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The present paper studies the formal aspects of the total-time-ordering-cumulant (TTOC) and the
partial-time-ordering-cumulant (PTOC) relaxations of a quantum system, of few degrees of free-

dom, in weak interaction with a bath, both within and outside the Markovian limit. To this end, the
general expressions connecting the matrix elements of the TTOC and PTOC relaxation superopera-
tors with the bath correlation functions are determined. Special attention is paid to two particular
cases: a system with a nonequidistant energy spectrum and a system with an equidistant energy
spectrum. Discussions revolve mainly around the possibility of applying the secular approximation
to the TTOC and PTOC master equations for the off-diagonal matrix elements of the reduced-

density operator of the system.

I. INTRODUCTION

There is extensive literature concerning the relaxation
of a system, S, of a few degrees of freedom in weak in-

teraction with another, B, whose number of degrees of
freedom is much greater. ' ' The physical situation is

governed by two principal factors: (i) the weak interac-
tion S-B, which introduces in S changes on a time scale
that may be considered large relative to the rapid free
time evolution of S; (ii) the high number of degrees of
freedom of B, which allows us to assume that its statisti-
cal properties are not affected by the S Bintera-ction, con-
sequently, behaving as a thermal bath for S. In this con-
text the interaction S-B should induce a damping motion
on S, i.e., an irreversible behavior that will terminate
when S reaches statistical equilibrium with B.

There are two dynamical ways of attaining this goal.
One stems from the Heisenberg equations of motion of
the dynamical operators of the entire system SB. The
key behind this method lies in the consideration that due
to the large number of degrees of freedom of the bath, any
movement of S may be considered as a random motion.
Averaging correctly on the bath operators leads us to a
closed system of equations for the mean motion of the
operators of S. Another way of tackling the problem is to
start out from the Liouville equation for the density ma-
trix p(t), of the entire system SeB. ' In this instance the
aim is to find the master equation which describes the
time evolution of the statistical behavior of S. In both
methods the effects of the bath on the motion of S appear
in terms of certain time correlation functions.

In most approaches the time-evolution equations for the
relaxation of S are obtained by making use of the Marko-
vian hypothesis consisting of the assumption that the typ-
ical bath correlation times are zero when expressed on the

time scale in which S is damped. This condition is not al-
ways fulfilled in practice, hence the interest in introducing
formalisms leading to valid equations outside this lim-
t 17, 18

Another nontrivial problem is the integration of the
equations for the irreversible motion of S. In fact, it is
possible to arrive at analytical solutions only in a few par-
ticular cases, for example, those in which S is a two-level
system or a harmonic oscillator, where it is normally
assumed that the situation corresponds to the Markovian
limit.

The object of the present paper is to discuss two dif-
ferent master equations for the evolution of the statistical
behavior of S [described by its reduced-density matrix
o.(t)] in a more general context than that of a two-level
system or a system with consecutive coupled levels, in
which they have already been used by Mukamel. ' These
equations are approximated to the second order in the in-
teraction S-B.

Both the total-time-ordering-cumulant (TTOC) and
partial-time-ordering-cumulant (PTOC) equations' are
obtained without invoking the Markovian hypothesis by
using two different temporal ordering prescriptions for
Kubo's cumulant expansions. ' ' ' Both formulations
coincide at the Markovian limit, but outside it their pre-
dictions are different, and the greater suitability of one or
the other will depend on the statistical properties of the
bath.

For the sake of simplicity, we shall assume that the en-

ergy spectrum of S is nondegenerate. If there is no other
restrictive constraint on this spectrum the TTOC and
PTOC equations can be very complicated, since in these
equations the evolution of each matrix element of o(t) is
coupled to all the rest. Thus, once we have obtained the
general expressions for the matrix elements of the TTOC
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and PTOC relaxation superoperators, our attention will be
drawn to the study of certain situations of interest in

which the problem is partially simplified, facilitating the
understanding of the mechanisms which govern the prop-
erties of the damping of S.

In Sec. II we review the TTOC and PTQC master equa-
tions for o(t), independent of the energy spectrum of S.
In the following, the Markovian TTOC and PTOC evolu-

tions wi11 be discussed separately, connecting the matrix
elements of thc corresponding relaxation supcropclator
with the bath correlation functions. Special attention is

paid to the study of the time evolution of the coherences

of o(t), the behavior of which determines the line shape in

spectral problems. ' The general formalism of these sec-

tions will allow us to study, either within or outside the

Markovian limit, problems such as the vibrational relaxa-

tion or the rotational relaxation in condensed media or
spin-lattice relaxation.

Let W be the Liouvillian of the complete system

g@g .4, 14,25

WX=A' '[H, x] .

Equation (2.1) allows us to write

(2.4)

(2.5)

(W')J kp. tr t=(ja kpI W'I Ey, mg')

=& '(Hja, trskm&@ Hm—g, kp~jt&ar»

(2.6b)

From Eqs. (2.2) and (2.3b), in the I I ja,kp) J basis of the
total I.iouvillc space, we have

(~0),.,kp;Ir, g=Va kPI ~oliymk)

II. FORMULATION OF THE PROBLEM

We consider a small system S interacting weakly with a
thermal bath 8. The Hamiltonian of the entire system is

HOIja&=«g+E ) Ija&

g X I
ja&&aj I

=I (2.2b)

where }1 is the unity operator in the state space of SSB.
In the I I

ja) J basis, H' can be written as

H'= g QHJ kp I j,a)(p, k I, (2.3a)

Hs and Hp being, respectively, the Hamiltonians of the
isolated systems S and 8, and H' the Hamiltonian of the
S-8 interaction. We shall denote the eigenkets of Ho as

I ja), I j) and
I
a) being the eigenkets of Hs and Hp,

respectively. For simplicity, they are assumed to be non-

dcgcncratc. Wc have the Iclations

(2.6c)co~k = (EJ Ek )Ifi—, co~p= (E~ Ep) IA—,

where we have made use of the Lynden-Bell notation for
the vectors of the Liouville space: I

ab) =
I
a ) (b

I
.

The statistical description of system 5 is made by its
reduced-density matrix

o ( t) =Tr~ [p(t)], (2.7)

where p(t) is the density matrix of the complete system

SSB and Trz refers to the trace over the bath coordi-
nates. Wc assume that at time t =0 the interaction H'

does not affect the statistical distribution and, therefore,

p(0) can be written as a product of two factors

p(0) =a(0)pp, (2.g)

i.e., at the initial time the small system and the bath are
uncorrelated, o(0) being the density matrix of S at t =0
and p& the equihbrium density matrix of the bath.

Finally, we have assumed that the splitting of Eq. (2.5)

for W is such that

Hj~ kp (a,j I

H'
I
kP)———:(a IHjk I P) . (2.3b)

In general H~'k ——(j I

H'
I
k ) are operators which de

pend only on the bath coordinates. When j&k, these
operators will cause a coupling between the levels

I J ) and

I
k) of S, while when j=k, they will give rise to a shift

of the E, energies.

(2.9)

which can always be achieved by redefining Wz and W'
in a suitable form. In the following ( ) means the bath

avcragc.
Using thc Llouvllle formalism, wc can wr1tc '

a(t)=e ' (&(t))a(0), (2.10)

(2.11a)
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(2.12)

where

W(t) = (W'(t)e ' W'),
iW~t~, iW~t—

(2.13b)

(ii) The PTOC master equation

o(t) = i Wso(—t) K(t)o(t—),
where

(2.14)

K(t)= f dr W(t)e (2.15)

In the Markovian limit, which assumes that the bath
correlation time t, is practically zero on the time scale of
the damping of o(t), both equations (2.13) and (2.15) have
the same form:

o(t) = i Wqo(—t) Ro(t),—

where

R=K(~)= f dt W(t)e

(2.16)

(2.17)

III. MARKOVIAN EVOLUTION

In the representation of the eigenstates of Hs, Eq.
(2.16) takes the form

ojk(t)= icojkcrjk(t) Q—Rjk lmc—rim(t) .
l, m

(3.1)

From Eqs. (2.17) and (A8), the matrix elements of the su-

peroperator R, which determine the relaxation properties
of S in the Markovian limit, are related to its natural fre-
quencies and to the bath correlation functions

(Hpq(t)H ) Trtl[Hpq(t)H ]

= g Plj(a. )e Hp~ qPH,'P, ~
a, P

by the expressions

Rjk lm
——f dt ei~™

Wjk lm(t)

= Wjk, lm(~lm)

(3.2)

The time-evolution superoperator (A(t)) can be written
using the Kubo cumulant expansion. ' The choice of
the different temporal ordering prescriptions for this ex-
pansion leads to different master equations for o(t). In
Eq. (2.11), the superoperators W '(t) are arranged in de-
creasing value of the parameter t. We consider, in partic-
ular, a total ordering prescription and a partial ordering
prescription, by truncating the expansion in the second or-
der of the S-B interaction. This gives' ' ' the follow-

ing.
(i) The TTOC master equation

cr(t) = i&—scr(t) —dr W(t r)o—(r),
0

with

J~m(co)= f dte' '(H~q(t)H„', ) .

Note that

(H~(t)H' )*=(H,'„H~(t)) .

(3.3b)

(3.4)

(3.6)

Owing to the presence of the interference terms for

Rjk lmOlm(CO), With (j, k)&(l, m), a SOlutian fOr Ojk(t)
from Eq. (3.6) is, except in particularly simple cases (such
as the two-level system), a nontrivial problem which in
general should be tackled by techniques of numerical cal-
culus. Note, Eq. (3.3), that if H' is diagonal, the only

nonzero matrix elements of R are Rjk jk with j&k. Thus,
in this particular case, the relaxation of each coherence
takes place independently of the others, and the popula-
tions remain constant.

Without such a restrictive condition in H, Eq. (3.1) un-

dergoes a noticeable simplification when the nonsecular
terms of the right-hand side (rhs) are negligible, that is,
those terms which mix the time evolution of the matrix
elements ojk(t) with those of o.

l (t) such that, in the free
evolution of S, they oscillate with a different frequency
than cojk (Ref. 5) (in the case of populations cojk ——0).

From a qualitative point of view the interaction S-8
implies a broadening, with respect to free evolution, of the
spectral functions ol (co). Though the condition of weak
interaction implies that this broadening should not be ex-
cessively large compared with the mean spacing between
the natural frequencies of S, this condition does not neces-
sarily avoid the overlapping between spectral functions
crl (co) corresponding to neighboring frequencies. In gen-
eral, the neglect of nonsecular terms, of the kind of

Rjk l otm(cia), in Eq. (3.6) is justified when the overlap-
ping between neighboring spectral functions crl (co) is

negligible and the coupling coefficients Rjk I are small
though, usually, the condition of negligible overlap im-
plies very small coupling coefficients and vice versa.

A sufficient condition for applying the secular approxi-
mation is that the interaction S Bshould be suffici-ently
weak for the fulfillment of the relationships

When H' is known, the incorporation of the bath correla-
tion functions (Hzq(t)H' ) into the problem may be per-
formed either by calculating them from a dynamic model
for the bath or directly from a stochastic description for
the bath.

We now take the Laplace-Fourier transformation, de-
fined by

f(co)= f dte'"'f(t) (3.5)

in Eq. (3.1), obtaining

~~jk(~) i~jk(0) ~jk~jk(~) l QRjk, lmcrlm(~) .
I, m

4m g jn, nl('~ln)+~jl g knnm(~mn ),
~mk j1(Cijlj ) ~lj, km (~mk ) (3.3a)

I
Cijjk Cillm

I
»

I Rjk,jk I I Rlm, lm I

I
ciljk ~lm

I
&&

I Rjk, lm I

(3.7)
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with (j,k)&(l, m). The properties of S are, therefore, con-
ditioned by the relaxation superoperator and by the spac-
ings between its natural frequencies. [Note that the terms
of the rhs of Eq. (3.6) with indices (j, k, l, m) such that
cojk =cot, do not verify condition (3.7) and, therefore,
they cannot be ignored. In particular, the secular approxi-
mation does not allow uncoupling between populations. ]

We shall now consider two kinds of spectra of Hs
which lead to particularly interesting situations, the study
of which makes the understanding of more complicated
ones easier.

jk( ) jk(0)=( k 'I Jk) Jk( (3.8a)

coo JJ(co) i—oJJ(0)= i I—JoJJ(co') i—g yjkcrkk(co),
k (&j)

(3.8b)

A. System with nonequidistance energy spectrum

Let us now assume a spectrum of Hs with more than
two levels, spaced in such a way that all its natural fre-
quencies are different. The application of the secular ap-
proximation to Eq. (3.6) allows us to write, for coherences
and populations, the multilevel Bloch equations'

with

~jk ~jk ~jk ~ (3.9a)

0O

~jk Im(Rjk jk ) Im g ~jn, nj (cojn )+ g ~knnk(cokn ) +i f dt ( [HJJ (t) Hkk(t)—,HJJ Hkk ] )—
n (&j) n (&k) 2

(3.9b)

f2
I Jk = Re(RJk Jk) = g f dt e '" (HJ'„(t)H„'J )+ g f dt e

"'"
(H/, „(t)H„'k )

n (&j) n (+k)
00f dt ( [H,', (t) Hkk(t—),HJJ Hk„]i )—, (3.9c)

yjk=RJJ kk= —A f dte ' (Hkj(t)HJ'k)j,

I =R" "=Pi g f dte '" (H'k(t)HkJ) = —g rkj .
k (&j) k (&j)

(3.9d)

(3.9e)

According to Eq. (3.8b), the relaxation of the popula-
tions are coupled with each other, and we cannot expect to
find an analytical simple solution. This is undertaken ei-
ther by numerical calculus techniques or by making suit-
able hypotheses which will allow us to make the problem
analytically soluble. ' '

As far as coherences are concerned, from Eq. (3.8a) we
have

+bb, bb +aa, aa

From Eq. (3.13), we have

(3.14)

o,b(t) =o,b(0)e e (3.15a)

I

where a, b =1,2, with a&b, and where use has been made
of the relationship (A10)

iojk(0)
o jk(co) =

~—ak+ir)k
' (3.10)

r

~b ~b (P, +r )cr„(t)= + o„(0)— e
a+ b a+ b

and taking the inverse Laplace-Fourier transformation

oJk(t) =oJJ, (0)e (3.11)

That is, if the secular approximation is applicable, each
coherence will evolve independently of the others. Ac-
cording to Eq. (3.11), the bath induces in the coherences
(or phases) a slight frequency shift bjk and a damping
with a dephasing time

(3.15b)

T, =(r.+rb)-'.
Note that making use of the relationship '

(3.16)

It is interesting to point out that Eq. (3.15b) says that for
a two-level system in the secular approximation each pop-
ulation decays independently, without a frequency shift,
with a decay time

( T2 )jk
——( I jk ) (3.12) f dt e'"'(A (t)B )

It is interesting to apply these results to a two-level sys-
tem in the secular approximation, already treated in the
literature. ' " In this case, indices j,k of Eq. (3.8) can
only take the values 1 or 2 and Eq. (3.8) leads to

=e dte

valid for any two bath operators A and B if the bath is at
a temperature T, we have

io,b(0)
crumb (co ) =

co 67 b+l I b
(3.13a) (cro) =o=(e " + 1)= r.+r, = (3.18)

i cocr„(0) Ih-
er„(co)=

co[co+i(I, +I b)]
(3.13b) which are the populations of a two-level system in

thermal equilibrium. Since I,b
——I b„both coherences
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decay with the same dephasing time

T2=(I,b) (3.19)

where

r~„"=rI."

'-f «([H,', (t) Hjb(—t),H,', Hjg—]+) .

(3.21)

Equation (3.20) may be written now as

(T,)-'=(2T ) '+(Tf")-',
where

T("—( r&" )
—i

(3.22)

(3.23)

If H' is diagonal, from Eq. (3.9e) we see that 1,=0
and the damping of S consists of a pure dephasing. Then
Eq. (3.22) adopts the form

T2 ——Tf" for diagonal H' . (3.24)

For this reason, Tf" is generally called the pure dephasing
time. If, however, H' is nondiagonal, from Eq. (3.21) we
have I ~i, ——0, and Eq. (3.22) yields in this case

Comparing Eqs. (3.9c) and (3.9e), we have for a two-
level system

(3.20)

mation. Indeed, in agreement with Eq. (3.13a), the spec-
tral function o,b(co) will only take appreciable values in a
frequency range of the order I,b

——Re(R, i, b) around
6,i, (in fact, slightly shifted with respect to co,b [Eq.
(3.9a)]), while o„(co), according to Eq. (3.13b), will only
take non-negligible values in a frequency range of the or-

der of I,+I b ——R„„+RbI,bb around co=0. Therefore,
conditions (3.7) guarantee at the same time that these
functions do not overlap each other and that the corre-
sponding coupling coefficients do not give rise to signifi-
cant interferences (the possibility of overlapping between
the two coherences is even smaller).

B. Systems with equidistant energy spectrum

When the difference between the energy of two con-
secutive levels of S is constant, we face a situation of a
different nature than that of the nonequidistant case. ' '

This happens, for example, with the harmonic oscillator
or with a spin in a magnetic field.

The frequencies col are now multiples of the frequency
coo, associated with two consecutive levels:
col ——(i —m)coo. Thus, the conditions (3.7) are no longer
verified for all the frequencies col such that
l —m =j —k. The secular approximation, which here al-
lows us to uncouple only those coherences for which
1 —m &j—k, yields, separating coherences and popula-
tions,

T2 ——2Ti for nondiagonal H' . (3.25)
coo jk(co) l Crjk(0—)

The relative magnitudes of Tl and T2 for the vibra-
tional relaxation in condensed media (in the two-level ap-
proximation) are discussed in Refs. 15 and 32—34. For
the relaxation T, and T2 of a spin system in different
media, see Ref. 35.

Comparing Eqs. (3.9c) and (3.9e), we have in the gen-
eral case

=(~jk l~jkjk)~jk(~)

+jk, lm O lm (~ )

l, m
(I,m)&( j,k)

cocTjj (co ) —l 0'jj (0 )

(3.29a)

iRjj jjcrjj(co) —i g Rjj kko—kk(~), (3.29b)
k (~j)

(3.26)

where
—2

I "k= f dt([H' (t) —Hjk(t), H' Hl'k]+). —

(3.27)
Equation (3.22), relative to a two-level system, suggests
the possibility of writing Eq. (3.26) as

(T2)jk (2Ti)jk +(T~ )jk (3.28)

The parameters ( T2)jk and ( Tf")jk are still interpret-
able in this equation, as in the two-level case, as the de-
phasing times associated with the coherence oak(t). How-
ever, (T, ) ijsknot directly interpretable as a damping
time of populations. It should also be noted that if the
mixing between coherences becomes significant, Eq. (3.11)
is no longer valid for the loss of phase, and a nonexponen-
tial behavior appears, which requires a new interpretation.
In Secs. IV and V we shall discuss this problem in the
more general context of the TTOC and PTOC evolutions.

In the case of a two-level system it is quite clear that
the sufficient conditions (3.7) imply the secular approxi-

IV. THE TTOC EVOLUTION

In the representation of the eigenstates of Hz, Eq.
(2.12) takes the form of

where the sum in Eq. (3.29a) is restricted to the indices
(l,m) for which l —m =j —k.

A similar situation may be found in the case of degen-
erate levels, ' as happens, for example, in the rotational
relaxation of a diatomic molecule where

~

k ) now desig-
nates the states of the quantum rotation

~
jkmk ). In this

case, the evolution of the coherences will be given by an
equation analogous to Eq. (3.29a), where the sum would
be extended to all indices mk and mk corresponding,
respectively, to the degenerate states with energies Ek and
Ek. As far as the time evolution of the populations is
concerned, it would be necessary to take into account the
nonresonant contributions coming from the degenerated
states with the same energy. Therefore, from a formal
point of view, the treatment in the case of degeneration is
similar to that of the nondegenerate one, except that the
sums over the indices will be more complex.
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ojk(t) = /—tojkojk(t) —g dr Wjk, lm(t —1)crtm( T)'

1,m

where (see the Appendix)

(4.1)

Wjk lm(t) =A 5km g e "" (Hl'„(t)H„'l )+5j/ g e '" (H' „H„'k(t) ) —e
n n

(H' k(t)Hj/) —e '" (H' kHj/(t))

(4.2)

—l g Wjk lm ( M )o lm ( M ) ~

l, m

where [Eqs. (3.3) and (4.2)]
00

Wjk, lm (~)
p

dt e Wjk, lm (t)

~km g~jn, n/(~ P/nk)+~j/Jkn, nm(~jn

(4.3)

mkjl(~ , COjm ) ~lj, km (~O/k

The difference between Eq. (4.3) and the Markovian
equation (3.6) lies in the fact that the matrix elements

Wjk l (to), which determine the TTOC relaxation proper-
ties of S now depend on to. As in the Markovian case, if
H' is diagonal, the only nonzero matrix elements of the

suPeroPerator W(to) are [Eq. (4.4)] Wjk jk with j&k, and,
therefore, in this case the evolution of each coherence is
independent while the populations remain constant.

For the sake of illustration of the analytical behavior of

Wjk l (co), we suppose that H' can be written as a prod-
uct of factors

H'= AVF, (4.5)

where V and F are, respectively, operators of S and B.
[Usually H' is given as a sum of terms of the same kind
as those in Eq. (4.5)]. We shall also assume that the auto-
correlation function of F is exponential with a decay time
to, such that

(H~(t)H„') =A'V~ V„(F(t)F)

=Pi lcl V V„,e (4.6)

where
l
c

l
is a parameter which describes the contribu-

tion of the operator F to the intensity of the interaction
S-B.

The substitution of Eq. (4.6) in Eq. (3.3) yields

tP + l (Co —cojk )
J~ (to cojk)= l

c
l V~ V — z, (4.7)

( CO —
COjk ) + t p

which shows that this function takes appreciable values in
a frequency range of the order of to

' around the frequen-
cy cojk. The dependence of the real and imaginary parts
of Eq. (4.7) on co will be smoother (sharper) the smaller
(bigger) the value of tp, and making use of Eq. (4.4) we

The convolution integral in Eq. (4.1) suggests that we take
the Laplace-Fourier transformation

Coo'J k(to) —l Crj/ (0) =CoJ koJ k(Cl/)

I

shall find a similar behavior for the matrix elements

Wjk l (co). In this case tp plays the role of the bath corre-
lation time.

Normally the temporal dependence of the correlation
function (H~(t)H' ) is not as simple as expressed in Eq.
(4.6). However, its analytical form, which will depend on
the indices (p, q, r, s), will still be damped and character-
ized by the corresponding correlation times. Therefore,

the functions Wjk l (co) will be smoother the smaller these
correlation times become.

p/trjk(~) ltrjk(0) [cojk l Wjk,jk(to)]trjk(to) (4.9a)

tocrjj(co) io jj(0)=— i Wjj jj(co)—ojj(to)

W" kk (m )o kk (co) .
k (&j)

(4.9b)

Therefore, while the evolution of each coherence is in-

dependent, the population relaxation continues to be a
nontrivial problem that it is necessary to solve in each in-
dividual case.

From Eq. (4.9a), one obtains

i oj.k (0)
~r,k(co) =

co tojk+i Wjk jk(co)—

Once the analytical form of Wjk jk(co) is known, the in-

verse Laplace-Fourier transformation of Eq. (4.10) solves
the problem of the TTOC phase relaxation within the sec-
ular approximation.

(4.10)

A. Secular approximation

In the TTOC evolution the secular approximation will
be guaranteed by fulfilling the sufficient conditions [with
(j,k)&(lm)]

I ~jk ~/ I» I Wjk, jk(~) I I W/, /

(4.8)

l~jk ~/ 1»W,k, / (~)
I

in the region of co where the cr/m(to) take significant
values. Note that, if the relaxation of S takes place in
conditions not too far from the Markovian limit, the

dependence on to of the functions Wjk l (co) must be rela-

tively smooth, and Wjk /m (to )=Wjk /m (to/m ) =Rjk lm [Eq.
(3.3a)].

For a system with a nonequidistant energy spectrum, if
in Eq. (4.3) the nonsecular terms are neglected, one ob-
tains, separating coherences and populations,
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For frequencies such that
~

co —cojk
~

&& t, ', where t, is
the bath correlation time, we can write
exp[i(co —col )t]=1 in the integral of Eq. (4.4), and,

therefore, the function Wjk Jk (co ) remains practically

equal to WJk Jk(cojk). Thus, in this frequency range, Eq.
(4.10) takes the form

i ajk(0)
ajk(co) =

coj k + ~jk,jk (~jk )

(4.11)

and, taking into account that according to Eq. (3.3a)

Wjk Jk(coJk )=RJk Jk, this equation is identical to Eq.
(3.10), valid in the Markovian limit. In this context, it is
of interest to discuss the domain of validity of the Marko-
vian hypothesis. According to Eqs. (4.11) and (3.9c) the
real and imaginary parts of the function a/k(co) will have
values appreciably different from zero in a range such
that

~

co —coJk
~

( I'Jk and, therefore, if

I jk((t, ' (4.12)

is verified, ajk(co) will be given by Eq. (4.11) in the fre-
quency range of interest. Hence, the relationship (4.12)
gives the condition of validity of the hypothesis of Mar-
kovian evolution for alk(t)

In view of the relationship (4.12), it is clear that there
are two factors which contribute to the Markovian limit
for aJk(t): (a) a sufficiently weak coupling and (b) a very
small bath correlation time. Note that a sufficiently weak
coupling guarantees both condition (4.12) and the non-
overlapping of the coherence. However, this nonoverlap-
ping of the coherences is not implied by the absence of
correlation of the bath. In other words, in the Markovian
limit, the secular approximation can be nonvalid, though
both approximations are justified in the limit of weak
coupling.

When I Jk approaches the order of magnitude of t, ',

the dependency of 8'jk jk(co) on co may become important
in Eq. (4.10), and Eq. (4.11) is no longer applicable. In the

regions in which
~ Wjk Jk(co)

~
&&

~

co coJk
~

we m—ay car-

ry out in Eq. (4.10) a series expansion in powers of W(co)
and, retaining only the first-order term, we obtain

small), the problem of its evolution can be tackled by an
iterative method. Taking Eq. (4.10) as the zeroth-order
solution we have, for the first order in the iterative pro-
cess, the solutions

ajk(co) =
~jk+(II'jk, jk(~)

t

X iajk(0)

Wjk( (co)a( (0)

co —co( +i%(~ ( (co)
(I,m)&( j,k)

(4.14)

V. THE PTOC EVOLUTION

Except in the Markovian limit in which they both coin-
cide, the solution of the TTOC and PTOC evolution
presents different mathematical problems which should be
discussed independently. In the representation of the
eigenstates of Hq, Eq. (2.14) takes the form of

ajk(t) (~jkajk(t) y +jk, l (t)al
I, m

(5.1)

where, taking into account Eqs. (2.15) and (4.2), the ma-
trix elements of the PTOC relaxation superoperator are
related to the natural frequencies of system S and to the
correlation functions (Hzq(t)H, ', ) by

'~1m ~
&Jk, ( (t)= «e '

&Jk, /~(r)

=6k g GJ„„/(t)+5J(g Gk„„(t)

where the terms which most contribute to the sum will be
those for which col is close to co/k.

A phenomenon of certain importance in the low-
frequency range is that the populations and the negative
and positive coherences can be mutually influenced and
the problem of their time evolution can become more
complex.

io/k(0)a k(co) =
CO —COjk

i WP, Jk(co)1+
67 —COjk

(4.13)
with

G~k J((t) G(j k—~(t), — (5.2)

which gives the behavior in the 'wings" within the secular
approximation.

G (t)=Pi f dre (Hpq(r)H„' ) (5.3)

Comparing Eqs. (3.3) and (5.3) we have, in particular,
the relationship

B. Mixing between coherences
G~ „(ca ) =J~„(co„), (5.4)

The secular approximation is inadequate when the
mean widths of the spectral functions al (co) and the cou-
pling coefficients approach or exceed the mean spacings
between the natural frequencies of S. In the particular
case of a system with a nonequidistant spectrum, if the
overlapping between the spectral functions associated to a
certain set of coherences (for example, the coherences of a
positive spectrum) are not negligible (even if they are

and therefore

+jk, lm( 0!!) Rjk, ln! (5.5)

As an illustration of the behavior of the functions

Ejk l (t), we shall reconsider the case in which the bath
correlation functions (H~(t)H' ) are of the form of Eq
(4.6). Substituting Eq. (4.6) in Eq. (5.3), we have
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2

G~„,(t)=, (1—e ' ),ici v v„
(5.6)

In the Markovian limit, the matrix elements Kjkt (t)
become constant and equal to Kjk ~ ( oo ) =Rjk t [Eq.
(5.5)]. Therefore, if the relaxation of S is not too far from
the Markovian limit, as can be expected within a weak-
coupling theory, the spectral representation of the terms

Kjkt~(t)or~(t) in Eq. (5.1) is not going to differ very
much from the corresponding representation of the Mar-
kovian limit. Then, the sufficient conditions (3.7) for the
application of the secular approximation will continue to
be valid if RJk I is substituted by Kjkr (ao), calculated
from Eq. (5.2).

The application of the Laplace-Fourier transformation
to Eq. (5.1) does not offer any advantage, and therefore,
in this case, it is more useful to carry out a study in the
domain of times. For a system with a nonequidistant en-

ergy spectrum, retaining only the secular terms in Eq.
(5.1) and separating the evolution equations for coherences
and populations, we have

ojk(t) [~~jk+Kjkjk(t)]ojk(t) ~

o (t) = K" (t)c"7 j(t) —"yKJJ k—k(t)okk(t) .
k (&j)

(5.7)

(5.8)

A more general set of equations than these have been
I

whose real and imaginary parts show a damped oscillato-
ry behavior which becomes smoother as t0 becomes small-

er (constant for to 0).——The functions Kjk I (t), being
sums of terms of this type, have a similar behavior. Even
though the bath correlation functions do not generally
have the simple form of Eq. (4.6), we assume that the ma-

trix elements Kjkt (t) continue to show a similar tem-
poral behavior, that is, the smaller the typical bath corre-
lation time t„ the smoother it becomes.

As in the previous cases, due to the presence of the mix-

ing terms Kjk t (t)oi (t) with (I,m)&(j, k), the evolution
of coherences and populations are not generally indepen-
dent. Except in very simple cases, the problem should be
studied in the framework of the secular approximation.

A. The secular approximation

found by Mukamel for molecular multiphoton process-
es.

While Eq. (5.8) for the population relaxation does not
allow us to go any further without a specific model, the
integration of Eq. (5.7) leads to the following expression
for the loss of phase:

ojk(t)=ojk(0)e '" e

where

(5.9)

Qjk(t) = dtiK, k,k(ti )

= f dr(t r)e —'"
Wjk jk(r) . (5.10)

For times such that t « t„ the functions Qjk(t) [Eq.
(5.10)] show a quadratic behavior in t:

Qjk (t)=—, Wjk jk (0)t (5.11)

and Eq. (5.9) may be written as
—i~ t —W- . (0)t2/2

(t) ~ (0)e jk e jk jk (5.12)

This equation gives the time evolution of the coherences
in the limit of short times and, therefore, determines the
PTOC behavior in the "wings" of ojk(co), which ~oes not
coincide with that prescribed by Eq. (4.13) for the TTOC
scheme.

For times such that t &&t„ the functions Qjk(t) of Eq.
(5.10) show a linear behavior with t,

Qjk(t)=t f dre '"
Wjk jk(r)

Wjk, jk(~jk —)t (5.13)

exp —k f dr(t —r)f(~)

[Eq. (5.10)], A, being a parameter that characterizes the in-
tensity of the interaction. Using the expansion

and, taking into account Eq. (3.3), Eq. (5.9) becomes Eq.
(3.11), valid in the Markovian limit (this limit is some-
times known as the large time limit).

The deviation ojk(t) with respect to the Markovian
behavior may be treated as a perturbation in the interac-
tion S-8. The factor exp[ —Qjk(t)] in Eq. (5.9) has the
orm

exp —1, f dr(t r)f(r) =exp —tA, f

deaf(~)

—I+i, t f d~f(r) f d~(t r)f(~)—+d'(A, —) (5.14)

and taking into account Eqs. (3.3a) and (3.9)

0

I

I~

j 7j ~~ j tj ~~ j
I

I» 7

00 IQ k7 A. A
d~e ' Wk k(r)=R k k

——I k+ib k, (5.15)

we obtain from Eq. (5.9)

trjk(t)=crjk(0)e '" e '" [1+t(Ijk+ihjk) Qjk(t)], — (5.16)

which gives the deviation with respect to the Markovian behavior [Eq. (3.11)] up to the second order in the interaction
within the PTOC scheme.
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B. Mixing between coherences

In the PTOC evolution, the analysis of interferences between coherences and populations presents similar problems to
those of the TTOC evolution. In particular, if the interferences between the time evolution of a certain set of coherences
is small and these coherences are independent of the other matrix elements of tr(t), an iterative method may be used. In
this method Eq. (5.9) is taken as a zeroth-order solution. The substitution of Eq. (5.9) in Eq. (5.1) yields

tj,k(t)= [~—~,k+Kk jk(t)]trjk(t) g—elm(0)ICk lm(t)e ' e ~™,(I,m)&(j, k) (5.17)
l, m

which has the formal solution

l, m

(l,m)~(j, k) . (5.18)

In this equation, as in Eq. (4.14), the terms which most contribute to the sum will be those for which the indices (I,m)
corresPond to the frequencies cot close to cojk.

VI. SUMMARY

In this paper we have analyzed the quantum relaxation
of a small system weakly coupled to a bath, within the
TTOC and PTOC non-Markovian schemes, which coin-
cide in the Markovian limit. This analysis was carried out
by the study, in each case, of the corresponding time-
evolution equations of the matrix elements of the
reduced-density matrix a(t) of the system, in the represen-
tation of the eigenstates of its free Hamiltonian (for sim-
plicity, we assume that its spectrum is nondegenerate).
The integration of these equations is not a trivial task, be-
cause the evolutions of the matrix elements of cr(t) are in-
tercoupled by the corresponding relaxation superopera-
tors. The problem is simplified when it is possible to ap-
ply the secular approximation, which allows the uncou-
pling of the populations from the coherences, the latter
continuing to be interconnected only when they corre-
spond to equal frequencies (e.g. , in the case of an equidis-
tant energy spectrum). We stress the importance that the

I

form of the energy spectrum of the system may have in
the solution of the problem. In particular, in the case of a
nonequidistant energy spectrum the secular solution for
the coherences is very simple because they evolve indepen-
dently of each other. The TTOC and PTOC solutions are,
therefore, given by Eqs. (4.10) and (5.9), respectively,
which coincide in the Markovian limit in which each
coherence decays exponentially in time. When the mixing
between coherences is small, an iterative method is
developed. This method leads in the TTOC and PTOC
schemes to the solutions (4.14) and (5.18), respectively, up
to second order in the interaction system bath.

We connect the matrix elements of the corresponding
relaxation superoperators with the bath correlation func-
tions in Eqs. (3.3), (4.4), and (5.2). These equations are
the basis for the application of these formalisms to a par-
ticular problem in which a specific model for the bath is
adopted. In a subsequent paper, we shall apply the re-
sults obtained to the calculation of spectral line shapes.

APPEND IX EVALUATION OF THE MATRIX ELEMENTS IVY I~ ( t )

Taking into account that Wz is, in the I ~
ja,kp) j basis of the total Liouville space, a diagonal superoperator which

depends only on system S, we have from Eq. (2.13):

IIjk, l ( ) (~ ( )e ~ jjk, l gpB(p) g g ~j,ka,p,qe(t)~pqelptl, , ,
a, P P, g V, E'

(Al)

where j, k, I, m, p, and q are states of system S and a, p, v, and e are bath states. Because Wll is, in the basis
I ~

ja, k p) J, a superoperator belonging exclusively to the bath, Eq. (2.13b) yields

I

EWART

I —lWgt —ECO~j a, ka, pv, qe( ) ( ~ )ja,ka, pv, qe ~Ja, ka, pv, qe

with

(A2)

~l ~l
ja,ka, pv, qe= ja,ka, pv, qe(

Substituting (A2) in (Al) and reordering factors, we obtain

ue a, P V, E'

(A3)

Making use now of Eq. (2.6b) for the matrix elements of W', we obtain
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~j ak,ap,vq,e~pvq, e//, /, mP ~ ( ja,p&pv, /t/5kq5qm5ae5e//

Hja, pvHmt/, qe5kq5p/5ae5vP qe, ka pv, l j/5jp5qm5av et/

+ qe, kaHmt/qe, 5jp5p/5av5vt/)

The substitution of Eq. (A4) into Eq. (A3) yields

Wjk, /m(t) =& 'ye 5/ 5q yP//(a)e Hj,p~p, /a 5/ —5p/ yP//(P)e Hj'apt/Hm//qa
piq a, v a, P

(A4)

5jp5qm g p//(P)e Hqt/, kaHt/a /t/+ 5jp5pl g pj/(a) Hqe, kaHma, qe
a,P Q, E

Defining the time correlation function for two bath operators A and B as

( A(t)B) = g pj/(a)e A B =(AB( t))—,
a, a'

Eq. (A5) may be written in the form of

Wjk l (t)=Pi 5/ ge "(Hjp(t)Hp/)+5j/ ge ' (HmqHqk(t))
P q

(A5)

(A6)

—e ' (H' k(t)Hj/) —e '"
(Hmk Hj/(t) j (A7)

which is the expression we were looking for. Taking into account the relationship

( A (t)B)*=(BtA t(t) )

and the Hermeticity of H', expression (A7) may also be written in the form

Wjk/m(t)=A' 5km ge (Hjp(t)Hp/)+5j/ ge ' " (Hkq(t)Hq
P q

—e ' (Hmk(t)Hj/) —e '" (H/'j(t) Hk ) * (AS)

Some matrix elements of W(t) of particular interest are

Wjk jk(t)=Pi g e "(H&~(t)Hpj)+ g e
' " (HkqHqk(, /)

p (&j) q~k

+e " [(H,', (t)H,', )+ (HkkHkk(t) ) —(Hkk(t)Hj', ) —(Hkk H,', (t))], j&k (A9a)

W" (t) =Pi g "e P/ (H' (t)H' )+c.c.
p (+j)

Wjj kk(t)= —A [e ' (H/, j(t)H&'k'j+c. c.], j &k .

We also have the relationship

WjJ jj(t) = —y Wl/, JJ(t) .
k (&j)

(A9b)

(A9c)

(A 10)
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