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Statistical properties of quantum systems: The linear oscillator
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Statistical fluctuations in linear quantum-mechanical systems are shown to result from a projec-
tion of the total quantum system onto a restricted subspace. The resulting equations of motion are
of the generalized Langevin form, with fluctuating and dissipative terms. These terms are related

by a quantum-mechanical fluctuation-dissipation relation that ensures thermal equilibration. We
analyze the dynamical behavior of the subsystem and elucidate the meaning and interrelation of
several ubiquitous concepts in the following context: weak-coupling limit, Markovian limit,
rotating-wave approximation (RWA), and low-temperature behavior. The three most salient conse-

quences of our analysis are as follows: (1) The time scale for the correlation of fluctuations and the
dissipation can be quite distinct, (2) the traditional implementation of the RWA only gives valid re-

sults in the strict weak-coupling limit, and (3) a reformulation of the RWA valid at arbitrary cou-

pling strengths, and hence at arbitrarily low temperatures, is possible.

I. INTRODUCTION

The description of the thermal relaxation of systems in-

teracting with a heat bath has long been of central interest
in statistical mechanics. ' ' Particularly elusive has been
the proper description of the relaxation of a quantum sys-
tem in a heat bath that must also be described quantum
mechanically. ' " The proper quantum description
is, of course, necessary for any system at sufficiently low
temperatures. We note that even room temperatures may
be "low" in some cases.

There has been a recent resurgence of interest in the
problem of the relaxation of quantum systems. The
resurgence of interest is due in part to the recognition that
experiments in such diverse areas as the vibrational relax-
ation of polyatomic molecules' ' and exciton transport
at low temperatures can only be completely understood
in terms of fully quantum-mechanical treatments of the
fluctuations caused by the interactions of the system with
the surrounding heat bath.

The simplest situation that one can consider in this con-
text is that of the Brownian motion of a quantum oscilla-
tor in a quantum-mechanical heat bath. There exist
several treatments of this problem going back over a
period of more than 20 years. '" The original work
of Schwinger and of Senitzky concerned itself with a
theory applicable to dissipative effects on the electromag-
netic radiation field in a resonant cavity. It was restricted
to the Markovian limit (instantaneous dissipation, delta-
correlated fluctuations) and to the ureak coupling limit-
(weak coupling between the oscillator and the heat bath).
Lax in a series of classic papers on quantum noise also
discussed the problem of quantum Brownian motion. He
was particularly concerned with conditions that would
permit a Markovian description of the problem. In this

context he argued that a Markovian description is only

possible if one makes the "rotating tvave -approximation"
(RWA). (This approximation is implicit in the work of
Senitzky. ) The RWA is based on ignoring rapidly oscil-

lating terms in the oscillator —heat-bath coupling. In their
seminal work Ford, Kac, and Mazur constructed a de-

tailed microscopic model leading to Brownian motion
(classical and quantum). They were the first to establish

rigorous conditions that lead to instantaneous dissipation.
Agarwal treated the problem of the Brownian motion of
a quantum oscillator using the coherent-state representa-
tion. He discussed some aspects of the relation between

the weak-coupling limit and the RWA. Quantum oscilla-
tors have been used extensively as models for the
laser" ' and for vibrational relaxation. ' ' An exten-

sive literature exists in each of these areas, but we mention

only a few papers that contain the aspects of interest to
the present general discussion. The evolution of the field
in a laser coupled to a thermal bath is discussed by Hak-
en. ' In his discussion (and in others in this field) all three
approximations mentioned above are made: Markovian
limit, weak-coupling limit, and RWA. With few excep-
tions the problem of vibrational relaxation is also treated
using the same three approximations. ' ' Most recently
activity in the development of descriptions of the statisti-
cal mechanics of quantum oscillators continues unabated.
Benguria and Kac and Grabert and Talkner ' have dis-

cussed various aspects of the approach of the quantum os-

cillator to thermal equilibrium. Ruggiero and Zannetti
discuss the interplay of purely quantum (T=0) and
thermal fluctuations, an area of growing interest in quan-

tum electrodynamics.
The behavior of the quantum oscillator can be charac-

terized by four energy parameters.

(I) The natural frequency Elhi of the isolated oscillator.
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(2) The coupling strength A,E between the oscillator and
the heat bath.

(3) The memory time r, =y ' of the dissipation of os-

cillator energy by the heat bath.
(4) The temperature T of the heat bath.

The various above-mentioned approximations involve
choosing limiting values for these parameters. Thus, for
instance, instantaneous dissipation corresponds to taking
y~oo while the weak-coupling limit implies A, ~O. In
the past these various parameter variations have been
done independently, i.e., the results have been assumed to
be independent of the order in which the limits are taken.
It is one of the major purposes of this paper to explore the
interdependence of the various approximations and, in
particular, of the special role played by the temperature in
the quantum oscillator system. Towards this end we
present a fully quantum-mechanical derivation of a gen-
eralized Lang evin equation. We obtain a quantum
fluctuation-dissipation relation which is different from
the classical one and reduces to it only in the high-
temperature limit. The main consequence of this relation
is that spontaneous fluctuations in the quantum system can
only be taken as Markovian under special circumstances.
Thus, even if the dissipative kernel is a delta function in
time (yahoo), the fluctuations necessarily remain corre-
lated over a finite time that depends on the temperature.
This in turn induces macroscopic effects whose origin is
quantum mechanical and which are absent in the classical
limit.

The second major (related) issue that we address is the
way in which the RWA has been implemented in the past.
The analysis in Sec. IV shows that the subsequent approx-
imations so often made on systems described by a RWA
Hamiltonian lead to divergences in the system dynamics.
These divergences disappear only in the weak-coupling
limit and therefore the formalism is only applicable strict-
ly in the limit A, ~O. We present a reformulation of the
RWA that overcomes this limitation.

In Sec. II we derive equations of motion for the oscilla-
tor based on a fully quantum-mechanical Hamiltonian for
the oscillator coupled to the heat bath. The heat-bath de-
grees of freedom are explicitly eliminated leaving a gen-
eralized quantum Langevin equation for the oscillator.
We do this for the oscillator in the RWA ("RWA oscilla-
tor") as well as for the case in which the RWA approxi-
mation is not made ["fully coupled (FC) oscillator"]. In
Sec. III we discuss the dynamics of the FC oscillator. We
consider the interdependency of the various parameters by
analyzing the appropriate approximations to the exact
solutions. In Sec. IV we redo the analysis for the RWA
oscillator. We review the traditional implementation and
contrast this with our modified procedure. The results for
the FC oscillator and the RWA oscillator are compared
and contrasted in Sec. V. Also in Sec. V we discuss some
general implications of the present findings.

II. EQUATIONS OF MOTION

Consider a quantum oscillator with creation and an-
nihilation operator a and a, respectively, and with natur-
al frequency E/fi. The oscillator is in contact with a heat

bath of bosons labeled by index v, created and annihilated

by b and b, respectively. The analysis is restricted to a
bath of harmonic bosons of frequency co . The coupling
between the oscillator and the heat bath is assumed to be
bilinear. The Hamiltonian for the composite system is

H =Hs+Hg+Hsg .

Here Hs is the Hamiltonian of the isolated system

(2.1)

Hs ——Za a.
The Hamiltonian of the isolated bath is

(2.2)

Hii ——g fico+ P„. (2.3)

The system-bath interaction distinguishes the FC oscilla-
tor from the RWA oscillator. We discuss the two cases
separately.

A. FC oscillator

For the FC oscillator the coupling Hamiltonian is '
Hsii ——A,

'~ g I (a +a )(b, +b„) . (2.4)

The I 's are real coupling constants and A, is a parameter
that measures the average strength of the interaction. For
the analysis that follows it is convenient to rewrite the
Hamiltonian (2.1) as

H =Hs +Hg+Hsg

where Hs ' is the "modified" system Hamiltonian

Hs™=Eaa —g fbi,G„

(2.5)

(2.6)

and where

Hii+Hsii'= +fico„(b +G, )(b +G„), (2.7)

with

I
G —= A,

'~ (a +a) .
Ace

(2.8)

and its Hermitian conjugate. To eliminate the bath opera-
tors from (2.9) we similarly write their dynamical equa-

tions b, =A' 'i[H, b, ] and its Hermitian conjugate for
each v. It is more convenient instead to consider the
dynamical equations for the contributions (b„+G„) and

(b„+G„) that actually appear in (2.9), i.e.,

(b„+G„)=ice (b—„+G )+G
dt

(2.10)

and its conjugate. Since the bath equations are formally
linear, thev can be reduced to quadrature

The dynamical equations for the system operators are
given by

o= [H& ', a]——
A,—'~ Q I (b +b +2G ) (2.9)

V
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b„(t)+G„(t)= [b.(0)+G,(0)]e

+ I dre " G„(r) . (2.11)

Substitution of (2.11) and its conjugate into (2.9) gives the
dynamical equation

e

a= [H—s ', a]——A,
'~ g I [F„(t)+F„(t)]

V

r„'
2—i —g J dr[a(r)+a (r)]cos[co,(t —r)],

Ace„

(2.12)

where

a(t) = — e—a(t)+ibat(t) i—fFc(t)

—iA d~EFC t —~ a ~ +a

and its Hermitian conjugate. Here

r'„
fico,

and e is the shifted energy

The fluctuations are given by

(2.20)

(2.21)

(2.22)

F„(t):[b „(0—) +G,(0)]e (2.13)
g1/2

fFC(t) = g I „[F„(t)+F„(t)]:—A,
' g f," (t)

exp[ P(Hii +Hs—ti ') ] (2.14)

depends only on initial operator values.
Following the usual statistical-mechanical viewpoint,

we identify the operators F (t) as fluctuations because of
the uncertainty in the initial values of the bath operators.
To specify the statistical properties of the fluctuations we
consider an ensemble of initial states in which the system
operators are fixed at the values (at(0), a(0)) and the ini-
tial bath operators are drawn from an ensemble that is
canonical relative to the system. ' The initial distribu-
tion is then the conditional density matrix

po—:p([b (0), b(0)I
~

a (0), a(0))

(2.23)

and the kernel is

zx
&Fc(t r) =

2
—g cos[co,(t —r)] (2.24)

so that b, =fiKFc(0).

B. RWA oscillator

The coupling Hamiltonian for the RWA oscillator
1s6—9, 11—19

Hei=A, '~ g(l*,a b„+I ~b„) (2.25)

in terms of the portion of the Hamiltonian given in Eq.
(7). Here Z(13) is the conditional partition function

Z(13)=Tr exp[ P(Hii+Hsii—')] (2.15)

and P=(kT) '. In this ensemble the fluctuations F (t)
are Gaussian and zero centered, i.e.,

(we have followed convention here and taken I „complex).
The Fc and RWA couplings thus differ by the exclusion
of the a~b and ab„ terms from the latter. We again
rewrite the Hamiltonian (2.1) in the form (2.5), but now
with

(F.(t)) =0, (2.16) Hs(m) (2.26)

where (8)=Tr(po8). The correlation functions of the
fluctuations are

where

(F (t)F (t')) =0,

( F,(t)F„(t')) =n.e
' "" ' 'b~

(2.17a)
e=F. fib„b, = —g-

Aco„

and consequently

(2.27)

(F„(t)F (t')) =(n +1)e " 5 (2.17c)

where we have used the Bose statistics of the bath to set

Hti+Hsa™=+fico» b»+A ~

%co
b +X'"

V

(2.28)

([b,(0)+G (0)][bp(0)+G .(0)])=n„5

with

(2.18)

For the oscillator operator we now obtain the dynami-
cal equation

1

Phoo
e "—1

(2.19)
kEa= ——a— (2.29)

Equation (2.12) is the stochastic differential equation on
which we base the remaining analysis. We can rewrite
(2.12) in the more familiar form of a generalized Langevin
equation

V V

The solution of the bath-operator equation of motion
proceeds as in the FC case and is given by
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1/2 v „,r. —l COP

b„(t)+A,
'~ a(t) = b, (0)+A,

'~ a(0) e
V V

ponential form

K„(t—r) = —ye r( (3.3b)

+X'" " I dre """ 'a(r).
V

(2.30)

Substituting (2.30) into (2.29) yields

where y, the memory time of the dissipation, is essen-

tially the inverse of the phonon bandwidth of the heat-

bath excitations that couple to the oscillator. Equation
(3.3b) reduces to (3.3a) in the limit yah oo, a limit to be

analyzed later.

ifRWA(t) ifi —drKRwA(t r)a(r)—, (2.31)
0

where

g1/2
fRwA(t)= Q I *„b„(0)+A' , a(0) e

gl/2 gf RWA(t) (2.32)

and

— „( -.)
2

KRwA(t &)=-
Ace„

(2.33)

The distribution to be used in calculating averages over
the fluctuations fRwA(t) is (2.14) with Hs+Hsti' given

by (2.28). Equations (2.20)—(2.24) for the FC oscillator
and the corresponding equations (2.31)—(2.33) for the
RWA oscillator are the equations on which the subse-

quent analysis is based.

III. FULLY COUPLED (FC) OSCILLATOR

Let us begin with Eq. (2.20). We recall that the oscilla-
tor displacement operator is q(t) =(fi /E)' [a (t)+a(t)],
and we note that the last term in (2.20) is proportional to
the velocity operator q(t). Thus the last term is recog-
nized as a dissipation Equation . (2.20) can be more simply
rewritten as

lE'
a(t) = — a(t)+i ha (t) —if—pc(t)

Edr Kpc (t——r) [a (r) —a (r) ] .
0

(3.1)

Equation (3.1) is obtained by noting that (2.20) leads to

i [a(t)+a t(t)] =—[a(t) —a t(t)], (3.2)

2A
Kpc(t —7)= 5(t r) . — (3.3a)

A somewhat less restrictive kernel is given by the ex-

which is simply the operator version of the Newtonian re-
lation q =p.

The temporal properties of the dissipative kernel
(Elfi)Kpc(t r) are determined —by the bath frequencies
co and by the coupling constants k'~ I [cf. (2.24)].
Ford, Kac, and Mazur gave the conditions under which
(2.24) reduces to a delta function (instantaneous dissipa-
tion), e.g. ,

g 4, (t —r)(fico„) 'tanh
V

=Kpc(t r), —(3.4)

where Nv is the symmetrized correlation function

4," (t —r)=k(f„" (t)f„' (r)+f," (r)f, (t)) . (3.&)

The consequences of relation (3.4) can be seen more clear-

ly if we also state here the corresponding classical rela-
1 —5, 10, 16,25

@pc(t —7.) =2kTKpc(t —r),
where

(3.6)

@Fc(t—r)= g4„" (t —i) . (3.7)

We note that (3.6) can be obtained from (3.4) by taking
the limit ft~0. The relation (3.4) is an important result in
this paper. This result has been obtained before by many
authors in a variety of forms, ' ' ' but we have seen no
detailed discussion of its consequences prior to our recent
work. 22

To understand the implications of !3.4) let us consider
the particular dissipative kernel (3.3b). We rewrite (2.24)
as an integral over bath frequencies with a density of
states D(co):

2A, r'(~)
Kpc(t r) = I d—co D(w) cos[co(t —r)] . (3.8)

fi Ace

Choosing

1 (co) 1 y
fl co ir y +co

(3.9)

leads to (3.3b). The associated correlation function (3.7)
with n —=(e~—1) ' is

A. Fluctuation-dissipation relation

The fluctuations fpc(t) and the dissipation are related
manifestations of the interaction of the oscillator with the
heat bath. In classical systems the fluctuation-dissipation
relation is the general principle that ensures eventual
thermal equilibration. ' ' ' From the correspondence
principle one would expect an analogous relation to hold
for quantum systems. Such a relation is usually assumed
to hold in quantum systems; we show here that the actual
quantum relation is not of the same form as the classical
one and reduces to it only in the high-temperature limit.

The quantum fluctuation-dissipation relation can be
constructed using the statistical properties (2.17) and is
given by [cf. (2.23)]
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B. Solution of rate equations

The physical properties of the FC oscillator are implicit
in the solution of (3.2) and its Hermitian conjugate. Since
the equations are linear, they can be solved explicitly. The
convolution on the right-hand side suggests that we La-
place transform (3.2) according to

a(s)= f dte "a(t) . (3.11)
I

@Fc(t—r) = f den
2 2 (2n„+ 1)cos[co(t—r)] .

CO

O y2+ 2

(3.10)

We note that the choice (3.9) is sensible only if y »E/A'.
At high temperatures or in the classical limit (kT »y or
]]1~0) (3.10) reduces to (3.6) with (3.8) and hence 4Fc de-
cays on a time scale y '. At lower temperatures
(kT«]riy) an analysis of (3.10) reveals that the correla
tion function decays on a time scale (R/kT) rather than

y '. The interpretation of this result is based on an idea
that seems not to have been previously invoked:
whereas the bath can dissipate excitations whose energies
lie in the range (O, fiy), the spontaneous fluctuations occur
only in the range (O, kT) if kT & fiy The c. orrelation time
of the fluctuations is therefore the longer of (]ri/kT) and

y '. As the temperature is lowered, the correlations in
the fluctuations become increasingly long lived even for
an infinitely broad bath spectrum. The idea, then, is that
fluctuations and dissipation can haue quite distinct time
scales. The usual assumption is that their characteristic
time scales are the same. Some consequences of this new
idea will become apparent in the discussion of the mo-
ment properties of the FC oscillator later in this section.

We define the matrices

a
A(s) =

a

gf As+—+EKFC(s)
B(s)=

i b, —EK—Fc(s)

(3.12)
i b, EKF—C(s) s ——+EKFC(s)

a (0)—ifFc(s)
g(s)=

a (0)+'fFc(s)

and write the solution of the transformed equation as

A(s)=8 '(s)g(s) . (3.13)

In Appendix A we Laplace invert (3.13) to obtain

a(t)= g e" AJ+TJ fdr fF. C(r)e
j=1

and its Hermitian conjugate, where

Aj =a(0)Rj+a (0)Qj

(3.14)

(3.15)

and where the sj, Rj, QJ, and Tj can be read off Eqs.
(A5) and (A6) in Appendix A.

C. Relaxation to equilibrium population

We denote the time- and temperature-dependent popu-
lation of the FC oscillator by

nFc(T, t)=(at(t)a(t)) . (3.16)

From (3.14) we obtain

3 3

nFC( T t) —g g e Aj A] + Tj T] f dr ] f dr2ljkF( (1 ] 72)e
j=11=1

where

(3.17)

NFC 1 2) (fFC(rl)fFC( 2) ~

ky CO g, , —Eco(r] —72) Eco(7 )
—7 2) ~

7T 0 y +Q)
(3.18)

In (3.18) we have used the continuum form for the sum in (2.23) with the form (3.9) for the coupling and the density of
bath states. Explicitly carrying out the time integrations in (3.17) and retaining terms to leading order in I, gives

( T t ) n ( T 0)e —22,(El%)]+
( T )( 1+e

—22.(Elt])t)

r

ky ]]1 2(E&&), ~ ]rtto
' (n„+1)cos[(E+]rico)t/]]1] n„cos[(E fico)t/fi]—

7T y2+c02 &2E2+(E+fico)2 k2E +(E—]re)
(3.19)

where the equilibrium population nFC(T, oo) is analyzed
below. We see that the population relaxes to its equilibri-
um level on a time scale determined by A,E/fi The result.
(3.19) differs from that of the usual RWA (cf. Sec. IV A).
We note that to O(k) the only contribution to (3.17)
comes from the term j= I =2, i.e., from the pole

I

s2= (AE+iE)/fi. The pole—s]- —. y damps out very
rapidly, contributing to O(ie r'). It is therefore neglect-
ed. The pole s3- (AE iE)/fi gives —contrib—utions of
higher order in A, [O(A, )].

The equilibrium population of the FC oscillator is ob-
tained by taking the t~ ao limit of (3.17):



30 STATISTICAL PROPERTIES OF QUANTUM SYSTEMS: 573

y W Ace
iiFc(T ~)= dco

2 2+Q)

correlation functions

CFC(~) = lim (p(t)p(t+i ) ) (3.24)

X
A, E +(fico E)—

n +1
+ ~

A, E +(fico+E)

&& [I+O(k)] . (3.20)

and

CFC(i.)= lim (p(t+ r)p(t)),

where p is the dipole operator

p(t)=a (r)+a(r) .

(3.25)

(3.26)

At zero temperature the leading contribution to the equili-
brium population obtained from (3.20) is

The absorption and emission spectra are the Fourier
transforms of the corresponding correlation functions

SFc(co)= J di. e ' 'CFc(r) . (3.27)

n Fc(0, oo ) =—ln ——+0fiy A, A.E
E 2 A'y

(3.21) Using (3.14) one can integrate (3.27) exactly to obtain to
leading order in A,

where we have retained terms to lowest order in k and
highest order in fiy/E. This residual population is small
under the condition Ay «E/iii used to arrive at (3.20)
from the eigenvalue analysis in Appendix A. Equation
(3.21) seems to be the first quantitative estimate of the
residual equilibrium population for weak but finite cou-

pling.
At finite temperatures (3.20) cannot be evaluated in

closed form except at high and at low temperatures. At
high temperatures (kT»E) the peak in the neighbor-
hood of fico=E of the Lorentzian in the integrand of
(3.20) dominates and (for iiiy »kQ yields the usual Bose
population

1
iiFC( T ~ ) —iiFC(0 co ) = [ +O(~)]

e —1
(3.22)

FC( ~ ) FC(
2

4A. kT
E

2

g(2) —30/(4) +kT
E

(3.23)

where g is the zeta function and (3.23) is correct to
O((kT/E) }. Thus there is a marked deviation from the
usual anticipated behavior (3.22) at low temperatures.

We emphasize that in the above analysis we took A. to
be small, a condition often called the "weak-coupling lim-
it." However, from this analysis it is clear that true weak
coupling is only achieved at high temperatures in addition
to A, being small. At sufficiently low teinperatures the ef-
fect of the coupling is macroscopically observable as a de-
viation from the Bose population (3.22).

D. Correlation function

The energy absorption and emission properties of an os-
cillator are determined, respectively, by the two-time

At low temperatures (kT «E) for y~ oo there are two
positive frequency peaks in the integrand of (3.20), one in
the neighborhood of Aco=E and another at co=0. The
relative importance of the contributions of these peaks de-

pends on the relative values of A, and (kT/E). The peak
around co=0 dominates if A, »(E/kT) exp( E/kT) or, —
conversely, if kT «E/ln(1/A, ). When this condition is

satisfied we obtain the series expansion

4i,fi y co(n +1)
SFC(co)=

~(y2+ 2)

( g2E 2+f2~2)
X

[A, E +(fico+E) ][A, E +(fico E) ]—
(3.28)

and

4AA y mn
SFc(~)=

m.(y +co )

(g2E2+ f2 2)
X

[I, E +(fico+E) ][A, E +(fico E)]—
(3.29)

2

lim SFC(co)= 2 (nz+ 1)5(fico E) . —
A, ~O y2+ E2 (3.30)

The overall intensity of absorption decreases with tem-
perature and settles to a residual value of quantum-
mechanical origin at zero temperature (i.e., n +1~1 as
T~O) The ab. sorption characteristics are thus deter-
mined mainly by the properties of the coupled oscillator,
the heat bath essentially providing only a temperature that
determines the overall level. The emission spectrum
behaves quite differently as a function of temperature. At
zero temperature there is no emission. At low tempera-
tures the emission spectrum peaks at co=0 and decreases
exponentially: its shape is dominated by the thermal fac-
tor ficon This is a macro. scopic manifestation of the
quantum nature of the composite system. At high tem-
peratures (kT»E) the spectrum is again essentially a
Lorentzian centered at E and of width LE. This behavior
can be understood as follows. At high temperatures the
heat bath can accommodate all excitation frequencies of
the FC oscillator equally. The emission properties of the
composite system are thus determined by those of the os-
cillator. At low temperatures, on the other hand, the bath

We now discuss each of these spectra, restricting the
analysis to positive frequencies.

The absorption spectrum (3.28) is essentially a Lorentzi-
an centered at fico=E and of width A,E. In the weak-

coupling limit absorption occurs exactly at Ace =E:



574 KATJA LINDENBERG AND BRUCE J. WEST 30

is only excited in the range (O, kT) of energies. The com-
posite system then emits energy primarily in this restrict-
ed range.

IV. ROTATING-WAVE APPROXIMATION (RWA)

A. Traditional RWA (Refs. 8 and 15)

We again begin with the Hamiltonian (2.1)—(2.3) with
the RWA coupling (2.25). The equation of motion for the
oscillator is given by

~ ~ 1/2

g r*.b. (4.1)a=—

The equation of motion (2.31) for the RWA oscillator is
not the one usually found in the literature. ' ' To con-
vince oneself that (2.31) is in fact the appropriate equation
of motion, the inconsistencies in the traditional descrip-
tion of the RWA oscillator must be uncovered. To do
this we begin this section with a digression on the stan-
dard derivation.

&f RWA(t)fRWA(t ) &
=

2
nz X l

r
1

e
$2

(4 9a)

The last term in (4.3) is usually interpreted as a dissipa-
tion and the corresponding KRwA(t r—) is taken to be a
dissipative memory kernel.

The next step in the traditional procedure is to establish
a fluctuation-dissipation relation between KR~& and

fRwA. Guided by the classical form of this relation, argu-
ments are mustered to convince one of a direct propor-
tionality between the correlation function (4.8b) or (4.8c)
and the dissipative memory kernel (4.5). The usual argu-
ments (which we will show to be fraught with difficulties)

go as follows: The correlation functions (4.8) always
occur as integrands multiplied by exp[+iE(t t )/A—'] in

integrals over time. This procedure essentially filters the
correlation function and selects only the Acu„=E com-
ponent. This argument then leads one to replace (4.8)
with the "equivalent" forms

and the integrated equation for each bath variable is

b (t) = b, (0)e

(g —~)
1/2

i dre " a(r) .
0

(4.2)

so that the fluctuation-dissipation relation is

&f RWA(t')f RWA(t) & =nFKRwA(t —t') .

(4.9b)

(4.10)

Substituting (4.2) into (4.1) yields

a=—iEa ifRw A(t) — «KRw—A (t r)a (r)—
0

(4.3)

Finally, it is then customary to make the Markovian ap-
proximation, i.e., to assume that (4.5) can be approximat-
ed by a delta function (cf. discussion in Sec. IV B on this
approximation)

where KRwA(t —r) =2AE5(t —r) . (4.11)
1/2f RwA(t)= g r",l „(0) (4.4) With these assumptions it can then easily be shown that

the equilibrium population of the oscillator is

and 1
nRwA(T~ ~ ) p~e —1

(4.12)

KRwA(t —r) =
2 g

V

(4.5)
and that the relaxation towards this value is exponential:

The operator fRwA is interpreted as fluctuating due to the
uncertainty in the initial state of the bath. The distribu-
tion of initial states is taken to be the canonical distribu-
tion

nRwA(T, t)= nRw„(T, 0)e —'~'

+"Rw (AT, ~)(1—e ' "") . (4.13)

1
po

—— exp( PH~ ), —
Z(P)

where

Z(P) =Tr exp( PH~ ) . —

(4.6)

(4.7)

&fRWA(t)fRWA(t ))=0 (4.8a)

&f RWA(t)fRWA(t')) =
g2

(4.8b)

&fRWA(t)f RWA(t') & =, g i
r.

I
'(n. +1)e

(4.8c)

The fluctuations are thus zero centered and Gaussian,
with correlation functions

Although these results are physically reasonable (prouided
kT is not too small, cf. Sec. III), it is our contention that
they have been obtained via a series of erroneous assump-
tions containing mutually correcting errors that disappear
only in the strict limit A, ~O. In particular, the errors per-
sist at low temperatures and therefore (4.12) and (4.13) are
not valid for these temperature values in spite of their use
in this regime. ' We end this subsection by listing and de-
tailing these errors. A corrected version of the RWA os-
cillator will be presented in Sec. IVB, and the rationale
for the corrections will then become clear.

(1) We show below that the last term in (4.3) cannot be
interpreted as a dissipation and that KRwA(t r) is there-—
fore not a proper dissipative kernel.

(2) It then follows that the correlation functions (4.8)
need not be related to KRwA(t —1).
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(3) The fact that the correlation functions (4.8) and
KRwA(t r—) cannot, in fact, be related by a fluctuation-
dissipation relation follows from a brief inspection of
their respective forms. Thus, for instance, if KRwA(t —r)
is sharply peaked [i.e., D(co)

~

I (co)
~

=const independent
of co in the continuum limit], then the n„population fac-
tor appearing in the correlation functions (4.8) causes a
logarithmic divergence at low frequencies [i.e.,
D(co)

~

I (co)
~

n -const/co for small co]. A sharply
peaked KRwA thus leads to a divergent correlation func-
tion. Conversely, a sharply peaked correlation function
corresponds to a ERMA that is not sharply peaked.

(4) The relation (4.10) is, in view of the remarks in point
(3), invalid. It was obtained using the approximation
(4.9), which in turn is based on a fallacious argument.
The fact is that the correlation functions (4.8) do always
occur as integrands, but not multiplied by
exp[+ iE(t t')Ifi] —[cf. remarks preceding (4.9)]. Rather
they occur multiplied by exp[(+iE —AE)(t t')lfi], —and
hence all frequency components of the correlation func-
tion, and not just the one at Ace„=E, enter, including
those low-frequency components that bring about a diver-
gence when ER~A is assumed sharply peaked.

The above theory thus culminates in the following
dilemma. If one insists on identifying KRwA(t —r) in
(4.3) as a dissipative kernel, then one of two difficulties
arise. If the kernel is sharply peaked ("Markovian ap-
proximation" ), then the correlation function of the fluc-
tuations diverges. The approximation (4.9) that avoids
this divergence is simply incorrect (except in the strict
limit A, ~O). If, on the other hand, the correlation func-
tion is sharply peaked, then the kernel is not, and the sys-
tem necessarily has a finite dissipative memory. This
latter behavior is unphysical. We are therefore forced to
conclude that the initial identification of ER~A as the dis-
sipative kernel is incorrect and that the last term in (4.3) is
not the correct dissipative contribution. The physical
basis for this conclusion is presented in Sec. V A.

B. Modified RWA and fluctuation-dissipation relation

We now return to the equation of motion (2.31) and
compare it with the traditional one, Eq. (4.3):

We further point out that KRwA [cf. (2.33)] contains the
same weighting factors

~

I,
~

/fico as does KFc [cf.
(2.24)], whereas KRwA [cf. (4.5)] does not. It is then to be
expected that one can here construct a fluctuation-
dissipation relation that parallels that of the FC oscillator
and that circumvents the divergences that arise in the
traditional RWA.

The fluctuation-dissipation relation follows directly
from (2.32) and (2.33) and is given in complete analogy to
(3.4) as

(t —r)(fico„) 'tanh
Pftco„

V

KRWA(t r) ~

(4.14)

where + is again the symmetrized correlation function

(yRWA(t ) g( fRWA(t)f RWAt(
)

+fRWAt( )fRWA(t ) ) (4.15)

Equation (4.14) reduces to the usual classical form in the
limit ft~O. The further discussion of this relation paral-
lels that of the FC oscillator in Sec. IIIA. In particular,
the decay time of the fluctuations can be quite different
from that of the dissipative memory kernel.

Let us now turn to an analysis of the RWA dissipative
kernel and to a comparison of its behavior with that of
the FC kernel. The continuum form of ER~A is given by
[cf. (3.8)]

K (t)=, I d ~I( )~$2 Q
(4.16)

D(co)
, K„c(t)—i —dco I (co)

~

sin(cot) .2

g2 Q

(4.17)

The particular choice (3.9) for the spectral strength leads
to

A,y r,
~

i Ay" s.in(cot )
RWA

dt's

22fi A'm. 0 y2+ co2
(4.18)

In the limit of large phonon bandwidth y, (4.18) reduces
to the familiar form

lE
a = ——a ifRwA(t) —i fi dr KRwA(—t r)a(v. ) . —

Q 1
KRwA(t)= 6(t) —t' P

706 t
(4.19)

(2.31)

We observe that (2.31) can be obtained from Eq. (2.20) for
the fully coupled oscillator by simply omitting the terms
isa (t) and a (r) in the right side of (2.20). The tradi-
tional RWA oscillator, Eq. (4.3), on the other hand, can-
not be obtained simply from (2.20). 8'e interpret the last
term in (2.31) as the dissipation Note that thi.s interpreta-
tion of (2.31) associates the dissipation with the rate of
change of the annihilation operator rather than with the
operator itself [cf. (4.3)]. We emphasize that whenever
one uses a creation-annihilation operator (quantum) or a
normal mode (classical) representation, the proper dissipa-
tive term appears as the coefficient of a rate and not of an
amplitude, customary usage notwithstanding (cf. Sec. V).

where P denotes the principal value. There is considerable
discussion in the literature on the principal-value term,
first introduced by Senitzky. The discussion concerns
the correctness of its presence and the importance of its
contribution. Lax eliminates it altogether by introducing
negative as well as positive frequencies in (4.16). Haken"
states (but does not show) that its contribution to the
physical behavior of the system in the traditional RWA is
small and that it does not matter whether it is included or
excluded; he therefore chooses to exclude it. In our
analysis we shall retain it (since it seems to us that the re-
striction to positive frequencies is physically correct) and
we shall determine its effect explicitly. We note that such
a term does not occur in the FC oscillator, i.e., it arises
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here because of the RWA. We furthermore note that such
a term also appears in the kernel It:RwA of the traditional
method, Eq. (4.11), but we followed Lax and Haken' in
our outline of the usual procedure and hence omitted it in
that discussion. Our further analysis is thus based on
the full form (4.18).

i'fRWA(—s)+ [I+i'~RWA(s)]a(0)
a(s) =

i e/k+s [1+ifiKRwA(s))

where

(4.20)

A)t
ERWA(S )

2R s+y
lkf s

2 21n2
2vrfi(s y) —y

(4.21)

The Laplace inversion of (4.20) is given in Appendix B.
For A,y «e/i)'i we obtain [cf. Eq. (B2))

a(t)= g e' a(0)BJ+C, f drfRwA(r)e
j=l

(4.22)

and its Hermitian conjugate, where the BJ., CJ., and sj are
read directly from (B2).

Let us compare the formal solution (4.22) with that of
the FC oscillator, (3.14). Two differences are immediately
apparent. First, there is one fewer root sj in (4.22). The
two that appear in (4.22) are, to leading orders in A, ,
sl ———y and s2 —— (A,e+ie—)/A These a.re, to the same
order, equal to those in (3.14) [note that the difference be-

I

C. Solution of rate equations

To solve the equation of motion (2.31) we again use the
Laplace transform technique to obtain

tween e and E is of order A, , cf. (2.27)]. The third root in
(3.14), s3 —— (—AE+(E)/fi, arises from the cross coupling
that is neglected in the RWA and thus does not appear in
(4.22). The second difference between the two solutions is
that the latter is not dependent on a (0), again because of
the decoupling approximation.

These differences notwithstanding, the solutions (4.22)
and (3.14) are, in fact, identical in form to O(A, ). Again
neglecting the contribution from s

&
we obtain

a (0)e e(—2+t .

)tlat

JRWA +f d e t(2.—+t )(t T)IAt —(r)
0

(4.23)

/4 lt 00 l CO('P~ —7 2 )

0 y2+ 2 (4.24)

With (4.24) we obtain for the population n Rw A ( T, t ) [cf.
(3.16)] to leading order in A,

and its Hermitian conjugate.
It is important to note that the same result (4.22) to

O(A, ) would have been obtained if we had replaced (4.18)
by &RwA(t)=(&y/R)exp( —y ~t

~

) and made a corre-
sponding adjustment in the fluctuations so that the
fluctuation-dissipation relation (4.14) is maintained. This
procedure is equivalent to the Lax presciption.

D. Population and correlation functions

To calculate RWA oscillator populations and correla-
tion functions we need the correlation function of the
fluctuations. From (2.32), (2.28), and (2.14) we obtain

0RWA( r( r2) (fRWA(rl)fRWA(r2) ~

nRwA(T, t) = nRWA(T, O)e """+nRwA(T, oo )(1+e 2~"t'+')

2

, [I+O(k)].2 ~r ~ —2(E/ti)t t0 cos[(e—~)t/I]
7T 1' +co "A e +(e flu)2— (4.25)

The relaxation to equilibrium occurs on the time scale
"Ae/fi and is different from that of the traditional RWA
oscillator [cf. (4.13)].

The equilibrium population is

2A, kT
nRwA( T oo ) =

2

g(2)+4/(3)

2

gy $ oo %cod~
nRWA(T oo)= dtt)

2 2 2 2(y'+ co') [A'e'+ (e fico)']—
—30$(4) + 0 ~ ~

(4.28)

x [I+O(A, )] . (4.26)

At zero temperature (4.26) vanishes, as distinct from
(3.21). The residual population of the RWA oscillator is
thus, at most, of O(A, ). The physical source of this
difference is discussed in Sec. V. At finite temperatures,
for kT»e and i)iy»kT, (4.26) again yields the usual
Bose population

where g is the zeta function. As in the FC oscillator we
conclude that the high-temperature behavior is of the usu-
ally expected Bose form. At low temperatures, on the
other hand, there are marked deviations from that
behavior even when the coupling parameter A, is small.
Again, this effect should by physically observable.

The correlation functions for energy absorption and
emission of the RWA oscillator are defined as in (3.24)
and (3.25) and yield the spectra

nRWA(T, oo ) = & [I+O(A, )] .
1

e+—l
(4.27)

At low temperatures (kT «e) for yah oo, we obtain the
series and

(4.29)
A,R'y'co(n „+1)

~RWA(~)
it(co2+y )[Ae+(fico e),]—
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AAy n
SRwa(co) =

ir(co +y )[y e +(fico —e) ]
(4.30)

The discussion of the shape and temperature dependence
of these spectra parallels that of the spectra of the FC os-
cillator in Sec. IIID. We note the absence in (4.29) and
(4.30) of the peak that would occur in the FC spectra at
fico = E i—f we had included negative frequencies.

where . . represents other terms, thus yielding a dissipa-
tive force linear in the velocity.

Only with the proper identification of the dissipative
terms in the dynamical equations (Markovian or non-
Markovian) is one able to construct a generalized
fluctuation-dissipation relation. This relation takes the
form

V. DISCUSSION
K(t r—) = g 4 „(t—r)(fico. )

—'tanh
2kT

(5.3)

A number of general implications about quantum-
mechanical dynamical systems are contained in the
analysis in Secs. I—IV. For clarity, we have postponed
their detailed discussion until the present section. @„(t—r)=&(f (t)f,(r)+f„(r)f„(t)) . (5.4)

where 4„ is the symmetrized correlation function of the
fluctuations

The index v labels bath modes. Relation (5.3) arises from
any model in which the bath consists of a collection of
harmonic oscillators and the system-bath coupling is bi-
linear [e.g., Eqs. (3.4) and (4.14)]. ' At high temperatures
(5.3) reduces to the classical relation

A. Dissipation, fluctuations, and their relationships

The utility of a Langevin description for the dynamics
of a system lies in the relation one can construct between
the fluctuations and the dissipation. This relation ensures
that a thermodynamically closed system will equilibrate.
Thus the proper identification of these terms in the equa-
tions of motion is crucial. When the dynamical equations
(classical or quantum mechanical) are in a configuration
representation (i.e., p, q), there is no ambiguity in the iden-
tification of the dissipation: It is the term in the force
equation that is linear in the velocity [cf. paragraph
preceding Eq. (3.1)]. In other representations, e.g., mode
amplitudes in classical systems and creation-annihilation
operators in quantum systems, there seems to be a great
deal of confusion over the identification. The common
folklore says that in a mode amplitude or creation-
annihilation operator rate equation a =F(a,a ), the term
of the form —f dr G(t r)a(r) or i—ts Markovian limit

ala(t) with reaI —G and ii should be interpreted as the
dissipation [e.g. , Eq. (4.3)]. This interpretation is incorrect
and, in particular, it is inconsistent with that made in con-
figuration space. The difficulty becomes clear if we
transform back to configuration space and obtain

p =iE'~ (a —a ) = iE'~ il(a —a)+,— (5.1)

g 4„(t r) =2k—TK(t r)— (5.5)

so that the correlations of the fluctuations and the dissipa-
tive memory kernel regress on the same time scale. At ar-
bitrary temperatures this is not the case, however. If y
is the decay time of K(t r), then t—he correlations in the
fluctuations relax on the longer of the two time scales
(kT/fi) ', y '. Thus at low temperatures (kT «A'y) the
fluctuations have long persistence times even if the bath
energy bandwidth y is large. This is a macroscopic
quantum-mechanical effect whose consequences should be
readily observable in population measurements and in
spectral measurements (cf. Secs. III C, III D, and IV D).

B. "Wreak coupling, " temperature, and initial conditions

The notions of a temperature and of statistical-
mechanical fluctuations enter in the analysis through the
specification of a distribution of initial conditions [cf.
(2.14)]. One introduces such a distribution because in
practice the degrees of freedom of the heat bath cannot be
predetermined experimentally. There is a certain amount
of latitude in the choice of the initial distribution. We
have chosen (2.14) for a number of reasons.

(1) It is often physically reasonable that the bath at time
t =0 should be thermally adjusted to the initial state of
the oscillator. This is consistent with the notion of a
time-scale separation between oscillator and bath, i.e., the
bath relaxes rapidly to the state of the oscillator.

(2) Regardless of the coupling strength between the oscil-
lator and the bath, with the choice (2.14) the oscillator re-
laxes to a canonical distribution proportional to
exp( PHs) in the classi—cal limit.

(3) Any other choice of initial distribution, e.g. , a
canonical distribution for the isolated heat bath [cf. (4.6)]
does not lead to a canonical equilibrium of the oscillator
in the classical limit except in the weak-coupling limit.

As an aside, we find it remarkable that the inclusion of
the oscillator-bath interaction in the initial bath distribu-
tion is sufficient to ensure that the final oscillator distri-
bution depend only on the isolated oscillator Hamiltonian

p= A,E(ft /E)'~ (a +a)—+
= —AEq+ . (5.2)

where - . . represents other terms. The "dissipative"
term is proportional to the momentum rather than to the
velocity (fi/E)'~ (a +a ). When momentum and velocity
are proportional, this distinction is spurious. However,
when they are not (as is the case, for instance, in the
RWA, cf. Secs. V C and V D), the distinction becomes
crucial.

The resolution of the difficulty lies in changing one' s
interpretation of dissipative terms from those given above
to terms of the form ifi dr K(t r)a(r) or— i A—Ea(t)—

0
[e.g., Eq. (2.31)]., These terms can be obtained from one
of the form — dr G(t —r)a(r) by an integration of the

0
latter by parts. It follows that the incorrect form contains
the dissipative contribution but also contains nondissipa-
tive contributions (cf. Sec. V D). With this association the
force law becomes
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Hs and not on the interaction (in the classical limit). We
note that this behavior is peculiar to systems with c-
number commutation relations. ' In general (e.g. , for spin
systems, in which the commutators are operators '), there
is no choice of initial bath distribution in terms of Hz and

Hq~ that will lead to a final canonical distribution involv-

ing only H&. The interaction H&z necessarily enters the
final distribution except in the weak-coupling limit.

We stress that in our analysis only the initial bath dis-
tribution has been fixed. After t=O, the bath is allowed
to evolve as determined by the equations of motion. This
evolution brings the bath out of equilibrium (to which it
returns as t~ao). The effect of the system on the bath,
fully included in the description [e.g., in Eq. (2.11) or Eq.
(2.3p)] is precisely the origin of the dissipation in the sys-
tem equations of motion. When this effect is ignored
(e.g. , when the bath is assumed to be in equilibrium at all
times, a frequent assumption' ) then the dissipation must
be reintroduced heuristically in an ad hoc fashion.

In most discussions of relaxation properties of quantum
systems the weak-coupling limit plays a prominent role.
By weak-coupling limit one is given to understand that
the interaction strength vanishes, i.e., that A, ~p in (2.4) or
(2.25). The context in which this limit is usually taken is
characterized by two energy relationships: that the cou-
pling energy A,E be much smaller than the characteristic
oscillator energy E and that A,E be much smaller than the
phonon bandwidth Ay. The fourth important energy, kT,
is never mentioned in relation to the other energies. Tem-
perature dependences are then often considered after the
weak-coupling limit has been implemented. This protocol
can introduce grave errors. In particular, it is clearly im-
proper to take the T~O limit after implementing the
weak-coupling limit. If the temperature k T
«E/In(1/A, ), then the usual weak-coupling limit results
are not valid and results such as (3.23) are the appropriate
ones. The above discussion leads to the following physi-
cally satisfying interpretation. At high temperatures
(kT »E) the equilibrium population of the oscillator is
provided by the heat bath; the coupling mainly provides a
mechanism for energy transfer between the bath and the
oscillator and the equilibrium population therefore has a
t(,-independent level [cf. (3.22)]. At low temperatures
[kT «E/In(1/i(, )], on the other hand, the oscillator pop-
ulation is provided by the interaction energy itself since
the bath excitations cannot populate the oscillator. In this
regime, then, the oscillator population is proportional to A,

and vanishes in the weak-coupling limit [cf. (3.23)]. This
same mechanism may cause a residual population of the
oscillator at zero temperature [cf. (3.21)].

C. Comparison of the FC oscillator
and the modified RWA oscillator

In this subsection we compare and contrast the
behavior of the fully coupled oscillator with that of the
oscillator in the rotating-wave approximation. We stress
that our modified RWA oscillator differs from the tradi-
tional one, not in the starting Hamiltonian [which is given
by (2.1)—(2.3) and (2.25) for both], but rather in our

choice of the initial bath distribution and in the subse-
quent interpretation of terms. In this subsection the com-
parison is between the FC oscillator and the modified
RWA oscillator. The comparison of the modified and the
traditional RWA oscillators is made in Sec. V D.

The motivation for the RWA is twofold: it decouples
the equation of motion of the creation from that of the
annihilation operator and it thereby presumably elim-
inates high-frequency deterministic components from the
oscillator dynamics. The analysis in Secs. III and IV
shows explicitly the effects of the RWA on the solution
a(t). The FC oscillator solution (3.14) [neglecting terms
of O(e r')] is

(t) (p)
—(E/h)(A+i)t

t
e( E/A')()+(i)(—t v) t' —

( )JFC +

+O(g2e (E/fi)(—x i)t) . —
(5.6)

(5.8)

while in the modified RWA [cf. (4.24)]

~RwA(r r ) (fRwA('r)fRwA(r ) )

I
~v

I irov(v r)—'

n e
A COv

(5.9)

These correlation functions are clearly not equal and
hence the behavior of the FC oscillator is not identical to
that of the modified RWA oscillator even when the high-
frequency contributions to the former are neglected. Our
analysis in Secs. III and IV shows the following differ-
ences.

that of the RWA oscillator is [cf. (4.23)]

(r) (())
—(Elt))(i(,+i)t

aRWA

(e/t()(x—+i )(t —v)f ( ) (5 7)
0

There are two formal differences between the solutions.
The first is in the eigenvalues (E/()1)(t(, +i) and
(E/)ri)(t(. +i), which differ by O(A, ). The second (more in-
teresting~ difference is in the appearance of the eigenvalue
(E/A)(A, —i) in (5.6) but not in (5.7). It is precisely this
eigenvalue that contributes high-frequency oscillations in
the average quantities in the FC oscillator and whose
sources are the very terms in H&z eliminated in going to
the RWA. We note that the magnitude of these contribu-
tions in (5.6) is second order in A, and therefore negligible
in the weak-coupling limit.

Having established the formal equivalence of (5.6) and
(5.7) for small A, , it remains to compare the statistical
properties of fFc(t) and fRwA(t) to determine if (5.7) is
an adequate approximation to (5.6). Since both are zero-
centered Gaussian processes, we need only compare their
correlation functions. For the FC oscillator we have [cf.
(3.18)]

NFc(r r ) (fFc(r)fFc(r') &

[(n„+1)e
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(1) The FC oscillator has a residual population at T=0
[cf. Eq. (3.21)], whereas the modified RWA oscillator
does not. The FC residual population arises from the in-
teraction terms of the form a~b in the Hamiltonian,
terms that can create excitations even at T=O. The
RWA interaction Hamiltonian only contains number-
preserving terms (a b, b a ) and hence produces no residu-
al population.

(2) The symmetry of the temperature dependence of the
equilibrium population of each of the two oscillators at
low temperatures is quite different. Odd-order terms in
(kT/E) appear in the modified RWA oscillator [cf.
(4.28)] and not in the FC oscillator [cf. (3.23)]. The coef-
ficients of the comparable terms in the two series are also
different.

These differences are important at low temperatures
and disappear at high temperatures (kT~&E) where to
O(A, ) the two oscillators behave identically. We therefore
conclude that the modified RWA oscillator can be an ade-
quate approximation to the FC oscillator if A, is small and
the temperature is high, but it is certainly inadequate at
low temperatures.

As a final comment we note that the way in which
noise enters the equations of motion in the (p, q) represen-
tation is quite different for the FC and RWA oscillators.
In the former case the fluctuations and dissipation enter
only in the force law (p); the other equation is q =p, i.e.,
it is a defining equation for the momentum operator in
terms of the velocity operator. In the RWA, fluctuations
and dissipation enter in both equations, thus shrouding
the relation between velocity and momentum. It is pre-
cisely this obscurity that causes difficulties in the tradi-
tional RWA, as discussed below.

E. Commutation relations

One way that has been used in the literature to assess
the validity of different heuristic equations of motion is to
determine whether the correct commutation relations are
satisfied on the average at all times if they are satisfied in-
itially. These relations are ([a, a ])=1, ([a, a])=0 or
their equivalent in the p, q representation, ([q, p]) =i'
In particular, this criterion has been invoked to choose be-
tween possible second-order properties of the fluctuations
in the equation of motion. Lax used this type of an argu-
ment as follows. Consider the equations of motion of the
FC oscillator in the q,p representation and in the "Marko-
vian limit" (i.e., for an infinite phonon bandwidth y):

p = —A.—p — q+F(t) .

(5.10a)

(5.10b)

and fRw& have different statistical properties. This op-
tion is not particularly useful. The other possibility is to
choose different initial distributions in such a way that
the resulting statistics of fRw& and few& are identical.
This has been done in Sec. IV.

We thus arrive at two equations of motion with statisti-
cally equivalent fluctuations but with very different dissi-
pative terms. In the traditional RWA there is no
fluctuation-dissipation relation between fRwA(t) and the
kernel KRwA(t) (except in the strict A, ~O limit, as dis-
cussed in Sec. IVA). The modified RWA, on the other
hand, not only possesses a fluctuation-dissipation relation
between fRw„(t) and KRw~(t) valid for arbitrary values
of A, , but the relation has the same form as that for the FC
oscillator.

D. Traditional versus modified RWA

The traditional and modified RWA begin with the
same Hamiltonian and consequently share the same equa-
tions of motion. The differences between them arise in
the interpretation of the terms in the equations.

The major difference is the identification of the dissipa-
tive term. The physical implications of this difference
have been discussed in Sec. VA: in the traditional RWA
one supposes (incorrectly) the dissipation to be propor-
tional to the momentum while the modified RWA as-
sumes (correctly) proportionality to velocity. Since the
momentum is not proportional to the velocity in the
RWA, this is a substantial difference. As an added argu-
ment for the modified RWA we note that the dissipation
in the modified RWA oscillator and in the FC oscillator
are related by 2ReKRw&(t) =KFC(t), whereas the dissipa-
tive kernel KawA(t) in the traditional RWA and KFC(t)
are not simply related. In fact, we argued in Sec. IV that
a sharply peaked EFc implies a divergent KRONA.

The second difference between the two versions of the
RWA occurs in the fluctuations. The formal expressions
(2.32) for fRwA(t) (modified) and (4.4) for fRwA(t) (tradi-
tional) differ by the appearance of the oscillator initial
values in the former. At this point two possibilities
present themselves. One can choose the same distribution
of initial conditions for both, with the result that fRw&

Senitzky chooses the correlation function

(F(t)F(u)) =2k,—(nz+ —, )5(t —u)
E
fi

P2' t —u
(5.1 1)

corresponding to the commutation rule

([F(t), F(u)]) = P (5.12)

Lax shows that with this commutation rule one obtains

([q, p]) =i% 1 ——+O(A, ) . (5.13)

On this basis he concludes that the correct commutator
for the Langevin force should rather be

([F(t), F(u)] )=2i AE5'(t u)— (5.14)

since this leads exactly to the correct commutation rela-
tion

( [q, p ] ) =i iri . (5.15)

The choice (5.14) is also made by Benguria and Kac and

by us in the FC oscillator.
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g @,(t —r)(%co„) 'tanh— =K(t ~), —(5.16)

Our analysis in Secs. III and IV shows precisely what
the difficulty is with the choice (5.11) in (5.10). To under-
stand the problem it must first be stressed that all of our
equations of motion lead to the correct commutation rela-
tions: (3.2) with (3.18) for the FC oscillator, (2.31) with
(4.24) for the modified RWA oscillator [and even (4.3)
with (4.8) for the traditional RWA]. The reason is that all
of our equations are, in fact, merely transcriptions of the
exact dynamics into a Langevin form that contains the
complete dynamics. What, then, is the problem with
(5.11)? It is this: the correct fluctuation-dissipation rela-
tion is not satisfied. The correct relation is that for the
FC oscillator and for our modified RWA. oscillator [cf.
(3.5) and (4.14)], i.e.,

F. Non-Markovian behavior

A question about Langevin systems that is often asked
is whether they admit of a Markovian limit. ' The usual
first step towards an answer is to assume instantaneous
dissipation (i.e., to take an infinite phonon bandwidth y).
In the classical limit instantaneous dissipation automati-
cally implies that the correlations between fluctuations are
also instantaneous, i.e., the spectrum of the fluctuations is
frequency independent (white). The system is then Mar-
kovian.

In quantum systems the fluctuation-dissipation relation
is more complicated. Instantaneous dissipation does not
necessarily imply that the time scale of correlations be-

tween fluctuations vanishes. For the FC oscillator from
(3.18) we obtain for the Fourier transform of the commu-
tator

where

C~(t —r)=A, (f(t)f (r)+f (r)f(t)) .

( [fFc(4'o), fpc(~)] ) =240k(co),

(5.17) where [cf. (3.9)]

(5.19)

It is indeed appropriate for N to contain a principal-value
contribution provided the corresponding dissipation con-
tains the same contribution [cf. Eq. (4.19)]. In (5.10) the
dissipation does not contain such a term and hence neither
should the fluctuations. One resolution of the problem is
equivalent to that argued by Lax: omit the principal-
value portion from the fluctuations and from the dissipa-
tion. Another is to keep (5.12) but to replace (5.10b)
with the formal expression

A, (co) =—A,m.

A co
(5.20)

Instantaneous dissipation occurs in the limit in which
A, (co) approaches the coupling constant A, . Even in this
limit (5.19) is clearly frequency dependent and the fluc-
tuations can therefore not be white. This discussion was
first presented by Lax.

The modified RWA leads to the commutator

p(t) = — p(t)+ P
AE iAE 1

p(14)
t —u

E2
q(t) ( [fRWA(co) fRwA(a'4)] ) =2con„~(ai), (5.21)

(5.18)+F(t) .

The latter choice parallels that which appears in our
modified RWA. Equation (5.18) together with (5.12) also
provides the correct commutation relations for p and q.

We should emphasize that the apparent freedom in the
choice of the commutation relations for the fluctuations is
illusory. It arises only in phenomenological or heuristic
discussions of the equations of motion. When the equa-
tions are derived from a Hamiltonian and the full Hamil-
tonian dynamics are preserved at all stages of the analysis,
the commutation relations are predetermined. Thus the
choices (5.10b) together with (5.14) and (5.18) together
with (5.11) simply represent systems with different Hamil-
tonians.

thus giving a temperature-dependent spectrum. In the
limit A,(co)~4(, we are left with a spectrum that, in gen-
eral, is frequency dependent but that at high temperatures
(kT» fiy) and/or in the classical limit (A'~0) becomes
white. Thus the modified RWA oscillator can admit of a
Markovian description in these limits. We finally note
that (5.21) is also obtained from the correlation functions
(4.8) in the traditional RWA. The approximations dis-
cussed in Sec. IV A correspond to setting
4oA(co) =const=AE/irt and n„=nE, and calling the result-
ing spectrum white for all temperatures.

Note added in proof. We thank Dr. J. Roerdink for cal-
ling to our attention the earlier work of P. Ullersma on
the quantum-mechanical fluctuation-dissipation relation
[cf. Physica (Utrecht) 32, 27 (1966)].

APPENDIX A: EIGENVALUE ANALYSIS OF FC OSCILLATOR EQUATIONS (A, ((1)
The inverse matrix appearing in Eq. (3.13) is given by

8 '(s) =
s +E /fi +2E[sKpc(s) —b, /R]

EKqc(s )+ib

s+i e/k+EKFc(s)

s i e/A+ EKpc—(s)

EKFc(s) ib— (Al)

With the particular choice (3.9) we have

KFc(s)=, A=A, y,s+y
so that

(A2)
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8 (s)=
(s'+E'/fi')(s+ y) 2—(EA/fi)y'

(s ie—/A)(s+y)+EAy/fi (EA/fi)y+i Ay(s+y)
(EA IA)y i—Ay(s +y) (s +ie/fi)(s+ y ) + (EA/fi)y (A3)

The Laplace inversion of (3.13) thus requires the solution of the cubic equation

s + (s+y) —2 y =0.EA.
(A4)

The exact solution a(t) in terms of the three roots s i, s2, and s3 of (A4) is given by the residue theorem as

a(t)= 1 l6' E~ s t g EA, s, t
~ a(0) si ——(si+y)+ y e ' +a (0) y+iky(si+y) e

(si —$3)(s& —s3) iri fi

iE $17—i s, — (s, +y) dre fFc(t r) .—
0

+ 1 a(0)
(S2 —Si )(S2 —$3)

lE EA, s t t Eg s2t
$3 ——($2+y)+ y e '+a (0) y+iky($3+y) e '

fi

iE $2T—i s2 —'($3+y) dre ' fFc(t r) . —
0

1 l& E~ s t f EA, s3t+ a(0) s3 ($3+y)+ y e ' +a (0) y+iky($3+y) e
(s3 —s i )(s3 s2)

iE $3T—i s3 — (s3+y) dre fFc(t r) . . —
0

(A5)

Although one could in principle (and with sufficient motivation) proceed with an exact calculation, for our present pur-

poses we find it adequate to consider A, sufficiently small so that A,y «E/irt. To first order in I, the three roots of (A4)
are

2$Ey2$ gy E$ E gy $s1= —y+
g2y2 +E2 g2y2 +E2 g g2y2 +E2$23 +i (A6)

APPENDIX B: EIGENVALUE ANALYSIS OF RWA OSCILLATOR EQUATIONS ()(,« 1)

The Laplace inversion of (4.20) requires us to find the zeros of its denominator, i.e., the roots of

l6'—(s+y)+s (s+y)+i +— ln
. A,y 1 A,y s

2 2 m.(s —y) yi
=0, (B1)

where we have used (4.21). We note that the logarithmic term does not introduce a singularity at s =0 because s lns ~0
as s~0. Equation (Bl) has two simple (i.e., first-order) roots so and s i, so that a(t) is given by the residue theorem as

1 $1 s&t . Ay 1. Ay $2 s2ta(t)= a(0) si+y+i +— —ln e — s2+y+i +— ln e
(si —s2) 2 2 ir(si —y) yi 2 2 ir($3 —y) y

s ~ t—i(si+y) «e '
fRwA(t r)+t($3+y) «e ' fR—wA(t r) '—

0 0
(B2)

To leading order in A, the roots of (Bl) are given by $2= —l (B3b)

. Ays1= —y+i
2

and

(B3a)
The contributions from si decay rapidly and the residue
at si is of O(A, ). We neglect these contributions. The
residue at $3 is of order unity and is retained to O(1) to
give (4.23). We note that the logarithms in (B2) are given

by their principal values.
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