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A density-functional description of liquid crystals is developed. Formally exact expansions for
thermodynamic functions in terms of a direct-correlation function are given. Approximations to the
direct-correlation function lead to different versions of the molecular-field theories of liquid crystals.
The properties of the uniform nematic phase including the isotropic-nematic phase transition at con-
stant pressure are discussed. Expressions are given for the change in density and order parameters
at the transition in terms of the direct-correlation function of the isotropic phase. Methods for cal-
culating the direct-correlation functions of the isotropic phase are also discussed. A formal theory
for the statistical mechanics of a nonuniform liquid crystal is developed and used to derive expres-
sions for the Frank elastic constants. This approach provides a starting point for the investigation
of the phase transitions in the liquid crystals and the properties of inhomogeneous systems. A mi-
croscopic description of the Landau—de Gennes theory is also given.

I. INTRODUCTION

Liquid crystals constitute a state of matter occurring on
the phase diagram between the ordered solid phase where
the mobility of individual molecules is restricted and the
isotropic phase where molecular mobility and general lack
of molecular order exist. As such, it is an unusually fas-
cinating state because it combines properties of both
phases. Liquid crystals, with which we are concerned
here, may be of the nematic, cholesteric, or smectic type.
In the nematic phase, the molecular centers of gravity are
disordered as in a liquid, but we have a statistically paral-
lel orientation of the long axes of the molecules along an
axis (the director 7). In all known cases, there appears to
be complete rotational symmetry around the preferred
axis. Nematic phase usually occurs only with materials
which do not distinguish between right and left and the
molecules of which have rodlike shape. The cholesteric
phase is simply a helically ordered nematic phase.

Smectic liquid crystals have stratified structure with
the long axes of the rodlike or lathlike molecules parallel
to each other in the layers. Since a variety of molecular
arrangements are possible within each stratification, a
number of (eight are known so far) smectic phases are
possible. In smectic 4 the molecules are upright in each
layer with their centers irregularly specified in a liquidlike
fashion. Smectic B differs from A in that the molecular
centers in each layer are hexagonal close packed. Smectic
C is a tilted form of smectic 4. If in addition to the tilt
there is an ordered arrangement within each layer, it is la-
beled Bc. Other smectic modifications have more com-
plex structure.'

The theory of liquid crystals has been developing in two
major directions. One, using the phenomenological theory
of Landau and de Gennes,” in which the Helmholtz free
energy is expanded in powers of the order parameter and
its gradient, requiring in the process five or more adjust-
able parameters to be determined by experiments. While
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this theory is physically appealing and mathematically
convenient, it has many drawbacks, including lack of
quantitative predictive power about the phase diagram.’
In the molecular-field theories*® one begins with a model,
be it in the form of rods or interparticle potentials, and
proceeds to calculate solvent mediated anisotropic external
potential (effective one-body potential or pseudopotential)
acting on each individual molecule. Such calculation
needs full knowledge of pair-correlation functions.® For a
potential which mimics all the important features of
molecular structure this approach includes lengthy and
complicated mathematical derivation and numerical com-
putation. As a consequence, too many simplifying ap-
proximations are made—in the choice of models, in the
statistical mechanical approximation schemes, and in the
evaluation of the correlation functions and thermodynam-
ic properties.!$

In the view of many workers”® orientational order in
liquid crystals results primarily from the short-range
highly anisotropic repulsive forces between rodlike mole-
cules. The high density of the liquid is achieved by the
intermolecular attractions which are assumed to be isotro-
pic. On the other hand, the Maier-Saupe theory* and its
modifications’~'? and extensions>!® attribute the forma-
tion of the ordered phase to the anisotropic attractive in-
teractions, the repulsive interactions are assumed to be
isotropic, at least to a first approximation, and serve to
provide a positive pressure. The mean-field averaging of
the long-range attraction is obtained in a phenomenologi-
cal way neglecting the coupling between radial and orien-
tational correlations.'*

There have been a number of attempts'!>~18 in the
past to study the nematic-isotropic phase transition by in-
corporating both anisotropic intermolecular repulsions
and attractions. Some of these theories are successful in
predicting certain thermodynamic properties of common
nematogens, for example, the phase diagram of homolo-
gous series, qualitative correct temperature dependence of
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order parameter, etc., but very poor in predicting volume
changes at transitions, latent heats, maximum supercool-
ing temperatures, etc. The reason for at least some of
their shortcomings is quite obvious. As none of them take
full account of the orientational and spatial correlations
between particles and treat both attractive and repulsive
branches of intermolecular interactions accurately, they
cannot be expected to be quantitative.

In a recent publication Singh and Singh® have
developed a statistical mechanical perturbation theory to
describe the equilibrium properties of the nematic phase.
In this theory the reference potential is nonspherical and
consists of the short-range rapidly varying repulsive part
of the pair potential. It was shown that the coupling be-
tween the angular pair correlation and isotropic dispersion
interaction which does not play any role in the Maier-
Saupe-type theory, is very important in controlling the
properties of the ordered phase. The theory was applied
to study the isotropic-nematic transition for model poten-
tials.5 1

In this paper we first describe (Sec. II) a density-
functional theory which allows us to construct formally
exact expansions for thermodynamic functions in terms of
the direct-correlation functions and single-particle density
distribution. The direct-correlation function which ap-
pears in these expressions is a functional of the single-
particle density distribution and the pair interactions.
Functional Taylor expansion is used in Sec. III to derive
the expressions for the single-particle density distribution
and free energy for a nonuniform classical system subject-
ed to an external potential. The density distribution is ex-
pressed in terms of order parameters to characterize crys-
talline solids, different phases of liquid crystals, and iso-
tropic liquids.

In Sec. IV we describe the equilibrium properties of the
nematic phase and isotropic-nematic transition at con-
stant pressure. Section V is devoted to the derivation of
expressions for the Frank elastic constants using the for-
malism of Sec. III. In the Appendix we discuss some of
the approximations made in Sec. IV and give a microscop-
ic derivation of the Landau—de Gennes theory.

II. FORMAL THEORY
OF THE LIQUID-CRYSTALLINE PHASE

We consider a system of nonspherical molecules of ar-
bitrary symmetry contained in a volume ¥V at temperature
T. When there are N particles in the system, the configu-
rational energy U is approximated by

N N
LXy)= 2 UK+ Y UX,X))

i=1 i>j=1

U(xy, .. 2.1

where, for economy of notation, we use vector X; to indi-
cate both the location 7; of the center of the ith molecule
and its relative orientation ; described by Euler angles
6;, ¢;, and X;. The volume element dX; is equivalent to
d3r;dQ; where d’r =dx dy dz and

dQ=(1/87)sin0dO0dpdX .

U¢(x;) is the potential energy of a molecule at position r;
with relative orientation Q; due to external forces, and

U(x;,x;) is the intermolecular pair potential for mole-
cules i and j.
The grand partition function of the system is

i;NLf...f

N
I1z(x)

i=1

[

N

x| II [+f(x,x)]
i>j=1
i<j
N
x [14%;: , (2.2)
i=1
where
2(%)) =—explfu —BU()]

1

= —exp[#(5))],

f(x,-,xj)zexp[—BU(x,-,xj)]—1
and
B=(kT)~
o is the chemical potential and
A= f exp(—BEy)dp, - -

where s is the number of degrees of freedom of a molecule
and E; is its kinetic energy. Each integration in (2.2) is
extended to the sample volume V for positions and to the
usual domains of 0<0 <7, 0<d <2m, and 0<X <27 for

dps/h*,

angles.
From (2.2) one obtains
SW
={(p(%;)) =p(%;) (2.3)
sy P
and
8w
——————— =(8p(X;)8p(X;))
ST YT,
= p(x;)8(X; —X;) +p(X;)p(X;)h (X;X;)
(2.4)
where ( ) represents the ensemble average, 8p(X;)

represents the fluctuation in the single-particle density
distribution at X;, and h(X;,X;) is the total pair-
correlation function.

We define a reduced Helmholtz free energy by

BF = [ p()(x)ds—W . 2.5)

The functional derivative of BF with respect to p(x) is*
BBE) _ ). 2.6)
dp(x)

Thus BF is the natural functional of p(¥). In fact (2.5) is
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the Legendre transform which transforms from the poten-
tial ¥(X) as a variable to the density p(x) as a variable.

In general, one writes for single-particle density distri-
bution?

W) 4¢y (D)

e
A b
where — kTc(X) can be thought of as a solvent-mediated

effective potential field acting at x. Let
H =pBF —BF°,

plE) = (2.7)

(2.8)

where BF° is the reduced Helmholtz free energy for the
system without intermolecular interactions,

BF°= [ dsp(%)[Inp(X)A+BUX)—1] .

H is the excess reduced Helmholtz free energy arising
from the intermolecular interactions and is in general
functional of single-particle density distribution p(¥) and
the pair potential U.

In terms of Mayer graphs,?! H is the sum of all distinct
connected irreducible graphs with no labeled points and
with a factor of the single-particle density distribution
p(x;) for every field point i. The Mayer function f(X;X;)
specified in the definition of the grand-canonical partition
function (2.2) connects the points. The function H can be
used as a generating functional for the correlation func-
tions?!22

(2.9)

SH
=—c(X;;{p,U})
8p(%1) 1(X15{p, U}
=—Inp(x)+1Inz(x,), (2.10)
8H
———————=—(X,%2;{p,U})
Sp Bplr,) 2 rEle Ul
=—c,{p}, (2.11)
#———:—cn(fl,...,fn;{p,U})
I1 8p(x:)
i=1
=—c,(p} , 2.12)
and
SH 1 o -
—————=—3n(X,X3;{p,U})
SU(%,,%,) 7n2(%1,%2;{p, U}
=—+n,{p}, (2.13)

where the two-particle density-distribution function n,
gives the probability of finding simultaneously a molecule
in a volume element d7;dQ); centered at 7,Q; and a
second one in a volume element d7;d(); centered at 7;,Q;.
We can write

nZ(X_u-x_:J; {P;U} ):P(fl )P(fl )g(fl,fﬁ{[), U} ) ’ (2-14)

where g(X,,%;{p,U})=14+h(x,X,;{p,U}) is the pair-
correlation function. The functional dependence of the

above-defined quantities on p and U is indicated by curly
brackets.

The function ¢,(X,X,;{p,U}) appearing in (2.11) is the
Ornstein-Zernike direct pair-correlation function and is
related to the pair correlation as follows:

h(%1,%)=c(%,%)+ [ p(%3)h (%1,%;)

XC(x—z,f3)df3 . (2.15)

If we start from zero density and want to build up a
system in which density at X; is p(X;) and at X,, p(X,),
etc., then the H{p,U} of the resulting system is obtained
by the functional integration of (2.11) which leads to

Hip,U)= [ dx; [ ds,p(x,)p(%2)E:(p) , (2.16)
where
1
Glpt= [ dy [ dxcrfxp} . (2.17)

It is important to realize that the existence of functional
BF guarantees that the above result is independent of path
of integration.

Combining Eqgs. (2.8), (2.9), and (2.16) we get

BF = [ dx p()[BUX)+Inp(Xx)A—1]

— [ dx\dx,p(x,)p(%)E (p} - (2.18)

Sometimes it is convenient to work with the grand ther-
modynamic potential — W. First we note from Eq. (2.7)
that

W) =Inp(X)A —c (%, {p}) - (2.19)

Now we combine Egs. (2.5), (2.18), and (2.19) which in the
absence of an external field leads to

—w=— [dxpE)+ [ c\(%,{p})p(X)dx

— [ dx,d%p(%))p(%,)65(%1, 50, {p}) . (2.20)
From Eqgs. (2.1) and (2.5) we have
BF=Bu(N)—BPV —B [ p(x)U*(X)dx
=BA —B [ p(x)Ux)dx
or
BA=BF +B [ p(x)U%x)dx . (2.21)

Here BA is the reduced Helmholtz free energy of the sys-
tem in the absence of an external field. From (2.21), (2.6),
and (2.2) we get

oB4) — (%) -+ BUE) =By ,
Bp(X) | o)1= (pta)); U¥x) fixed
(2.22)

where {p(x)) represents the equilibrium density distribu-
tion. Thus if [ p(X)dx =N is held fixed,
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)= [ ax 2B 8p(x)
80(X) | p(z)=(p(x)); Ue(x) fixed
=B [ dzudp(x)
=0. (2.23)

This is a stationary principle which is a consequence of

3(B4)
Sp(x)

=const ,
equil

independent of x .

e2fp)=c2lpE N+ [ di3[p(x3)

the ¢, (p(X|))=c,(Xy, ..., X,;p(X)) are “local,” i.e., they
are the correlation functions of a uniform fluid with con-
stant density p(X).

When (3.1) is substituted in (2.18),
some mathematical manipulations

one obtains after

BF = [ dx p(x)[BU*(X)+1np(X)A —1]+BAF“(p(%,))
+BAF'+BAFT +BAFS+ - -, (3.2)
where
BAF“p(x)=— [ d%,d%,[p(x))]%e2(p(%1)) (3.3)
BAF'= — [ dx,d%,p(x,)[p(%,) —p(X)]E(p(x))) , (3.4)
BAF!=— [ dx,dx,[p(x,)P[p(%;) —p(X})]
———82’(}’(’ ;’:; L (3.5)
BAF;=—5 [ d%d%p(%))[p(%,)—p(%1)]
8c,(p(x))) | _  8c(p(x)))
W 2P 8p(x,)?
(3.6)

The quantity BAF“(p(X,)) is the Helmholtz free energy
of a system of uniform density equal to the local density
|

BUSx))+Blulp(X1) —pol — [ dx,[p(x,)—

where BFUplE, )
Bu(p(%))) il (3.10)
ap(xl)
with

Bf¥p(x1))= p(X)[Inp(x;)A—1]

—p(x1)? [ d%,&(p(x)) . 3.11)

The formalism given in this section is a generalization
of the Singh-Abraham?® theory of nonuniform atomic
fluid to a system of molecules of arbitrary symmetry.

p(x) ey (p(x1))

Thus for any system in equilibrium the chemical potential
must be the same throughout the sample.

The equilibrium single-particle density distribution is
determined by minimizing the free energy BA or BF for a
given external field subject to the constraint

[ pydx=(N) . (2.24)

III. NONUNIFORM SYSTEM

In a nonuniform system p(x) is a function of position
and orientation and ¢, is functional of p(X). Performing
a functional Taylor expansion of ¢, about the local-
density distribution p(X;) we obtain

—p(E)]espE N + 1 [ dEdz[p(;)—p(x1)][p(Fe) —p(F)]ealp(EF ) + -+, (1)

I
p(x;). The superscript ! denotes free energy correction
BAF' due to the nonuniformity of the system assuming
the direct-correlation function is local [i.e., it depends
only on the local density p(X;)]. The superscript n
denotes free energy corrections B AF},BAF% (to first and
second order) due to the system nonuniformity when
“nonlocal” corrections to the direct-correlation function
¢, are made.

If the change in the density is small over the range of
¢, we can use the Taylor expansion truncated after second
order,

p(x;)—p(X))= (X, —x)-Vp(x,)

+ 3+ [(%—%,)- VP(x,) . (3.7)

For a system of N particles, the equilibrium density dis-
tribution for a given U®X) is determined by minimizing
the total free energy F subject to the constraint

ie.,
where p is the chemical potential of the system. From
(3.2)—(3.6) we get
ac,y(p(xy))
— 1 [ dmlp(e) —ple ) P2 o, (3.9)
dp(x;)

I
The theory discussed so far is quite general and can be
used to describe the properties of crystalline solids, liquid
crystals, isotropic liquids, transition from one phase to the
other, and the properties of interfaces. To characterize
these phases we introduce order parameters in the follow-
ing way:

p(X)=p(F, Q)

=po |14+ 3 Prms(@explik,-T)DE ,(Q) |, (.12
q s



30 THEORY OF LIQUID CRYSTALS 587

where pg is the average number density, Eq are reciprocal
lattice vectors of the crystalline phase, and p, is the mean
density. The Py,,,(q) are the order parameters and the
DL, are the Wigner rotation matrices.

For a monatomic crystalline lattice, L =m =n =0.
Thus

p(F, Q) =p(F) = [1+ zpooo(q)e“‘v'?] . (3.13)
For uniform nematics (3.12) reduces to
(7, Q) =po [1+ ZPL,,,,,(O)D,’;,,,(Q)] . (3.14)

In isotropic fluid, P;,,, =0 for all values of L, m, and n.
For smectic phase with positional order in one dimension
only (e.g., a smectic-4 or -C phase) we can restrict the
series (3.12) to

p(F,Q)=po [1+ EPL,,,,,(q)e"‘q’D (Q)] , (3.15)
where k, =k, and z is parallel to the layer normal.

The expressions given above for p(r,{2) can be simpli-
fied by using the symmetry of the molecules and meso-

phase. For example, in a uniaxial nematic phase with
cylindrically symmetric molecules, (3.14) reduces to
p(F,Q)=po |14+ 3 (2L +1)P.P(cosB) |, (3.16)
L>2
L even

where

P, = —L [ p(F,Q)P, (cosO)sind d6
Po

is the orientational order parameter of the nematic phase
and 6 is the angle between the director and the symmetry
axis of the molecule.

IV. UNIFORM NEMATIC PHASE

A. Equilibrium properties

Since the homogeneous nematic phase is translationally
invariant, we can write

With f(Q)=14 3 PL,(0)D5 ,(Q) for molecules of ar-
bitrary symmetry or
fQ)=1+ 3 (2I +1)P, P (cosd) (4.10)
L>2
L even

for cylindrically symmetric molecules. f({) is an orien-
tational singlet distribution normalized to unity,

[ riaa=1, 4.2)

and 6 is the angle between the director and the symmetry
axis. pp is the mean number density.

For uniform nematic phase it is convenient to rewrite
Eq. (2.18) in the following way:

BF B Plo
N =~ [ aof@)nf (@)
—pofd?lzdﬂldﬂz[f(ﬂl)—][f(Qz)—1]

X & {paf (Q)}, (4.3)
where

1 x
G2 {paf(Q)} = fo dx fo dycy(F12,04, Q05 {ypof (2)})

(4.4)

and BF,/N is the free energy per particle of an isotropic
system at density pp,. Equation (4.3) is obtained by func-
tional integration of (2.11) from initial density p, (corre-
sponding to isotropic phase) to a final density pof ()
(corresponding to the nematic phase). It may, however, be
noted that the direct-correlation function is still a func-
tional of the single-particle density distribution. We use
functional Taylor expansion to write it in terms of the
correlation function of the isotropic system. Thus

e2{pof (Q)} = e3(po)+po [ dFd QsLf (23)—1les(po)

+3p8 [ dFdQudr,d Q[ f(Q3)—1]

(7, Q) =paf (Q (4.12) XU (Q)—1leslpo) - &)
ny(%1,%,) Pnf Df(Q,)g (Fia,04,Q5) . (4.1b) From (4.3)—(4.5) we get
|
%F—= [ 0 @)nf(Q)—po [ dFidd QuLf () — 111 (Q)) —115(po)
—P3fdﬂzdﬂxdﬂzdf‘adﬂslf(ﬂl)—1][f(ﬂz)—1][f(03)—1]€3(ﬂo)'" . (4.6)

Equation (4.6) is not suitable for computation since it includes the three-body direct-correlation function about which lit-
tle is known. However, in a uniform system f({) is expected to be constant throughout the sample, we may approxi-

mate Eq. (4.6) as (see the Appendix)
B AF

o
i3 [ dﬂzdﬂxdﬂz[f(ﬂl)—1][f(ﬂz)—1]28%2-%
0

~ [ FOQIf(Q)dQ—p, [ dF,d Qd Q[ (Q)—111f (Q)— 1] (po)
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This expression can be used to obtain the Landau—de Gennes expansion (see the Appendix). The orientational singlet
distribution function f({) is determined by minimizing the free energy subject to the normalization condition (4.2).
This leads to

8¢,

=~ | (4.8)
dpo

f<m=§exp 200 [ dF12d Dl f (R2)— 1162+ 395 [ dF12d Qulf (2)— 117

where z is the normalization constant.
Equations (4.7) and (4.8) are suitable to study the equilibrium properties of the nematic phase as well as the properties
of the isotropic-nematic transition at constant density.

B. Isotropic-nematic transition at constant pressure

The isotropic-nematic transition at constant pressure is accompanied by change in density. We therefore rewrite (4.1a)
as

p(F, Q) =p;[Ap* +1(Q)], (4.9)

where Ap* =(po—p;)/p; is the fractional change in density due to transition, py is the mean number density of the
nematic phase, p; is the density of the liquid phase, and f(Q) is given by (4.1c). In order to locate the transition and its
properties we consider the grand thermodynamic potential — W [Eq. (2.20)] which we now rewrite as

—W=— [dFrdQp(F,0)+ [ dFdQp(F,Q)c,(p(F,Q)} +H (p;)
— [ dRdQ,drd Q[ p(Fy, 21) —pi1[p(F2, Q) —py 0 (p(F, Q) (4.10)

where H (p;) is the excess Helmholtz free energy of the liquid phase. c;{p(7,Q)} can be obtained by functional integra-
tion of (2.11) from initial density p; (corresponding to isotropic liquid) to the final density of the liquid crystal. This
leads to

ci{pF, Q) =c,(p)+ [ dRdQlp(70,)—p 16 (p(F,Q)) 4.11)
where
clp(r)) = [, dac,(ap(7,0)
combining (4.10) and (4.11) we get
—AW=W —W;= — [ dFlp(F.0)—p;]1— [ dFidQ,dFdQ,[p(F1,Q2))—p;]
X {[p(F2,Q2)—p; 16, (p1) — [p(F2,Q2) +p; 165 (p)) }

52,(p1) 82,(p1)
LT I Y R AL T
bp;

- fd71d91d72d92[P(72,92)—P1]2 [p(F1,Q1)—py] 8
1

It is expected that at the transition in which we are primarily interested here, the direct-correlation function of the iso-
tropic liquid and nematic phase are essentially the same. Thus the terms written explicitly in (4.12) should be sufficient.
Substituting (4.9) in (4.12) one gets

AW
N = —Ap*—py fdr_ldeIdQ;_{Ap*—i—[f(ﬂz)—1]}[[Ap*+f(ﬂl)—1]52(p1)—[l+Ap*+f(01)]c~'2(p1)}

6c,(py) 8¢, (py)
—p} [ dFd Qd Q[ Ap* +£(Q,)— 112 |[Ap* +£(Q)—1] ;pp’ —[Ap* +£(Q)] ;pp’ ] . 4.13)
1 !
It may also be noted that by combining Egs. (2.19), (4.9), and (4.11) the following relation can be obtained:
* _ . - 1 . 2 552(p1)
In[Ap* +f(2))]=p; fd"zdﬂz [Ap* +1(Q2)—1163(p1) + zp1{ Ap* + [ (@) 11} T (4.14)
1
Equation (4.14) leads to the following two relations
* = * ~ 1 * 562
1+8p*= [dQexp |p; [ dFdQ,{Ap* +1f( Q) —11} |&2(p))+ 5pi1{Bp +[f(92)—1]}—8p— 4.15)
1

and
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Pr= [ f(Q)PL(cos6)dQ

— fdQIPL(cose)exp p,fd?deZ[Ap*+f(Ql)—1] 'c“z(p,)+%p,[Ap*-;-[f(Qz)-l]}

Transition properties such as change in density, values
of order parameters, etc., will be obtained by solving Egs.
(4.13), (4.15), and (4.16) self-consistently. The transition
will be located by finding —AW /N =0. The theory
presented in this subsection is a generalization of the
Ramakrishna-Yussuff’** theory of freezing to the
nematic-isotropic transition. Numerical results for some
model systems will be reported in a future communica-

tion.
It may, however, be noted that the theory described

here is a mean-field theory which does not take into ac-
count properly the effect of molecular orientational fluc-
tuations. Nelson and Toner?® have shown that it is only
for d-dimensional systems with d > 6 that a mean-field
theory of the nematic-isotropic transition becomes correct.

The problem of calculating the equilibrium properties
of nematic phase has thus reduced to getting a suitable
scheme for the evaluation of the direct-correlation func-
tion. The solutions of integral equations such as the
hypernetted-chain (HNC) equation, the Percus-Yeuick
(PY) equation, the mean-spherical approximation (MSA),
or the optimized random-phase approximation (ORPA)
are difficult to obtain. This is because the solution of
these equations involves, even for axially symmetric rigid
molecules, repetitive sixfold, numerical integration and re-
quires the calculation of the full anisotropic pair-
correlation function, a procedure that is numerically very
complicated but that can be accomplished by spherical
|

- - OH
H{pu}=H{puo)+ [ dx, [ dx,

=H{P:Uo}—%3fdflp(fl)fdfzp(fz)go(fufz)Up(fufz)-

In Eq. 4.17), H{p,U,} represents the excess free energy
of the reference system as a functional of single-particle
density distribution and the pair reference potential.

From relation (2.11) we have

82

€,(X1,%,)= (X}, %)) - ——————
2\X1,%3 2 (X1,X) 8p(%1)0p(%2)

X gfdf]dfzp(fl)p(x_z)go(fl,fz)

which leads to?*
cz(fl,f2)= C(O)(fl,fz)-—BUp(fl,x_z)

8g°(x1,%,)

X | 8%%1,%,)+2p(X;)

5p(f1 )
8%%x,,%,)

Py (4.18)
op(xy)

+ 5p(%,)?

SU(.X_Zl,fz) U=U,

8¢, (pr)

(4.16)
p,

I
harmonic expansion.”> Another method that can be ap-
plied to anisotropic fluids with relative ease is a case of a
perturbation scheme.

In developing a perturbation scheme, one begins by
writing the potential energy of interaction U (7 {;,7,Q,)
as a sum of two parts—one part of this division is known
as the reference potential Uy(7,,Q;7,,Q,) and the other
is the perturbation potential U, (7,Q;73,Q,), i.e.,

26

U(7,,Q0;7,,0;)= Uy(F;,Q1;75,0,)

-+ Up(Fl’Ql;FZ}QZ) .

For example, a commonly used division is the one sug-
gested by Weeks, Chandler, and Andersen?’ (WCA) in
which the reference potential represents that part of the
pair potential which describes the repulsive force and van-
ishes when the force vanishes. The remainder of the po-
tential is treated as the perturbation. In the case of the
uniform atomic fluid at liquid densities, it has been found
that first-order perturbation theory gives good conver-
gence. We may hope that the same may be true in the
case of fluids of long elongated molecules which exhibit a
liquid-crystalline phase under suitable conditions.

We noted earlier that H is functional of pair potential.
We now expand H about U =U, and use (2.13) and (2.14)
to obtain

Up(fl’x_2)+ PPN

(4.17)

[

Using the above expression of the direct-correlation func-
tion in the compressibility equation gives the first-order
perturbation theory which is equivalent to the WCA per-
turbation theory of atomic fluid as formulated in Ref. 27.
We also make note of the fact that from Eq. (4.18), we
may write

© (4.19)

—5BU,(x1,%,)8'0(%,,%,) .
Substitution of this in (4.7) leads to a perturbation theory
recently developed by Singh and Singh.’ Values of P
and g'? can be obtained either from computer simulations
or from approximate schemes.?8

It may be interesting to note that when Eq. (4.19) is
substituted in Eq. (2.18) one gets (in the absence of an
external field)
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BF,
BE_Z2t [ardoiooma,),
where
BF,
= J 40 £ (Q)[Inf (2)—1]+InpoA
—po [ dFi2d ud Quf (2,)f ()
X &P F12,Q, Q0 {pf (D)})
and

W) =3poB [ dQyg (7,21, 0 {paf (2)})
XUP(F’QDQZ) ’

P(Q;) is referred to as in the literature as the effective
one-body orientation perturbation potential or pseudopo-
tential.

It must be realized that the intermolecular attraction
which is usually taken as a perturbation does not give rise
merely to a uniform background as many authors have as-
sumed,? but rather to a configuration dependent potential
energy. Such erroneous assumption leads to an unrealistic
restriction on the density dependence of the pseudopoten-
tial.

V. FRANK ELASTIC CONSTANTS
OF NEMATIC LIQUID CRYSTALS

The Frank elastic constants are a measure of the free
energy associated with long-wavelength distortions of the
nematic state in which the local preferred direction of
molecular orientation varies in space. If the local pre-
ferred direction at the point R is parallel to the director
A(R), the free energy associated with the distortion may
be written as*3°

AF=1 [dR[K\(V-#)+K, (R V XA

+K3(AX VXA . (5.1)
The distortions corresponding to K;, K,, and K3 are
called splay, twist, and bend, respectively. The Frank
elastic constants K; characterize the free energy increase
associated with the three normal modes of deformation of
the ordered nematic state.

In order to derive molecular expressions for the K;’s,
we first choose an arbitrary point R =0 in the deformed
liquid crystal as the origin of a space-fixed coordinate sys-
tem. The z axis of this system is taken parallel to the
I

director at the origin, i.e., £=A(R =0). For pure splay,
twist, and bend deformations, the variations in #(R) are
always confined to a plane. If the x axis is chosen such
that (x,z) is the plane containing n (R),3!

A(R)=XsinX(R)+Z cosX(R) .

X(R) is the angle between the director at R, and the direc-
tor at the origin, i.e., cosX(R)=2-#(R).

With any distortion we may associate a wave number gq.
The increase in the free energy due to a long-wavelength
distortion will be proportional to g2, because the symme-
try of the system ensures that the distortions correspond-
ing to ¢ and — g are equivalent. The long-wavelength dis-
tortion corresponds to the change in the director over
some characteristic length of the system being small, i.e.,
X ~qd << 1, d may be taken to be the range of the direct-
correlation function. In this limit one finds for X(R)

gx —q*xz +0(g>) splay
X(R)= iqy twist
gz +q°*xz +0(q*) bend

(5.2)

and for distortion-free energy density around the origin,

+K19%+0(g* splay
Aa(0)= {+K,q°+0(g* twist

+K392+0(g*) bend .

(5.3)

Since in pure splay, bend, and twist, the deformed nematic
has the same local structure everywhere, the above results
do not depend on the choice of the origin.

In a deformed nematic phase the orientational distribu-
tion function is a function of position in space. We there-
fore write it as f(Q,R) for the distribution at point R.
Taking the undeformed nematic phase as our reference
system we rewrite Egs. (3.2)—(3.6) in a form more ap-
propriate to our present problem. Thus

BF= [ dRpa(R)
= [ dR[Ba,(R)+BAa(R)],
where
Bau(R)=pof dQ,f(Q,R)[Inf(Q,R)+Inpo+InA—1]
—p5 [ dFdQidQuf (0, R)f (0, R)E(p(F12))

BAa(R)=—p}§ [ dFdQ,dQ,f (Q,R)[f (D0, R +7)— £ (25, R)1E,(po)

—pp [ dFdQd Qof (Q, RS (25, R+7)—f(95,R)]

_ _ S
— 405 [ dFdQ,d Q[ (Qy, R +7)— (00, R)P

(5.4)
and
8(,72([)0)
dpo
C- 8%, (py)
Calpd) | 4, 8l (5.5)

8po 2P0 85

Here Ba,(R) is the free energy density at position R of an undeformed nematic liquid crystal and BAa (R) is the free en-
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ergy density of deformation. In writing (5.5) we have assumed that the direct-correlation function in the undeformed
liquid-crystal phase is very similar to the isotropic liquid at the same mean density.

Since X(R) is the angle between the director at R and the director at the origin, we write f(Q,R)=f(Q,X(R). For an
undeformed system X(7)=0. Thus the distortion free energy density at R =0 is

¢, (po)
C2(po) +po E;pio

BAa(0)=—pj [ dF [ d0,dQ,f (9,001 (0, X(F))—£(2,,0)]

ac,(po) 1 azc_z(po)

9po zPo aP(Z)

—3p5 [ dFdQdQ,[f(Q5X(F) — (95,00 (5.6)

If the distortion angle is small, i.e., X(r) << 1, we can expand f({,X(F)) as a power series in X. Keeping terms to order
2
q°, one gets

qz —qzxz q2x2
QLX) —f(Q,,0)= f(2,,0) | gy +5£"(Q,,0) [g¥? |, (5.7)
9z +q*xz q%z?

where x, y, and z are the Cartesian components of 7 in the space-fixed system.
From Egs. (5.5) and (5.7), we get

gx +q°xz g*x?
BAa(0)=—pj [ dF [ d0dD,f(9,,0) (9,00 |  qv  |+37(0,,0) |g%?
qz +q2xz q222
2.2
_ q°x
¢, (po)
X [Eapo) +po—a o | =463 [ AFdd L/ (0T 4%
Po 2.2
q°z
9%, (po) N 32(,72([)0)
—+3po——> | . (5.8)
apo 2 Po ap(z)
Thus we have
K —x x? 3%, (po)
K, |=—203kT [ dFdQ,dQ,f(9,,0) |£(Q5,0) | 0 |+3f"(9,,0) [p? | | |e2po)+p0 ;p’:"
K, xz z?

2

X

3%, (po) 3%, (po)

—pkT [ dFdQ,dQ,f'(Q,,0) |y? 2P0) | Ly osrPe
z

2Po ap(z)

2 ap 0

In deriving the above expressions for the Frank elastic constants, we assumed that the direct-correlation function of an
ordered nematic phase can be approximated by the direct-correlation function of the isotropic liquid at the same mean
number density p,. We can improve upon this approximation by functional Taylor expansion of the direct-correlation
function of the nematic phase about the direct-correlation function of the isotropic phase as has been done in Sec. IV.

Using the method described in Sec. IV for the calculation of the direct-correlation function we can evaluate K; from
Eq. (5.9). The results for certain model potentials will be reported in a future communication. It may, however, be noted
that the expression for K; given here is more complete and rigorous than reported by earlier workers.!
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APPENDIX

In this appendix we discuss the approximation used in deriving Eq. (4.7) and give a microscopic derivation for the
Landau-de Gennes theory.
Equation (4.6) can be rewritten as

B:rF—= [ FQInf(@)dQ—p, [ dFidQidQLF(Q)— 1111 (Q)— 11 (po)
82, (po)
_ptz)fdFlzd.Q]sz[f(Ql)—1][f(92)_1]2_;TPO
0
13 — By 282&—2(/)0)
— 13 [ drpd Qd @ f (@) —1PLF( Q) — 12> 2F" 4 4 1B, "
Po
where
A=—p} [ dF,d2,dQ, [ drRdQa[f(Q)—111f(2) — 11 (Q3)— £ (2215 (po)
=+3p5 [ drodQ[f () 1] [ drd0d QL (@)~ (91T (po) » (A2)

B=—3p} [ dFd0,dQ, [ dFydrad Qud Qu{[f (Q)— 1PLF (Q,) —1][f (Q3)—f ()]
+ 1 (Q)—11LF (Q) —1][£ (Q3)— 1][£ (Q4)— £ (1)1} E4(p0)
=%p3fdr‘ndﬂxdﬂzfdr‘sdﬂsdﬁdm{ [ (Q)—1P[f(Q3)—f( Q)P+ [f(Q2)—1]
X LF(Q3) = 1][Lf (Q4)— £ ()12} Za(po) - (A3)

In writing the above equations we have made use of the following relations:

852([)0)
——— = | dFd Q¢ , A4
5o, [ d7:d:&:(po) (A4)
8%, oc

=—= [ drdQc,(p,) - (AS5)
Bp(z, 800 f 3 4\Po

In a homogeneous ordered phase, the orientation distribution f (L) is constant throughout the sample. Thus the mag-
nitude of 4 and B is expected to be negligibly small compared to other terms in (A1) provided the fluctuations about the
most probable value of f(Q) is small. Neglecting A4 and B from (A1), we obtain Eq. (4.7). Equation (A1) can be used to
derive the Landau—de Gennes expansion of free energy which we describe below.

In the Landau—de Gennes theory of the isotropic-nematic transition®>° the Gibbs free energy is written as a power-
law expansion around the isotropic equilibrium position. We prefer to use the Helmholtz free energy per particle; with
this slight alteration we have

%’i—aF§+bF2+cF§+dPZF4+fF§F4 . (A6)

When we substitute (4.1c) into (A1), and retain terms involving P, and P, only, we get
a=%—25p, [ dF,dQ,dQ,P;(cos;)P;(cos0,)5, (71,821, 053p0) ,
8¢5(712,421,022;p0)

b=—%—1250} [ dFi,dQ,dQ,P,(cos6,;)P3(cosb;)

8p0 ’
8%, (712,01, Qa3 00)
e =12 _ @53 [ ir,dQ,d0,P3(cosd) P (costy) ‘28p2‘ 2P0
0

d=%—81py [ dFi,dQ,dQ,P4(cos;)P4(cos8,)E (71,21, 3p0) ,
e =—pPg f d?12d01d92P2(00361)P4(00592)Ez(Flz,Ql,Qz;po) s

and

8¢, (712,421, Q2;p0)

f=—2 2250 [ dFy,d2,dQ,P3(cos8)Py(cosby) 5
Po
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It may be noted that the power-law expansion for full one-particle orientational distribution entropic contribution con-
verges slowly. This may limit the range of applicability of this kind of expansion. In the treatment of pretransitional ef-
fects where terms of higher order than quadratic are usually small, (A6) is very useful.
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