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A class of recently discussed time-dependent classical Lagrangians possessing invariants is con-
sidered from a quantum-mechanical point of view. Quantum mechanics is introduced directly
through the Feynman propagator defined as a path integral involving the classical action. It is
shown, without carrying out explicit path integration, that the propagator for these time-dependent
problems is related to the propagator of associated time-independent problems. The expansion of
the propagator in terms of the eigenfunctions of the invariant operator and the quantum superposi-
tion principle follow naturally in our scheme. The theory is applied to obtain explicitly exact propa-
gators for some illustrative examples.

I. INTRODUCTION L = —,[x co (t)x—] pF(x—/p), (1.5)

There has been considerable interest, in recent years, in
the existence of exact invariants for certain time-
dependent systems. ' These invariants have invoked at-
tention partly because of their relation to certain pairs of
nonlinear equations of motion called Ermakov sys-
tems ' and partly because of their utility in solving a
class of time-dependent quantum-mechanical prob-
lems. ' ' ' A well-known example of a system possess-
ing an exact invariant is the harmonic oscillator with a
time-dependent frequency described by the equation of
motion

x+co (t)x=0.
Lewis' has shown that the quantity

I(t)= , [(xp xp) +—coo(x/—p) ] (1.2)

L =-, [x —co (t)x ] . (1.4)

This approach has been greatly exploited by Ray and
Reid ' to investigate the possibility of adding very gen-
eral potential terms to the basic Lagrangian (1.4) so that
the resulting system admits an invariant. The form of the
invariant and the auxiliary equation would thus be dif-
ferent in each case. A useful generalization of (1.4) is the
Lagrangian'

is an invariant for the problem where x(t) satisfies (1.1)
and p(t) obeys the auxiliary equation

p+~ (t)p= coo/p (1.3)

The equations (1.1) and (1.3) together are known as
Ermakov pairs. The invariant of (1.2) was first derived
by Errnakov by eliminating co (t) between these two
equations. Incidently, Lewis derived the invariant by as-
suming, ab initio, a quadratic form in x and p for I and
evaluating the coefficients from the invariance condition.

An alternative derivation of the invariant (1.2) and the
auxiliary equation (1.3) has been given by Lutzky. '9

This method is based on an application of Noether's
theorem to the Lagrangian

where F is an arbitrary function of its argument while p
satisfies Eq. (1.3). The equation of motion and the invari-

ant I read as

x+co (t)x+p =0,
By

I(t)= —,
' [(xp—xp) +coo(x/p) ]+F(x/p),

where

y=x/p .

The importance of these invariants is classical mechan-
ics and the associated nonlinear superposition law' ' '

has been adequately discussed. Further it turns out that
the classical invariant also becomes the quantum invariant
when the canonical momentum p is replaced by the
quantum-mechanical operator (fi/i )(t) /Bx ) with the auxi-
liary function p remaining a c-number. Lewis and Lewis
and Riesenfeld first exploited the invariant operators to
solve quantum-mechanical problems. In particular,
they ' have derived a simple relation between eigenstates
of I and solutions of the time-dependent Schrodinger
equation and have applied it to the case of a quantal oscil-
lator with time-dependent frequency. Recently, Hartley
and Ray' ' have applied this technique to derive a
quantum-mechanical superposition law for the system
described by (1.5)—(1.7).

The aim of the present paper is somewhat different.
We believe that given the classical Lagrangian, quantum-
mechanical considerations may be more directly intro-
duced via the Feynman propagator. This has the added
advantage that quantum superposition is already built into
it. In this context, Khandekar and Lawande ' have ob-
tained Feynman propagators for some time-dependent La-
grangians possessing invariants by an explicit path-
integration technique. Employing Lewis-Riesenfeld
theory they have also shown that the propagators for such
problems admit expansions in terms of the eigenfunctions
of the invariant operator.

In the present paper, we show, without employing ex-
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plicit path integration, that the Feynman propagator for
time-dependent Lagrangians of the type (1.5) is related to
the propagator of an associated time-independent prob-
lem. The latter propagator may be explicitly found in a
number of instances as discussed in Sec. III. Moreover,
the expansion of the propagator in terms of the eigenfunc-
tions of the invariant operator and hence the quantum su-
perposition principle follow readily. Similar considera-
tions also apply at least formally to more general
velocity-dependent Lagrangains admitting invariants.
The quantum mechanics of such Lagrangians with arbi-
trary velocity dependence (beyond linear or quadratic
dependence) may, however, lead to difficulties of physical
interpretation.

2

X

dt p

2 2 2
0 2 X

2 p
p

p—F(x/p) . (2.3)

When form (2.2) is inserted in (2.1), the propagator reads
as

II II2

p

I I2

K(x",t",x', t') =Koexp 2' p
(2.4)

where Ko is the new propagator involving the new La-
grang»n L 0

II. FEYNMAN PROPAGATOR

)It

Ko = J exp —f Lodt &x(t) . (2.5)

A. Derivation of the propagator

We first obtain the Feynman propagator for the
time-dependent Lagrangian (1.5). The propagator
K(x",t";x', t') is the quantum-mechanical amplitude for
finding a particle at the position x" at time t" if the par-
ticle had been at x' at an earlier time t' It is de. fined as
the path integral (2.7)

In Eq. (2.4) and subsequently, the prime and double prime
indicate that the quantities are evaluated at t =t' and at
t =t", respectively. Next, we introduce a new parameter z
related to time t by

r( t) = f p (s)ds (2.6)

so that the action integral in (2.4) takes the form

Lodt = Lod

where the new Lagrangian Lo has the form
gtl

K(x",t",x', t') = f exp —f L dt &x(t), (2.1) 1 dgLo=Lo X ' di- 2 di-

2 2 2

2
F(y ), (—2.8)

where L is the classical Lagrangian of the particle while
&x(t) is the usual Feynman path differential measure im-

plying that integrations are over all possible particle paths
starting at x(t') =x' and terminating at x(t")=x".

Next, we use the auxiliary equation (1.3) to eliminate
co (t) in the Lagrangian (1.5), so that we have

where y =x lp. It is important to note that the parameter
v. would in turn induce a transformation in the path dif-
ferential measure &x(t) Such a t.ransformation in the
path differential measure has been considered by
Fujiwara. We use this approach to show in Appendix A
that the required transformation is

pXL=-
dt 2p

where

+Lo (2.2)
&x(t)= 1

&y(~) .
pp

(2.9)

It therefore follows from (2.4)—(2.9) that the Feynman
propagator may be written in the neat form

K(x",t";x',t') =
pp

l
exp

2A

II II2 ' I I2
p X

p p
Ko(y ",~";y ', ~'), (2.10)

where y =x lp and ~ is as in (2.6) and

7"
Ko(y", ~",y', ~')= f exp —f L,od~ Ny(r) (2.11)

L, = —,'a(t)[x co (t)x2] P(x—, t) . — (2.12)

We mention that the above procedure can be applied to
write the propagator for a more general Lagrangian of the

OHIl

is the propagator corresponding to the related Lagrangian
Lo(y, dy Idr) which represents a harmonic oscillator with
a constant frequency coo with an additional potential F(y).

The implication of this result is clear. The original
time-dependent quantum-mechanical problem [posed
through the classical Lagrangian (1.5)] is completely
solved if the propagator for the related (time-independent)
Lagrangian Lo(y, dy Id~) defined in (2.8) is obtained.

P(x, t) =p F (2.13)

Physically, a(t))0 represents either a variable mass of
the particle or a frictional force depending linearly on par-
ticle velocity.

Application of Noether's theorem to (2.12) yields that
the admissible form for P(x, t) is given by
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where F is an arbitrary function of its argument and p(t)
satisfies the equation

2

p+Q (t)p= (2.14)
p'

where
2

0 (t)=co (t)+2 1 a 1 a
4 a 2 a

X
(2.19)

applied to (2.12) yields

Alternatively, one can see that the Lagrangian (2.12) and
(2.13) is related to the one in (1.5). A simple transforma-
tion

The invariant I and the classical equation of motion are
given by

L, =L(X,X,t) ———X—1 8 a 2

4dt a
(2.20a)

I=—,Z + 2cooY +F, (2 16) where

d 2(ax)+to (t)ax+v a p =0,3BF
dt By

(2.17) L(X,X,t) = —,
' [X2—02(t)Xi] — F(X) .

p'
(2.20b)

where the variables Y and Z are defined as

vax
p

Z=va xp —p — p x
2a

=p —(Wax/p) .=28
dt

(2.18)

This shows that L(X,X,t) has the same form as the La-
grangian of Eq. (1.5) and that the two Lagrangians L,
and L differ in form only by an additional total time
derivative of a function. It is, therefore, apparent that the
auxiliary equation (2.14) and the expression for the invari-
ant (2.16) may be formally obtained from the correspond-
ing expressions (1.3) and (1.7) by merely replacing co (t) by0 (t) and x by ~ax in them. We use this fact to derive
the Feynman propagator for L, . The propagator reads as

pit

K, (x",t";x',t')= f exp —,L,dt &x(t)

~ I

=(a'a")' exp — X — X
4A' a" a'

pll

exp — I. X,X,t dt X t (2.21)

Here the path differential measure &X(t) in (2.21) corresponds to the free particle normalization with mass of the
particle taken as unity. On the other hand, the measure &x(t) involves a normalization with respect to a particle of
mass a(t). As shown in Appendix B this leads to a factor (a'a")'i when we transform from &x(t) to &X(t) by the
substitution X=Vax. The latter integral represents the propagator K(X",t";X',t') for the Langrangian L(X,X,t)
which we have already evaluated in (2.10) and (2.11). We therefore obtain

r

K,(x",t";x', t') = expo'o" 2iri

II ' II II2 I I I2

0' CT
Ko( Y",r",' Y',r'), (2.22)

where r is as in (2.6) and

P (2.23)

Consider, for example, the system described by the La-
grangian

[x co (t)x ]-a(t)
2and Ko is as defined in (2.11) with y replaced by the new

variable Y=~ax/p therein.
We may also mention that more general classical La-

grangians involving velocity-dependent potentials have
been considered by Ray and Reid. ' ' Although these
velocity-dependent systems are of great interest in classi-
cal mechanics, their physical interpretation in the quan-
tum context is difficult and requires a much deeper study.
However, we believe that quantum-mechanical considera-
tions for such systems may be best introduced through the
Feynman path integral approach. For this reason, we in-
clude here the formal expression of the propagator for
such a Lagrangian.

r r

VQx i d vax—p F,p-
p

'
dt p

(2.24)

(2.25)

which is a slight generalization of the system considered
by Ray and Reid. ' The auxiliary equation has the same
form as (2.14) while the classical equation of motion and
the invariant have the form
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I( t) = —,Z + 2 cooY +F( Y,Z) —Z az ' (2.26)

K(x",t";x',t') =
CT CT

l
)& exp

2A

I I I I 112 acT X

XKO( Y",r";Y', ~'), (2.27)

where

Ko(Y",r";Y',r')= f exp —f Wo Y, dr QY(r)
d7

where Y,Z, o are as defined in (2.18) and (2.23).
Following the approach described above, it is easy to

derive the propagator

the exponential term in the propagator. The remaining
action is then path integrated in the new variables to ob-
tain the propagator Ko. We now discuss the role played
by the invariant I in our scheme.

Consider, for example, the propagator of Eq. (2.10).
Here Ko(y", r";y', r') is a Feynman propagator in its own

right obtained by a path integration of an action corre-
sponding to Lo(y, dy/dr) of (2.8). The classical Hamil-
tonian corresponding to Lo is obtained by introducing the
canonical momentum p„=dy/dr in (2.8):

2 2

H = —,'p'+ + ( ).
2

(2.30)

On the other hand, the invariant I of (1.7) when written
in terms of the new variables y =x/p and r, is identical to
Ho. We denote this energylike constant of motion by Io.

The corresponding quantum Hamiltonian and the in-
variant operator are obtained by writing p1 = ifiB/—By in
(2.30):

(2.28) fi B ~ay
2 2

, + +F(y)
2 ()y 2

(2.31)

is the propagator corresponding to the reduced Lagrang-
ian

1 dY ~0Y
'2 2 2

2 d~ 2
dY

'd7 (2.29)

We might mention that evaluation of the associated prop-
agators Ko or Ko is far from simple in a general case for
arbitrary F. Nevertheless, since the major part involves
the harmonic oscillator Lagrangian for which an exact
propagator is available it is possible to develop perturba-
tion expansions. Alternatively if the classical equation
of motion following from the reduced Lagrangian
Lo (orWo) is solved, it is possible to adopt a semiclassical
expansion of Ko (or Ko) involving expansion of the ac-
tion around the classical path.

As a final comment, we see that the propagator depends
on the auxiliary function p(t) which obeys a nonlinear
equation. This nonlinear equation may be solved either
analytically or numerically for a given co (t) with ap-
propriate initial conditions.

B. Expansion of the propagator

In the above derivation of the propagator, the auxiliary
equation for p(t) was used to remove from the Lagrangian
a term which is a total time derivative of a function. This
term when inserted in the action integral, , L dt yields

The propagator Ko(y",r";y', r') then represents the
Green's function of the Schrodinger equation

iA ' =Hog(y, r) .
a7

Thus if the associated stationary problem

(2.32)

Hog„(y) =&„P„(y) (2.33)

has a complete set of normalized eigenfunctions P„(y)
corresponding to eigenvalues A,„, the propagator Ko has
the expansion

Ko(y",r";y', r') = ge " P'„(y')P„(y") . (2.34)

Here the eigenvalues A,„may be both discrete and continu-
ous. Equation (2.34) thus implies in general a summation
over discrete eigenvalues and integration over continuous
eigenvalues.

Since, as noted above, the quantum invariant Io ex-
pressed in the variables y and ~ is identical to the quan-

turn Hamiltonian Ho, P„(y) are also the eigenfunctions of
the invariant operator Io. Finally, inserting the original
variables x and t, we see that the propagator (2.10) has the
following expansion in terms of the eigenfunctions of the
invariant operator:

K(x",t";x', t') = exp
1 i p x" p'x'

p'p" 2A p" p'
(2.35)

It may be interesting to compare the present Lagrangian
approach with that of Hartley and Ray' ' based on
Lewis and Riesenfeld theory. For a quantal system
characterized by a time-dependent Hamiltonian H(t) and
an invariant I( t) the general solution of the time-

dependent Schrodinger equation is given by

%(x,t)= gc„e " %„(x,t) . (2.36)

Here 0'„(x,t) are the normalized eigenfunctions of the
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invariant operator defined by

I+„(x,t ) =A.„V„(x,t ), A,„=const . (2.37)

c„are constants while the time-dependent phases a„(t)
are to be determined from the equation

(2.38)

Considering the quantal Hamiltonian corresponding to
the Lagrangian (1.5), Hartley and Ray' ' perform the
unitary transformation

~ ~

4„' = U%„, U=exp (2.39)

a„(t)=— f z
p

(2.40)

which results in the transformation of the invariant I to
I'=UIU~. Expressed in the new variable y=x/p, the
transformed invariant I' and the corresponding normal-
ized eigenfunctions P„(y ) =v p'0„' (x, t ) correspond to our

Io and P„(y) given in (2.31) and (2.33). Further, the uni-

tary transformation and the auxilary equation are em-
ployed' to arrive at the simple form of the phases

which appear naturally in our expansion (2.34) for Ko.
In contrast, in the Feynman propagator formulation,

the steps which are essentially equivalent to above are car-
ried out classically on the Lagrangian resulting in a
transformation of the path differential measure. The
quantum-mechanical superposition principle manifests it-
self in the reduced propagator Eo.

Similar considerations also apply to the propagator K,
of (2.22) or K of (2.27) corresponding to the velocity-
dependent Lagrangian. Note that apart from a proper

physical interpretation, the quantum Hamiltonian A o

corresponding to the reduced Lagrangian &0(Y,dY/dr)
of (2.29) (which now contains arbitrary dependence on
velocity) is still a linear operator and the superposition
principle holds.

III. APPLICATIONS

We now discuss applications of our formulas (2.10}and
(2.22) to obtain explicitly exact propagators for some
time-dependent problems. Consider first the time-
dependent harmonic oscillator for which F=O. Here

K(o y",~";y', r') simply corresponds to a harmonic oscilla-
tor with constant frequency coo. An expression for Ko ls

readily found from Feynman and Hibbs which when in-

serted in (2.10) yields

K(x",t";x', t') = 670

2ni Rp'p" sin((}( t ",t '
)

1/2
l

exp
2A

tl IP2 ' I I2

p p

where

E Q)o
Q exp

2' sing(t", t')
II2 12 II I

+ cosP(t", t') 2—
p p pp

(3.1)

pl
I

P(t",t') =coo(r"—r') =coo J 2 (3.2)

(3.3}

A somewhat nontrivial example is that of a time-dependent harmonic oscillator with an additional inverse quadratic po-
tential g/x where g is a constant (g ~ fi /8). In this—case

2

F=g
p

and the propagator Ko(y", ~";y', r') resembles the radial propagator of a three-dimensional oscillator corresponding to an
angular momentum P——, where P= —,(1+8g/R )'~ . The latter has been obtained by Peak and Inomata which when
inserted in (2.10) results in the following expression:

K(x",t";x', t') =
ihip p si Pn(t", t

& coo
g exp

2 p

l

') 2'(x "x')' exp

&2

ctPo(t", t') I&p'.

p x p x

p p

NOX X„,cscP(t",t')
t "p'' (0& ', x~xoo) . (3.4)

The propagators (3.1) and (3.4) have been obtained pre-
viously by Khandekar and Lawande by carrying out an
explicit path integration within the framework of
Feynman's polygonal paths approach. In contrast, the
present scheme yields a "back of an envelope" calculation
of the same propagators based on the known results for a

time-dependent oscillator. It is clear that the expansions
of these propagators obtained in Ref. 25 also follow
directly from the expansions of the related time-
independent propagators. Note that potential —p F in
these two examples does not depend on the auxiliary func-
tion p(t). In general, however, the perturbative potential
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depends on p and is tailored according to the auxiliary
equation for p(t).

Another interesting case, where the present approach is
applicable is the problem of a time-dependent quantal os-
cillator with linear damping and a perturbative force f(t).
The Lagrangian for this case has the form

dY 1
Lo Y,

where

XY=v ax/p= —,

dY
d7

2

—coo Y +H(r) Y, (3.6)

I- =a(t) — +f(t)xx co (t)x
2 2

(3.5) H(r) =p'G(t) =p'&a (t)f(t) .
(3.7)

For the special case when a(t) =er' the invariant for this
problem and the exact propagator has been obtained by
Khandekar and Lawande. Also, for a(t)= J er" 'dt',

the invariant has been derived recently by Ray and Reid.
We rederive here the propagator using our scheme. The
auxiliary equation for p is given by (2.14). It is clear that
the "reduced Lagrangian" takes the form

The Lagrangian Lo corresponds to a forced oscillator of
constant frequency and force function H(r). Note that
this reduced Lagrangian Lo is not entirely time-
independent because of the time-dependent force function
H(r). Although, it does not fall strictly in the general
scheme of Sec. II, there is no difficulty of explicit evalua-
tion. In fact, the propagator for this problem is avail-
able and may be readily used to obtain

K(x",t",x', t') =
2nificr" o 'sing(t", t')

1/2
l

p 0'

Ia'o 'x

0

l COO

2' P(t" t')

II I+, cosP(t", t') —2
0 CJ 0 0

2x . , 2x+ „ I G(t)sing(t, t')dt+, f G(t)sing(t", t)dt
6)O0 N Ocr' t

z J f G(t)G(s)sing(t", t)sing(s, t')ds dtt' (3.&)

where

G(t) =v'a(t) f(t)p(t) . (3.9)

This expression agrees with the one derived by Khandekar
and Lawande ' ' by an explicit path integration of the
Lagrangian (3.5) when a =er'.

We may also add that the problem of a harmonically
bound charged particle in an axial time-dependent mag-
netic field (with harmonic frequency varying with time)
which has been considered by Lewis and Riesenfeld also
possesses a time-dependent invariant. The present tech-
nique is readily applicable even though the problem is two
dimensional (planar motion). The propagator can be
evaluated exactly with the knowledge of the standard
propagator for a harmonic oscillator of a constant fre-
quency.

N —1

~x(t) (2~ice) ~ + dx
k=1

(A2)

where for simplicity, we have assumed subintervals of
equal length e.

Now for the new parameter ~ with the abbreviations
P= 1/P, Pa =P( ta ), we can write

tk+6
bra ~(ta+)) r(ta)= ds—P (s)

Jc

tegral involves a partitioning of the time interval into X
subintervals of lengths b ta ta+ & ta (k =—0,——1, . . . , E—1, to t', t~ t") a——nd a dis——cretization of a path x(t) by
xa =x(ta), xp =x(t') =x', x~ =x(t")=x" The pat.h dif-
ferential measure corresponds to the usual free particle
normalization and has the form

APPENDIX A

In this appendix we outline Fujiwara's arguments to
study how the transformation

d~= dt
(Al)p'

[cf. (2.6) in the text] induces a transformation in the path
differential measure &x(t).

We recall that a finite approximation of the path in-

=ePa +e PaPa +O(e )

=ePa[Pa+ePa+O(e )]

=ePaPa+)[1+0(e )] .

Hence it follows that

(A3)
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N —1

(2 e )-""=g
k =o 2~i AA~

1/2

[I+O(e )]
where y =x/p, p"=p(t"), p'=p(t') .The equation (A6) is
the same as (2.9) in the text.

= [1+0(e)] PN Po

2m', ~o

N —1 1XgP, 2„,

1/2

1/2

(A4)

APPENDIX B

Here, we show how the free-particle normalization used
in (A2) alters when the mass a(t) is varying with time.
This normalization condition is

Inserting pk =1/pk in (A4) we can write

II

dx" exp — a t dt x t =1. (81)

N —1

(2mi tie) ""g—dx„=
k=1 PNPo

[1+0(e)] In the Nth approximation of the path integral on the
left-hand side of (Bl), we use discretization with the mea-
sure

N —1

X g (2irikb, r„)
k=o

N —1

&x(t) A g dx„,
k=1

(82)

k=1

N —1

x II
P

(A5)

where AN is to be determined from condition (Bl). Note
that when a(t)=1, AN (2ir——ike) and the path dif-
ferential measure is the same as in (A2). With this
discretization the condition (81) may be written as

&x(t)= 1 &y(r)
p p

which in the limit as X~ oo implies that

(A6)

lim IN ——1,
N~ao

where

(83)

IN ~N
i "-' «k+i —xk)

exp —y a„
& k=o

g dxk
k=1

(84)
e=tk+i tk (k=—0, 1, . . . , N 1) . —

If we introduce the transformation

dt6$=
a (t)

then using the argument outlined in Appendix A above leading to the relation (A4) we have the identity

1+0(G) 1 —1/2 —1/2P a„g (2m.iiri~„) =1 (~„=s„,—s ) .
(uouN) k=1 k=0

We may therefore write

(85)

(86)

[1+0(e)]AN 1

«o&N) 1/4 N (87)

where

N —1 N —1 N

J = g(2 'fib. „) ' f . . . f p —' g (,— )/~ gd, .
k=o k=0 k=1

lim JN=1 (89)

It is clear that JN has the form of the usual free particle
normalization integral (with particle mass unity). Hence

Hence
N —1 N —1

AN g dx =(uo )' '(2 i«) " ' p dX . (Bll)
k=1 k=1

and it follows from (87) that
which in the limit N —+ op leads to

&x(t)=(a'a")'/ &X(t) (812)
N —1

AN ——(2irigE) (aoaN) ~ g ak
k=1

(810) with X(t) =v'a (t)x The transforma. tion (812) is used in
Eq. (2.21) in the text.
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