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Relaxation of quantum systems weakly coupled to a bath. II. Formal analysis of
the total-time-ordering-cumulant and partial-time-ordering-cumulant spectral line shapes
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Given a quantum system of a few degrees of freedom in weak interaction with a bath, the expres-
sions which connect its total-time-ordering-cumulant and partial-time-ordering-cumulant relaxation
with the corresponding spectral line shapes of dipolar absorption are deduced. For simplicity we

consider a system with a nondegenerate and nonequidistant energy spectrum. A special study in the
cases of isolated resonances and of a weak interference effect between resonances is made.

I. INTRODUCTION p=gjj, k ~
j)(k

~
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II. CONNECTION BETWEEN THE SPECTRAL LINE
SHAPE AND THE REDUCED-DENSITY MATRIX

In the framework of the linear-response theory, the
spectral line shape can be written as '

I(co) cc Re f dt e' 'Tr[p(t)p(0)p(0)] (2.1)

The dipole moment operator p(0) of the system S
possesses only off-diagonal matrix elements in the I ~

j) I
basis and, hence, can be written as

There is a great variety of experimental methods for the
investigation of intra- or intermolecular motions, which,
although based on physical phenomena of very different
natures, deal with the problem using a general scheme
consisting of analyzing the response of a sample to a
small disturbance, controlled from the outside. ' The in-
formation supplied by this kind of "probe experiment" is
often related to the time-correlation functions of certain
observables of the system evaluated in the absence of the
disturbance; hence the interest in carrying out in each case
the connection between the corresponding correlation
functions and the molecular motion.

In paper I (Ref. 2) we studied the total-time-ordering-
cumulant (TTOC) and partial-time-ordering-cumulants
(PTOC) master equations for the relaxation of a quantum
system S of few degrees of freedom in weak interaction
with a thermal bath B. Both equations were obtained
without making use of the Markovian limit hypothesis
(in this limit the TTOC and PTOC equations coincide).
Let us now suppose, furthermore, that S has a certain di-
polar moment. Then, within the general context of probe
experiments we shall study the corresponding spectral line
shapes when the S relaxation is governed either by the
Markovian, the TTOC, or the PTOC equations. The for-
malism is applicable to the study of a great variety of
problems such as the vibration spectra or the rotation
spectra of impurity molecules in condensed media.

According to the linear-response theory, p(0) in Eq.
(2.1) is the equilibrium density matrix of the complete sys-
tem SB in the absence of the external disturbance. If
the only information available on the complete system is
its temperature T, we may consider for p(0) a canonical
distribution which is diagonal in the I ~

ja ) ] basis:

p~ kp(0)=ojpB(a)5jk5 p,
with

(2.3)

exp( E, /kB T) —
0 exp( E /kB T)—

g exp( E /kB T)
'— g exp( E /kB T)—

I(a) ~ g cr~jLkj(0)Re f dt e' '(pjk(t))
j,k
k)j

where

(Pjk(t) ) TrB(Pjk(t)PB]

=QpB(a)(jail (t) Ika) .

(2.&)

(2.6)

From the Heisenberg equation and making use of the
interaction representation and of the Liouville formalism,
one obtains

p(t)=A (t)e p(0), (2.7)

where the superoperator A (t) is the Hermitian conjugate

of A(t) defined by Eq. (Al) of the Appendix. Taking in

Eq. (2.7) the matrix elements in the representation of
eigenstates of HB and averaging over the bath, we have

(2.4)

Using the fact that the density matrix o depends only
on the system S coordinates, and hence is not affected by
the trace over the bath, we obtain from Eq. (2.1), for the
absorption line shape,
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~Pjk(t))= g gpti(&)A, k tp . p(t)e '
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(p,k(t)) = g cr'"", (t)p, (0) . (2.9)

= g QPtt(cc)A p, ip;k, (t)el~™Pi(0)
lm aP

1~m

in which we make use of the relationship (AS).
Equation (2.8) can be written as

(2.8)
Here ~(kij)(t) plays the role of a conditional probability for
jLjk(t) and is given by

cr i (t) =e QPt((a)A~p ip. k& &&(t) . (2.10)
a,p

The absorption line shape (2.5} can now be written as

I(co) ~ g crj((ckj(0) g pt (0)Re f dt e'"'cr'"ji'(t) = g crjpkj(0) g (Mt (0)Re[o'"t'(co)] .
j,k l, m j,k l, mk)j 1~m k) j 1~m

(2.11)

On the other hand, taking matrix elements in the
reduced-density matrix operator [Eq. (2.10) of paper I],
we have

cr~(0) =5qk5qj '(f(p, q) (2.13)

Eqs. (2.12) and (2.10) coincide, and the conditional proba-
bility cr'"ii (t) can be found from the formulas obtained in
paper I for the evolution of the nondiagonal matrix ele-
ments of the reduced-density operator cr(t) This fac.t al-
lows us to formally link two problems: the S relaxation in
8 and the spectral line shape.

III. THE MARKOVIAN SPECTRAL LINE SHAPE

Let us assume that the S-8 interaction is sufficiently
weak for applying the secular approximation. From Eq.
(3.10) of paper I and with the conditions (2.13) we have

cr jk (co)=(kj) ~ ~mk ~lj

+
(3.1)

cr i(t)=e ' g (A(t)) i cr (0)
PC

=e ' g gpri(ct)A pipe q (t)(r~(0) . (2.12)
pq a, p

If we arbitrarily impose on this equation the condition

I

ing, i.e., when the lines are isolated, the secular approxi-
mation is guaranteed. If there is overlapping between res-

onances, the nonsecular terms Ri ~cr~(co), with (I,m)
&(p, q} in Eq. (3.6) of paper I, may be non-negligible (ex-

cept when the coupling coefficients Ri ~ are zero) and
the well-known interference line effect shows up. We
shall deal with this problem in Secs. IV and V for the
cases of the TTOC and PTOC line shapes, respectively.
The results obtained in those sections are easily transfer-
able to the more particular situation of the Markovian
limit.

IV. THE TTOC SPECTRAL LINE SHAPE

A. Isolated resonances

If the lines of the profile are sufficiently isolated we can
use Eq. (4.10) of paper I, which corresponds to the appli-
cation of the secular approximation in the TTOC scheme.
With the conditions (2.13), we obtain for the spectral
functions of o'"~&'(t)

—(ki)(
)ml

&&mk&jl
(4.1)

co corn(+i~ —
i, i(co)

which, substituted into Eq. (2.11), leads to the following
absorption profile:

where co i and I i are given by Eqs. (3.9) of paper I.
The substitution of Eq. (3.1) in expression (2.11) allows

us to obtain

Io(~) ~ —X ~& l( kj(0)
l
'Im[&kj(~)],

j,k
k)j

(4.2a)

Io (co) ~ g crj(0)
~
((ckj(0)

~

'
j,k (~—~k ) +lkj
k&j

(32)

i.e., in the Markovian limit and in the secular approxima-
tion, the absorption line shape consists of a sum of
Lorentzian resonances (or lines) located around the fre-
quencies cokj and with a linewidth I kj. Since the intensity
of each sum depends on the population cd of the level

~ j )
[Eq. (2.4)], the aspect of the spectral line shape depends
considerably on the temperature.

We see, then, that conditions (3.7) in paper I, which
guarantee the secular approximation, are sufficient for a
Lorentzian profile Io (co). Therefore, when the linewidths
of the neighboring resonances are smaller than their spac-

Akj(co) = (4.2b)

ski+ i ~~,,kj(~)
When the secular approximation is justified, Eqs. (4.2)

give the TTOC absorption line shape as a sum of reso-
nances around the frequencies cokj.

From a quantitative point of view, the behavior of
Im[Akj(co)] can be analyzed for some ranges of the co

values without specifying a particular expression for the
bath correlation functions (3.6), and therefore, for the ma-

trix elements Wkjkj(co). In particular, for co such that

~

co —cokj
~

&&t,
' (where t, is the bath correlation time),

the function Wkjkj(co) remains practically constant and

equal to Wkj kj(cokj ) (Ref. 2). Then Eq. (4.2b) gives
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Akj(ri))=
CO —Cgkj+l I kj

(4.3)

and

Akj(cd)= 1+—
Q) —COk.J

(4.5)

Re[ Wkj, kj (~)]
Im[Akj(td )]=

(rd —rdkj )

~kj I
»

I Wkj, kj (~)
I

(4.6)

and each resonance becomes proportional to

Ikj
Im[Akj(cd)]=—

(~ ~k, )'+ f'kj

i' —tdkj i
&&t, '. (4.4)

On the contrary, far out in the wings of a resonance,

the dePendence of Wkj kj(cd) on td is imPortant. In this

region
~ Wkj kj(cd)

~
&&

~

cd —cdkj
~

and, hence, in Eq.

(4.2b) a series expansion in powers of W(cd) may be car-
ried out, giving

retaining only up to the first-order term.
Between the Lorentzian behavior (4.4) around its max-

imum and the behavior (4.6) in the wings, the shape of a

resonance depends on the function Wkj kj(cd), which pro-
duces an asymmetry in the resonance. The dependence of

Wkj kj(cd) on cd will be smoother the more the relaxation
of S approaches the Markovian limit where the function
is constant.

B. Interference between resonances

Consider now a certain overlapping between resonances

and that the coupling coefficients W r~~(cd), with
(m, l)&(p, q), are not zero. Thus an interference effect be=

tween resonances appears and the profile (4.2b) is no
longer valid. It is saM, then, that the profile is noaaddi=
tive, in the sense that it is not the sum of secular terms as-
sociated with the various resonances. If this interference
effect is weak enough to allow the use of the iterative
method developed in Sec. IV of paper I, the TTOC line
shape can be easily obtained; Eq. (4.14) of paper I, with
the conditions (2.13), yields (up to the first order in the
iteration)

—(kj)(
)

rd —cd 1+/W 1 r(co)

i5 k5
W 1 kj(rd)

rd —rdkj +1Wkj kj (cd )

(1 —5 k51. ) (4.7)

which, substituted into Eq. (2.11), leads to the following TTOC absorption profile:

I (cd) =Io (~)+I ~ (~),
where Io (rd) is given by Eq. (4.2), and

(4.8)

Il (rd) ~ y rrjPkj (O) y Pl (O)Re[ W I, kj (td)Akj (~)A 1(~)]
j,k l, m
k&j 1~m

(l, m)&( j,k)

(4.9)

is the TTOC correcting profile, up to second order with
respect to the S-B interaction, due to the interference ef-
fect between resonances.

Following Eq. (4.2b), the values of the functions Akj(cd)
and A~1(cd) of Eq. (4.9) become significant only in a cer-
tain range of the cd values around the frequencies cdkj and
rd 1, respectively. Therefore, no negligible overlapping
can exist only for indices (m, l) corresponding to frequen-
cies td t close to cdkj [note that for Eq. (4.9) to be applic-
able, a weak overlapping between these functions is neces-
sary]. In Eq. (4.9) the importance of the contribution of
each term to the correcting profile will also depend on the

couPling functions W 1 kj (td) and on the remaining coef-
ficients and, in particular, on the temperature T through
the factor rrj

V. THE PTOC SPECTRAL LINE SHAPE

A. Isolated resonances

From Eq. (5.9) of paper I, with the conditions (2.13), we
have for the time evolution rr' rj'(t)

o''"tj'(t) =5~k6rje
'

"exp —f dt1K~1 ~1(t, ) (5.1)

with

i (co—cok. )t —Qk. (t)/Re dte ' e
0

(5.2a)

Akj(t) = dt1Rkj kj(t1)

=f dr(t r)e ' Wkjkj(—r) . (5.2b)

Once the temperature has been fixed, the actual form of
the spectral line shape Io (co) will depend on the temporal
behavior of the function Qkj(t), which should be deter-
mined considering specific models. If the time evolution
of the system S is not far from the Markovian limit, ex-
pansion (5.14) and Eq. (2.17) of paper I give, up to the
second order in the S-B interaction,

which, when substituted into Eq. (2.11), yields for the
PTOC absorption line shape in the secular approximation

Io(~d) ~ g a, (o)
~ pk, (o)

~

'
j,k
k&j
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e "' =e '"'[1+tRkj kj
—Qkj(t)] (5.3) Io(~)=Io (cg)+Io (co), (5.4)

which, substituted into Eq. (5.2a), yields for the PTOC
profile

where Io (co) is the Markovian profile given by Eq. (3.2),
and

Io (a)) = g o.
~
pkj(0)

~

Re
j,k
k&j

Wkj, kj (~ ~kj+(I kj ) Wk—j,k, (~kj )

[(~ ~k )+'I k ]
(5.5)

gives, up to the second order, the deviation with respect to the Markovian behavior.

B. Interferences between resonances

In the case of a small overlapping between resonances, an iterative method may be developed as in the TTOC case.
Equation (5.18) in paper I, with the conditions (2.13), yields

(5.6)

The substitution of (5.8) into expression (2.11) leads to
the following PTOC absorption profile:

W (,mkj (t)
i
e

i
( Vkk Vjj )'e

Taking the Fourier-Laplace transformation, we have
I (co) =I()(ri))+I, (co),

where Io(co) is given by Eq. (5.2) and

I ~ (co) &x —g oj~pkj(0) g (Mmt(0)Re[4(co)],
j,k l, m
k&j 1~m

(l, m)&(j,k)

where

0
t

X f drK (k.(r)e

J
—[QI (v) —0 I(s)]

VI. TWO CASES

(5.7)

(5.8a)

(5.8b)

1'(Vkk —V )'
W.i, ki(M) = — j

( 5.k5li .
t (CO —COkj. ) —t~

(6.4)

According to this expression, the coupling coefficients

Wm(kj(u), with (m, l)&(k,j), are zero. Therefore, in this
case of diagonal interaction, there are no interference ef-
fects, i.e., the resonances are additive even if they do not
overlap.

If the relaxation of 5 takes place following the TTOC
scheme, the substitution of Eq. (6.4) into Eq. (4.6) gives,
for the corresponding spectral profile,

I (co) ~ g (T,
~ pk, (0)

~

'
j,k
k&j

A. Diagonal interaction and exponential correlation

With this very simple example we emphasize, more pos-
itively than in Eqs. (4.2) and (5.2), how the TTOC and
PTOC schemes lead to different spectral line shapes, ex-
cept in the Markovian limit in which they coincide. Let
us assume that H' is factorized in the form

W kj(co)
X (6.5)

[co—cokj —Wkj (co)]+ Wkj (co)

where

~e ~'t (Vkk —V,, )'
Wkj(co)=Re[Wkj kj(co)] =

2 2, (6.6a)
(CO —Cdkj ) +t~

H'= AVF, (6.1)

(6.2)

where
~

c
~

is a parameter which characterizes the contri-
bution of the bath operator F to the intensity of the S-B
interaction. The substitution of Eq. (6.2) into Eq. (5.2) of
paper I yields for the matrix elements of the superopera-
tor W(t)

where V and F are, respectively, S and B operators. Let
us also assume that V is diagonal in the representation of
the Hz eigenstates and that the autocorrelation function
of F is exponential with a decay time t, . We then have

(H'b(t)H, 'd) =R V b V,d(F(t)F)

W kj(co) = Im[ Wkj kj(co) ]=
(CO —COkj ) + t~

(6.6b)

On the other hand, if the relaxation of S obeys the
PTOC master equation, making use of Eq. (2.15) of paper
I and (6.3), we have

Rmt kj(t) =
~

c
~

't, ( VI k Vjj ) (1 e )~ k~rj (6.7)

and

Qa~. (t)= —~c
~

t, (Vtk —
Vz~ )(1 t/t, —e ') (6—.8).

which, substituted into Eq. (5.2), gives us for the PTOC
spectral profile
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I (co)~ g crj. ~Pkj(0)
~

Re I dte "' exP[ ~c
~

t, (Vkk —Vjj) (1 t—lt, —e
j,k
k)j

(6.9)

I' t. (Vkk Vj )'. (6.10)

Equations (6.5) and (6.9) have been already obtained for
a two-level system. (In our case the j,k summation ap-
pears because we deal with a multilevel system with H'
diagonal. ) An interesting microscopic comparison of the
two-level system equations can be seen in Ref. 9.

Thus, while the TTOC spectral line shape (6.5) consists
of a sum of spectral lines similar to those obtained for a
two-state jump model, Eq. (6.9) gives the PTOC spectral
line shape as a sum of spectral lines similar to those ob-
tained for a system whose frequency carries out a station-
ary Gaussian process. In the Markovian limit (t, ~0,

~

c
~

~ ao, t,
~

c
~

=const) it is clear that Eqs. (6.5) and
(6.9) lead to the Lorentzian profile (3.9) with

kj j+1,j k,j +1+ j —1,j k,j —1 ~ (6.11)

i.e., H' only couples consecutive levels. Let us also as-
sume that the dipolar moment operator p(0) obeys the
following selection rule:

Pkj(0) P(fj k j + I +gj~kj —1) (6.12)

Io (co) oc —p g fj ojoIm[AJ+1 j(co)],
J

where, in agreement with Eqs. (4.2b)

(6.138)

where fj and gj are coefficients that depend on j. The
substitution of Eq. (6.12) into Eq. (4.2a) allows us to ob-
tain for the TTOC absorption profile in the secular ap-
proximation

B. Interaction between consecutive levels

Let us suppose that the interaction Hamiltonian is such
that

Aj+1 j(co)=
~i+1.i )+ Wi+1,i;i+1i(~)

and [see Eq. (4.2) of paper I]

(6.13b)

)fc

Wi+1i;i+1i ~ = i+1 J+2 j+»1+1 ~ ~J+»J +~i+1iii+1 ~ + Ji+1i+1i ~ + ii 1i 1,J(~i+—1i —1—
(6.13c)

On the other hand, substituting Eq. (6.12) into Eq. (4.9) and neglecting the indices ( m, l) that correspond to negative
frequencies co 1 [we assume that the absorption spectrum (co positive) does not overlap with the emission spectrum (co

negative)], the following TTOC interference profile is obtained:

I1(m) cc Jt g fjcrj g g Re[ W 1.j+1 j(co)A&+1 j(co)A 1(co)] .
J m

m&j+1

(6.14)

For the interaction Hamiltonian (6.11), the only nonzero matrix elements W 1kj(co) are those for which, once the in-
dices (k,j) have been fixed, the (m, l) pair takes the values

and

(m, l) =(k j),(k j+2),(k+2 j),(k+ 1j + 1) (6.15a)

(m, l) =(j,k) —- k =j+1 .

Then Eq. (6.14) takes the form

(6.15b)

T 2I1(co)~it g fjaj IgJRe[Wj j 1.j+1 J(co)Aj+1 J(co)Aj j 1(co)]+gj+2Re[Wj+2 j+1J+1j(co)Aj+1 J(co)AJ+2 j+1(co)]),
J

(6.16a)

where, making use of Eq. (4.4) of paper I,

Wj+2j +1j +1j (~) [~jj +1j +2j +1(~ ~j+2j )+~j +1j +2j +1j ( ~)]

(6.16b)

(6.16c)

Each of the terms appearing in Eq. (6.16a) gives the influence on the absorption line jr+ 1 of its two adjacent absorp-
tion lines j —1~j and j + 1~j +2, respectively.

For low-frequency spectra, it may happen that the positive coherences of o(t) evolve mixed with the populations and
with the negative coherences and, in general, the use of Eqs. (4.7) and (5.6) is no longer possible. Nevertheless, in this
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particular example, the interaction Hamiltonian (6.11) does not couple the evolutions of the coherences with those of the

populations and, therefore, Eqs. (4.7) and (5.6) are still applicable. In this case in the interference profile (4 9) a new con-

tribution will appear:

j p'fj~j Ifj+1Re[~j+ij+2j+1j(pi)Aj+ij(pi)Aj+I, j+2(p1)]
J

+fJRe[R'j j+i.j+1 j(to)A&+1 j(co)Aj j+1(co)]+fj 1Re[Wj i.j+1 j(co)A +1 (tp)A. , .(tp)]I . (6.17)

For a given j, each term of this sum contains an antiresonant factor [due to the fact that the indices (m, l) in Eq. (4.9)
can correspond to negative frequencies pi 1] and gives, respectively, the contribution to the absorption line jr+ 1 from

the emission lines j+2~j+ I, j+1—+j, and j~j—l. In the case of the analysis of the PTOC interference profile,
given by Eq. (5.8), the same procedure could be used.

VII. SUMMARY

The relationship (2.11) between the functions (pjk(t))
with j&k, and the functions o't'"'(t) with 1&m, reduces
the calculation of the dipolar profile of S+8 to the study
of the relaxation of S in B, when this relaxation is
described in terms of the S reduced-density operator cr(t)
For simplicity we have supposed a nondegenerate and
nonequidistant energy spectrum for S.

The sufficient conditions (3.7) of paper I for applying
the secular approximation correspond, in the spectroscop-
ic framework, to the isolation of the resonances (lines). In
this case, if S evolves in the Markovian limit, the
Lorentzian profile (3.2) is obtained. If, on the other hand,
S evolves following the TTOC or PTOC schemes, the cor-

responding profiles are given by Eqs. (4.2) or (5.2), respec-
tively.

The domain of application of the iterative methods
developed in paper I for the study of the coherences when
there exists a small mixing between their time evolution
corresponds, in the spectroscopic framework, to the pro-
file of a weak overlapping between resonances. In this
case there is an interference line effect, which in the
TTOC and PTOC schemes, gives rise to a correcting pro-
file given by Eqs. (4.9) and (5.5), respectively. The over-
lapping between resonances is a sufficient, but not neces-
sary, condition for the existence of interference effects.
Thus, in the case of diagonal interaction (see Sec. VIA)
the profile is always additive, independent of the vicinity
between resonances.

APPENDIX: CONNECTION BETWEEN THE MATRIX ELEMENTS OF THE ORDERED EXPONENTIALS

Let us consider the ordered exponential'

A(t)=exp, i f dtiW'(t—i)

=—I+( i) f dt, 9—''(t, )+(—i)' f dt,

+( i)"f dt,—. . . f dt„9"'(t, ).

where

f dt2 F'(ti)~'(t2)+

. Z'(t )+ (A 1)

~I( ) 0~/ 0 (A2)

and I is the unity superoperator in the Liouville space of S8. In the ordered exponential exp „the superoperators
W '(t) are arranged in decreasing order of the values of the parameter t. Since Wp and W' are Hermitian superopera-

tors, the Hermitian conjugate of the superoperator 2 (t) may be written as
EI t

A (t)=I+i f, dt, W (t, )+i f dt, f dt29''(t2)3"(t, )+ . . +i f dt, . . . f" dt„9''(t„) . . 9"(t,)+. . .

:—exp, i f dti&'(ti) (A3)
L

which defines the ordered exponential

exp, i f dt, W'(ti)

in which, opposite to the development (Al), the W (t) superoperators are arranged in increasing order of the values of
the parameter t.

Taking in Eq. (A3) the matrix elements in the representation of the eigenstates of Hp (Hp Hs+Hjj ), we have——
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t~ ab ca(t)=~ac~ha+&
0

dt~W ~b ~a(t~ )+~' f dt~ f dt2 I ~ '(t& )~ '(t2)]~b ~a

+ + f dt~ . . f dt„I2''(t, ). 9''(t„)j,b,a+ ~ (A4)

where we designate by a,b, c,d eigenstates of Ho. Fur-
thermore, the diagonality of the superoperators &0 yields

(ab ~e
' ~cd): (e —'),b,a

i Wot ).b,.b &-4a
—i Wot

)b., b.&-4a

~.'b,.a(ti)= ~a., s (ti»

t W '(tq)W '(t) ) I,b,a ——[W '(t) )W '(tq) Ia, b, ,

~ (ti) I.b,.a
= ( —I )"

I W '(t ) ) W '(t„)ja, b, . (A7c)

while the matrix elements of W' fulfill the relationship

W;b,a fi '(H——,',5ba H;b5„—)= Wa, b,—. (A6)

Making use of Eqs. (A5) and (A6), the different matrix
elements which appear in the development (A4) may be
written as

Substituting expression (A7) into the development (A4)
and comparing the result obtained with the matrix ele-
ments of (Al), we have the relationship

A,b,a(t) =Aa, b, (t)

used in Sec. II.
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