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The rotating harmonic oscillator in three dimensions (owing its relevance to the diatomic molecule) has

been reinvestigated by Nieto and Gutschick. They have demonstrated that the ground-state energy, which

is expected (on the basis of naive arguments involving the uncertainty principle) to acquire a contribution
1 3

co from each degree of freedom, and hence should have a value 2tao, does, on the contrary, in the lim-

it of large equilibrium separation (between the atoms), go to the asymptotic value of only —Ace, thereby

violating what these authors called a "quantum folk theorem. " The present Brief Report consists of show-

ing that these conclusions can be elucidated analytically and further extended through the l/N expansion
(N being the dimensionality of the space), leading, in particular, to the result that for the case N = 2 the

approach to the asymptotic limit (M2co) is, surprisingly, from below, thereby providing an even stronger
violation of this type of "equipartition theorem. "

The history of the rotating harmonic oscillator, as pointed
out, by Nieto and Gutschick, ' goes back to the early days of
quantum mechanics when Schrodinger obtained a perturba-
tive solution to the problem. The study of this system
derives its importance from the consideration of the energy
levels of the diatomic molecule, the systematics of the spec-
tral terms of which were investigated almost a century ago
by Deslandres. The rotating harmonic oscillator, neverthe-
less, has continued to attract attention.

The rotating harmonic oscillator is governed by the poten-
tial V(r) = —,mto2(r —a)' where m, to, and a are the mass,

frequency, and equilibrium displacement parameters,
respectively. On the basis of some physical reasoning sub-
stantiated by analytical calculations and the numerical solu-
tion of the corresponding Schrodinger equation in W dimen-
sions, Nieto and Gutschick' arrived at the conclusion that as
a 0 the ground-state energy, as should be the case in this
oscillator limit, goes to

2
Nhco, while in the limit a ~ the

ground-state energy approaches the asymptotic value 2tco
(from above), a result which appears to violate the usual
expectation ("folklore" ) that the uncertainty principle
would imply a contribution 2hco per degree of freedom for
an oscillator. Of course, as these authors pointed out, the
radial part of the wave function R (r), in three dimensions,
written as u(r)/r, results in the radial function u(r) satisfy-
ing an equation identical to that in one dimension but with
the difference in the condition that u(r) must vanish at the
origin, which leads to the result that the ground-state energy
for a three-dimensional oscillator has the energy which
would correspond to the first odd-wave function of the
one-dimensional oscillator, namely, 2k co. However, since

the wave function has a maximum near r = a for this oscil-
lator, the boundary condition at the origin is automatically
satisfied in the asymptotic limit (a ~) and, consequent-

ly, due to this relaxation, the ground-state energy turns out
to be 2hco. The same conclusion may also be arrived at by

observing that the Laplacian operator in three dimensions
differs from that in one dimension by the term
(2/r)dR (r)/dr, which for asymptotic a contributes vanish-

ingly compared with the curvature of the wave function
(d /df )R (t ).

The present study demonstrates that the 1/N expansion
(where N is the dimensionality of the space) is particularly
efficacious for the explication of the aforementioned results
and indeed goes further to indicate for two dimensions
(N = 2) an even more interesting consequence, in that the
asymptotic limit of the ground-state energy 2tco is ap-

proached from below, a conclusion which is supported by
the variational approach and borne out by explicit numerical
calculations, thereby indicating an even stronger violation of
this type of "equipartition theorem. "

Several authors9 " have developed the 1/N expansion, in

general, and for the solutions of the Schrodinger equation,
in particular, by considering the radial part of the wave
function for a particle moving in a suitably defined poten-
tial' in W dimensions. In units where m= 1=t the ki-
netic-energy operator in a state of angular momentum I be-
comes

1 d N —1 d 1(I+N —2)
2 dr2 r dr 2r2

t

Setting the radial part of the wave function R (r)
= r'~ " 'u(r) the radial equation becomes

1 d' + k2 (1 —1/k)(l —3/k) + V
2 d2 8r2

t t

where k= N+21. In the limit of large k (large N) the
eigenfunctions u(r) have a maximum about the minimum
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ro of the effective potential r—2+ V(r) and the spectrum
becomes concentrated around Et 2~=1/8r)+ V(ro), where
k E is the energy of a classical particle of angular
momentum I.d=

2
k executing circular motion in the poten-

tial and constituting the lowest-order approximation to the
eigenvalue. A systematic expansion of the eigenvalue has
been developed'0 by these authors in powers of 1/k and in-
volve the solution of algebraic equations. This expansion is,
in effect, nonperturbative (in the sense that power series in
the coupling constant are not involved) and even the lead-
ing order of the series (as will clearly emerge in the present
case) may exhibit qualitative features of the problem that
are not readily evident in other approximations. Moreover,
in being most effective for low-lying states, the method is
complementary to the Wentzel-Kramers-Brillouin (WKB)
approach.

The first few terms in the 1/N expansion for the ground-
state energy for the rotating harmonic oscillator in N dimen-
sions is given by

E=N A2x1+ x + NA(1 )
8 4 —3x' 2

+ ( I —x2) (12—24x+ 1 lx2)
32

1 9Ax+ (I —x)(1+ )+ . .
N 16

(2)

+ 3 (N —1)(N —3)+
16a4o)

(4)

(in units f = 1). It is immediately seen that for N = 3 the
approach to the asymptotic limit is in fact faster than any
power of 1/a, a conclusion which also follows from the
asymptotic behavior of the parabolic cylindrical functions
which are the solutions in that case. [Indeed

E = —'pm + ( m cu a/ Jmji )e.2
2

where 0'= cu'/N'+
4 r$, with ro the minimum of the effec-

tive potential given by the solution of the equation

N2 + r) (ro —a) =0, (3)4'
and the dimensionless parameter x= 1/Arf It is to be not-.
ed that while in the oscillator limit (a 0 ~ x 1 and
0 2co/N) only the leading term in the energy expansion
survives yielding E=N(Aced/2); in the other extreme, the
asymptotic limit (a ~ ~ x 0 and 0 co/N) the
ground-state energy (with only the second term contribut-
ing) becomes E =hem/2. Thus the I/N expansion exhibits in
a particularly elegant fashion the different limits in agree-
ment with numerical calculations. Furthermore, the ap-
proach to asymptopia is also correctly given as can be seen
by retaining next to leading-order terms (up to x2) yielding

E = —o) + (N —I ) (N —3)1 1

2 8a2

here. ] However, for N=2 the approach is from below as
the inverse square power. This behavior may be related to
quantum fluctuations about the classical equilibrium posi-
tion by considering the radial equations for values of the
parameter a and a+Sa and constructing the Wronskian of
the two solutions u(r, a+Ba) and u(r, a) which vanishes at
r = 0 and r ~ and yields in the limit 5a 0 the result

QE = —mes'((r) —a )
Qa

A similar procedure with respect to co gives

QE = mes((r —a) )2

/GO

(sa)

(5b)

Thus the qualitative difference in asymptotic behavior for
N =2 and N = 3 may be attributed to the relative magni-
tudes of (r) and a in the two cases arising from the nature
of the wave function and the volume element. The particu-
lar case of N = 2 exhibits peculiar asymptotic behavior,
which is easily confirmed by employing the variational
method with trial wave function of the form
exp[ —mes/t(r —b)2] with b as the parameter to be varied.
Though the expectation value of the Hamiltonian involves
error functions, nevertheless, the limit of large a may be
studied analytically to yield a minimum energy

tee —1/8a2—+ in agreement with the contention that2

the energy for N=2 goes below —tee, a result which is

borne out by explicit numerical calculations.
The genesis of differences in behavior of the ground-state

energy as a function of the parameter a for different dimen-
sionality may be traced to the starting point [Eq. (1)],
wherein it may be observed that the "centrifugal" potential
(1—1/k)(1 —3/k)/8r' vanishes both for N= 1 and N=3
giving an equation identical to that in one dimension though
in the three-dimensional case the boundary condition at the
origin is different. Again for N=2 this is attractive while
for N =4, 5, it is repulsive. In fact this is basically why the
approach to the asymptotic value is exponential for N=3
and power law for other N and is from below in the case
N=2 ~
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