the
low-energy elastic ( e -molecule) scattering data. This in-
teraction leads also to the quasielastic l-mixing process,
with no internal change in the rotational state of the
molecular target. However, we also have to consider the
long-range (e -molecule) interaction which can be ex-
pressed as a multipolar expansion. The (e -dipole) and
(e -quadrupole) interactions only are considered here. In
this case rotational excitation (or deexcitation) of the mol-
ecule and subsequent deexcitation (or excitation) of the
Rydberg atom occur, with possibly noticeable

~

n n'~—
values. The process can be very efficient, especially if the
total energy in the entrance channel closely matches
(within about 2 cm ') that in the exit channel. ' As
usual the squared scattering amplitudes are deduced from
the first Born approximation. Their explicit expressions
are given by

the other two cases to the accuracy of the calculated
F~(K) value for K close to K;„,because of the 1/K fac-
tor.

The procedure used to obtain the cross-sections values
discussed in the following section will now be dealt with
in more detail. Firstly, the numerical integration of Eq.
(27) [or (31)] has been performed for both BET and quan-
tal calculations, through an adaptive Newton-Coates rou-
tine. Such a sophisticated routine, though necessary for
the quantal calculations, is probably not needed for the
BET calculations (see below). Secondly, for the sake of
simplicity and analyticity [see Eq. (22)J, hydrogenic wave
functions are used. In practice, because the Rydberg state
in the entrance channel is usually a nonhydrogenic state
(no, l) of effective quantum number no no —5——, where 5
is its quantum defect, we shall use for our calculations the
quantum number n which is the closest integer to no to-
gether with the true energy of the level considered,
(no, l). For example, n =29 will be used for the calcula-
tions involving the Rb(32s) state, its quantum defect being
about 3.1. Thirdly, it is worth mentioning that the BET
calculations do not properly include transitions to nonhy-
drogenic states since all n' exit channels are assumed to
have the same energy. This should not matter since in the
case of Rydberg states the final nonhydrogenic levels of
low multiplicity have already been shown to have a negli-
gible contribution to the depopulation process.

(29) V. COMPARISON BETWEEN BET
AND QUANTAL CALCULATIONS

for the dipolar case ' [D being the dipole moment and
J~ ——max( J,J') ] and by

2 JM( JM
~ f, (J J'=J+2;K)

~

= g15 (J+JM)' —1
(30)

for the quadrupolar case (Q being the quadrupole mo-
ment). In the former case the integral in Eq. (1) reduces
to

max
o f——C' Fq K (31)

with

87T IJ
3v' (2J+ I)

where K;„and K,„are given by Eq. (28), E; and Ef be-
ing the total internal energy (including rotational energy)
of the entrance and exit channels, respectively. The latter
case (quadrupole interaction), the corresponding scattering
amplitude being independent of K, is similar to that of the
short-range interaction; thus, this case reduces to the com-
putation of the integral given by Eq. (27) with

4' JM (JM

15v (J+JM) —1

Finally, comparison between Eqs. (27) and (31) clearly
shows that the dipolar case should be more sensitive than

To our knowledge no calculations using the BET form
factor are available for transitions with small

~

n n'—
values. It is generally assumed that the BET method is
not valid in such a case' (which covers in fact most exist-
ing experimental results). In our opinion this is by no
means obvious in view of the derivation of the BET form
factor (see Sec. II). Thus, we rely on a detailed compar-
ison between BET and quantal calculations to answer the
question convincingly, which is why most of the following
examples deal with cases corresponding to small

~

n n' ~—
values. Another reason for checking this controversial sit-
uation is that we recently performed measurements of the
quenching cross sections of Rb(ns and nd) atoms collid-
ing with CO molecule. This target having a small rota-
tional 8 constant ( —1.9 cm ') it is easy to show that the
main inelastic channels leading to the quenching process
are those with small ( ( 10)

~

n n'
~

values, owing to th—e
relative population of the CO rotational levels in our cell
experiment (only those rotational levels with J (15 are
noticeably populated).

We now discuss in detail some typical examples. First
the l-mixing process induced by the short-range (e -A~)
interaction is analyzed, the corresponding cross section
being computed according to Eq. (27). The two examples
chosen deal with one molecular (CO) and one atomic (He)
target. Then the rotationally inelastic processes due to the
long-range (e -dipole) interaction are discussed in the
case of Rb*-CO collisions, the corresponding cross sec-
tions being derived from Eq. (31). All the other cases
checked display the same general features.
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sections as shown by Fig. 2. Thirdly, the almost regular
shape of the form factor (Fig. 1) explains why the integra-
tion over E is easy when the BET method is used. Figure
3 shows how the shape of the F33(j 22(K) form factor
arises from the sum of partial F23/ 22/'(K) form factors
that can exhibit very sharp variations over a small K in-
terval: in spite of local accidents arising for various l'
values, the shape of the summed curve is almost regular.
This explains why sophisticated integration methods are
required when computing partial cross sections by the
quantal approach (see also the next example). Let us fi-
nally mention that a detailed comparison between BET
and quantal calculations was carried out on Rb (ns and
nd) states over a wide range of n values (22&n &35) for
the titled process [Eq. (32)]. In all cases the cross sections
obtained by the two methods agree to within less than
20%.

2. Na -He

10-"

1p-14

10

10 16

1p-17

10 18

10-'

(
!

1

1
g

!
l'=22 "

10

BET

l'=3

10'

The process is quasielastic since the Na(nd) states have a
quantum defect of about 1.5X10 . BET and quantal
calculations performed (at T =420 K) for n values rang-
ing from 6 to 25 exhibit general features quite similar to
those obtained from our first example. Figure 4 shows
that the cross sections obtained by the two methods agree
to within about 20% over the whole range of n values, the
BET values lying systematically above the quantal results.
Figure 5 shows in more detail the case of the 24d level
(for which ! hE! -0.24 cm '), the corresponding in-
tegration interval ranging from K;„—1.5 X 10 to
K,„-9.3. It is clear from Fig. 5 that for both calcula-
tions only E values less than about 0.1 contribute notice-
ably to the final result, i.e., the integral is sharply peaked
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Let us consider as a second example the l-mixing pro-
cess induced by rare-gas atoms, a process widely investi-
gated both experimentally' and theoretically' ' ' in the
recent past. More specifically we shall deal with the fol-
lowing reaction:

Na(nd)+He~Na(nf, ng, nh, . . . )+He+BE . (33)

K(a.u. )

FIG. 5. The two upper curves represent the BET and quantal
cross sections for the Na(24d)+He~Na(24l', l'=3, 4, . . . i

+He process as a function of the upper limit of integration [Eq.
(27)]. The momentum transfer IC is given in atomic units. The
true limit of integration is K=9.3 a.u. , but both cross sections
reach their final values of Il -0.1 a.u. Also shown are some
quantal partial cross sections, the corresponding l' value being
indicated. All cross sections are in cm

in the vicinity of the I(:;„value, a fact already observed
in the preceding example. It should be noted, however,
that agreement between the two methods is not close, as in
the first case (Fig. 2) for K values near the threshold K
because, as shown later on, the BET approach appears less
reliable when K is very small. This hardly affects the fi-
nal cross section, however, since the final integration of
Eq. (27) [i.e., IKF(K)dK] gives little weight to F(K) for
the smallest IC values (K & 10 ). Figure 5 also shows in
addition that the K values corresponding to 90% of the
cross sections can vary noticeably for different l' values.
Finally, the efficiency of the BET approach can be judged
from the fact that the BET calculation of the total cross
section requires about 400 evaluations of the form factor
while about 14000 are necessary in the quantum case (in
both cases a precision of 10 was requested), mainly ow-
ing to local accidents of the partial quantal form factors
(Fig. 3). Moreover, the number of evaluations is almost
independent of n for the BET method but increases drast-
ically with n in the quantum case. This indicates that the
BET form factor has a smooth K variation whatever the
n value, a fact observed in all cases investigated.

10 I ( i i i I ( i » I ( ( ( ( I ( ( ( ( I
2

5 10 15 20 25

FIG. 4. Quantal and BET cross sections for the /-mixing pro-
cess of Na nd states colliding with helium [Eq. (33)]. Also re-
ported are the experimental results of Ref. 31.

B. Rotationally inelastic collisions induced
by the long-range interaction

We now consider the collision induced by the long-
range (Rydberg electron-dipole) interaction. The corre-
sponding cross sections are computed according to Eqs.
(1), (29), and (31). More specifically, let us take as our
first example the process
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Rb(23d)+CO(J =7)~ Rb(23f, 23g, 23h, . . . )

+CO(J =6)+DE . (34)

+CO(J =1)+0.4 cm (35)

(a.u. )

1O-'

10000

—8000

10 3
—6000

1O-" —4000

1O-'

—2000

The reaction is quasiresonant since AE-0. 3 cm '. The
corresponding K;„and K „values are 6. 10 and 19.1,
respectively. Calculations are performed at T =293 K,
the CO dipole moment being taken as 4.4&(10 . The re-
sults are given in Fig. 6. The BET cross section (sr=8740
A ) agrees well with the quantal result (o =8490 A ).
Only a small part of the E interval contributes to the
cross section (6. 10 ' &K & 3.10 ) and in this range the
two form factors are similar in shape, though noticeable
local differences ( -40%) can be observed. (Better agree-
ment between the two form factor calculations is observed
for E)0. 1; for E values above about 0.6 the BET ap-
proach, as already noted, becomes unreliable). Tables I
and II give a whole set of results obtained for both excita-
tion and deexcitation of a CO molecule in collision with a
Rb(23d) atom (only e -dipole interaction is taken into
account). Comparison between BET and quantal cross
sections shows very good overall agreement, the

~

n n' ~—
values ranging from 0 to 6. Only when very high cross
sections are obtained does the agreement seem to be possi-
bly worse (within 50%). More precisely this situation can
arise when the energy balance AE of the process is small
( &0.5 cm '), i.e., when the threshold K;„value is less
than about 10 . Such a situation is reported in Fig. 7
and corresponds to the process

Rb(23d)+CO(J =2)—+ Rb(22f, 22g, 22h, . . . )

TABLE I. BET (cr&) and quantal (o~) cross-section values
(in A ) for the rotational deexcitation of CO molecule in col-
lisions with Rb(23d) atoms. Reported are the initial J value
(the final value J' being J —1), the final Rydberg hydrogenic
states n' and the energy defect AE (in cm ') for the process.
Only processes with small hE values are considered since in oth-
er cases the cross sections are found to be negligible (see Ref.
26).

n'

1

2
6
7

11
12
15
16
18
19
21
22

22
22
23
23
24
24
25
25
26
26
27
27

—3.45
0.40

—3.51
0.33

—1.24
2.59

—0.85
2.98

—2.62
1.20

—2.97
0.84

33.4
6220

40.2
8490
1040
110

2710
66.8
97.8

1440
58.7

1890

33.9
9630

41.1

8740
1170
117

2670
69.6

102
1520

61.6
1840

Figure 7 shows that there is a systematic difference be-
tween the BET and quantal form factors (in contrast to
Fig. 6) for K values below 4. 10 a.u. , leading to the ob-
served difference between the quantal (ot2

——6220 A ) and
BET (o.BET

——9630 A ) cross sections. From our last two
examples it is clear that the behavior of the BET form
factor for small K values (K & 10 ) deserves further at-
tention. It is important to note that, by contrast with the
case of short-range or quadrupolar interaction the
F(K)/K form of the integrand magnifies the differences
observed for F(K) close to the threshold K;„value, in
the cross section calculation for the e -dipole interaction.
Finally, numerous other levels are investigated and lead to
similar conclusions: Only for transitions with very small
E;„values can the BET and quantal cross sections be
noticeably different. For all other cases remarkable agree-
ment between the two calculations is observed.

We do not report here the case of (e -quadrupole) in-
teraction since, as already mentioned, it is quite similar to
the short-range one. Very good agreement is found be-
tween BET and quantal cross-sections, as long as the E
range considered lies typically between 5. 10 and 1,
which is the case for most situations of practical interest.

I I

10-2
I I I l 0

10 K(a.u. ) 1

FIG. 6. Quantal (solid curve) and BET (dotted curve) form
factor F for the 23d ~23 transition in rubidium as a function of
the momentum transfer E. Both quantities are expressed in
atomic units. The left-hand scale refers to the form factor. The
BET cross section for the process Rb(23d)+CO(J+7)
~Rb(23f, 23g, 23h, . . . )+CO(J =6), computed according to
Eq. (31) is also reported as a function of the upper limit of in-
tegration [Eq. (31)]. The right-hand scale refers to the cross sec-
tion (in A ). Also shown on the scale are the BET and quantal
(o.~) cross sections obtained for the true upper limit of integra-
tion X,„=19a.u.

n'

2
3
9

10
17
18

21
21
20
20
19
19

3.28
—0.56

1.89
—1.94

0.89
—2.93

77.4
4980

324
304
948
102

78.5
3950

334
310

1160
103

TABLE II. BET (o&) and quantal (cr~) cross-section values
(in A ) for the rotational excitations (J'=J+1) of the CO mol-
ecule in collisions with Rb(23d) atoms. For notations and com-
ments see Table I.
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(a.u. )

10

—10000

8000

6000

molecule, which has a small rotational constant. In this
case it is easy to show that such collisions contribute
negligibly to the total depopulation of Rydberg states.
Secondly, calculations using the BET approximation have
already appeared in the literature' and the use of the
BET method for such cases appears fairly noncontrover-
sial.

10 2— I 000 VI. CONCLUSION

2000

10-3

10 2

K (a.u. )

I I i I I 0

10 '

FIG. 7. Quanta) (solid curve) and BET (dotted curve) form
factor F for the 23d ~22 transition in rubidium as a function of
the momentum transfer E. Both quantities are in atomic units.
The left-hand scale refers to the form factor. Note that this cor-
responds to the case of Fig. 1, except that E values are smaller.
The BET cross section for the process Rb(23d)+CO(J =2)
~Rb(22f, 22g, 22h, . . . )+CO(J = I), is also reported. Nota-
tions are those of Fig. 6. The E,„value for this case is about
19 a.u. , the threshold value K;„being indicated by an arrow.

Here we shall not discuss the general features of the
Rydberg-atom —dipolar-molecule collisions (i.e., the b,E,
n, and J variations of the corresponding cross sections):
this problem is dealt with in another paper devoted to an
experimental study of Rb( ns and nd)-CO collisions,
where detailed comparisons between experimental data
and BET calculations are presented (they show a very
good overall agreement). Finally the case of collisions in-
volving large

~

n n'
~

val-ues is also disregarded for two
reasons: Firstly, our calculations concern only the CO

We have shown that the BET approximation provides a
very efficient means of calculating the ( n, l ~n') cross
sections corresponding to collisions between Rydberg
atoms and atomic or molecular targets. This holds what-
ever the

~

n —n'
~

value for various types of interaction,
as demonstrated by a detailed comparison between BET
and quantal calculations (for comparison between experi-
mental and theoretical data we refer the reader to Ref.
26). We also give detailed information on the explicit ex-
pression of the BET form factor as well as on the corre-
sponding numerical procedures. The tremendous gain in
computation time offered by the BET method as com-
pared with the quantal approach gives the former great
advantage over the latter for the computation of collision-
al processes involving Rydberg states, especially because it
seems to cover almost all situations of practical interest
(except, perhaps, some sharply resonant processes). Final-
ly the loss of information on partial n, l ~n, 'l' transitions,
a basic feature of the BET approach, is not a serious han-
dicap in practice since most experiments only provide glo-
bal information on the final exit channels.

ACKNOWLEDGMENTS

The authors would like to thank E. de Prunele and B.
Sayer for helpful discussions.

'An extensive review can be found in Rydberg States of Atoms
and Molecules, edited by R. F. Stebbings and F. B. Dunning,
(Cambridge University, Cambridge, New York, 1983)~

G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952).
3A. P. Hickman, Phys. Rev. A 19, 994 (1979).
4M. Matsuzawa, J. Phys. B 12, 3743 (1979).
5Y. Hahn, J. Phys. B 14, 985 (1981).
E. de Prunele, Phys. Rev. A 27, 1831 (1983).

7M. R. Flannery, Phys. Rev. A 22, 2408 (1980). See also Chaps.
6, 7, and 11 of Ref. 1.

I. C. Percival and D. Richards, Adv. At. Mol. Phys. 11, 1

(1975).
M. Inokuti, Rev. Mod. Phys. 43, 297 (1971).
M. Matsuzawa, Phys. Rev. A 9, 241 (1974).
L. Y. Cheng and H. van Regemorter, J. Phys. B 14, 4025
(1981).
K. Sasano, Y. Sato, and M. Matsuzawa, Phys. Rev. A 27,
2421 (1983).
M. Hugon, F. Gounand, P. R. Fournier, and J. Berlande, J.
Phys. B 13, 1585 (1980).
F. G. Kellert, K. A. Smith, R. D. Rundel, F. B. Dunning, and
R. F. Stebbings, J. Chem. Phys. 72, 3179 (1980). See also
Chaps. 8 and 9 of Ref. 1.

~5M. R. Flannery, Ann. Phys. (NY) 61, 465 (1970). See also

Chap. 11 of Ref. 1.
M. Matsuzawa, J. Electron Spectrosc. Relat. Phenom. 4, 1

(1974).
M. Matsuzawa, Phys. Rev. A 20, 860 (1979).
L. Vriens, in Case Studies in Atomic Collision Physics I, edited

by E. W. Mc Daniel and M. R. C. Mc Dowell (North-
Holland, Amsterdam, 1969), p. 337.
B. R. A. Nijboer and A. Rahman, Physica (Utrecht) 32, 415
(1966).
P. Eisenberg and P. M. Platzman, Phys. Rev. A 2, 415 (1970).
B. Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929).

z~l. S. Gradshteyn and I. W. Ryzhik, Table of Integrals Series
and Products (Academic, New York, 1965).
M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1965).
A. Omont, J. Phys. (Paris) 38, 1343 (1977) and references
therein.
T. F. O' Malley, Phys. Rev. 130, 1020 (1963).
L. Petitjean, E. Gounand, and P. R. Fournier, Phys. Rev. A
30, 71 (1984).
K. Takayanagi, J. Phys. Soc. Jpn. 21, 507 (1966).
Y. Itikawa and K. Takayanagi, J. Phys. Soc. Jpn. 26, 1254
(1969).
N. F. Lane, Rev. Mod. Phys. 52, 29 (1980).



70 F. GOUNAND AND L. PETITJEAN 30

In fact, the cross section for Rb(32s) will be obtained from a
linear interpolation between the results computed for n =29
and 28 (see Ref. 13). However, this is irrelevant here since we

will always compare BET and quantal calculations involving

in both cases hydrogenic wave functions pertaining to the

same n value (29 in this particular case). Moreover, the inter-

polation procedure leads to a final result that is only a few

percent different from that obtained with the integer value
closest to no. Note that, due to the form of Eq. (1) this is

equivalent to an interpolation made on Ff(K) between the
two integers values closest to no followed by the final integra-
tion over K [Eq. (1)]. It is important to realize that, for both
the BET and the quantal case, the interpolation only affects
the index n of the wave function and not the lower bound po
[Eq. (14); BET case] or J;„,K,„[Eq. (1) for both cases]

that are always computed for the true energy E; of the en-
trance channel, thus taking into account its nonhydrogenic
behavior. Finally, note that it is difficult, due to the detailed
form of the g„I(p) function, to obtain simple n and n' scaling
formulas for F„I„(K), except perhaps for very low and large
K values. But this would be of little interest since these K
ranges do not contribute significantly to the cross-section
values (moreover, the BET method is not valid for large K
values). Thus, it appears difficult to obtain a simple interpo-
lation procedure on F„I„(K), in the K range of interest, when
calculating po [see Eq. (15)] for integer n values (instead of
using the true energy of the studied level) ~
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