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We consider the quasistatic displacement of a nonwetting fluid by a wetting one in a porous medi-
um in the presence of buoyancy forces. A simple percolation model of this process is presented and
analyzed both theoretically and by Monte Carlo simulation. It is shown that the fact that percola-
tion is a critical phenomenon, with diverging correlation length at the critical point, has a significant
effect on the physics of the system, in particular on the dependence of nonwetting phase residual sa-
turation on the density contrast between the phases. An extension of these ideas to the case where
the pressure field is generated by viscous rather than buoyancy forces is suggested.

I. INTRODUCTION

In this paper we consider the process of immiscible dis-
placement of a nonwetting fluid by a wetting one from a
porous medium. For convenience we will refer to the wet-
ting fluid as water and the nonwetting fluid as oil, al-
though in principle our discussion is applicable to any two
fluids with the appropriate wetting characteristics.! The
medium is considered to be initially 100% saturated with
oil, except possibly for small traces of “connate” water,
and is then subjected to a laboratory waterflood. We shall
consider for simplicity the case where the sample is long
compared to its width, so that the flood is essentially one
dimensional, though this is not a crucial feature of the
discussion. As the water advances into the medium, it is
possible for it to completely surround regions of oil,
which subsequently remain trapped as ‘residual oil.”
Two entirely different entrapment mechanisms have been
identified in the literature.’

(1) Trapping in single pores due to snap-off processes.
Here the net result is that water entering a given pore does
not completely displace the oil, but rather occupies only
the walls of the pore, leaving some isolated oil in the
center. This is an essentially local phenomenon, depend-
ing on the detailed geometry of the pore and possibly on
the nature and extent of connate water films.

(2) Bypassing of one or more pores by the water phase.
In this case an entire cluster of pores remains completely
full of oil. This process is a larger-scale phenomenon con-
trolled by the random multiply connected topology of the
pore space.

The present paper is concerned entirely with the second
scenario, and in particular with the nature of the larger
trapped clusters; in a material where both mechanisms
operate, this analysis will refer only to that part of the
residual saturation which is caused by bypassing. In re-
cent years many authors®~° have invoked the mathemati-
cal theory of percolation to describe the statistical nature
of this bypassing process. This theory is strictly applic-
able only in the limit of infinitesimal flow rate where
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viscous forces may be completely neglected, and the sys-
tem is dominated by capillary (surface tension) forces. In
this situation percolation ideas predict®® that the clusters
of residual oil exist on all size scales; more specifically, if
we define n(s) to be the number of clusters containing s
pores, then for large s

n(s)~s~7, (1.1)

where 7~2.07 is a critical exponent which we expect to be
universal for all dimensional systems. If we normalize
n(s) to the total number of pores in the sample and esti-
mate the residual oil saturation S, by counting the frac-
tion of pores containing oil (i.e., we ignore the size varia-
tion of the pores), then

Sor= i sn(s) .

s=1

(1.2)

Since the value of 7 is close to but slightly larger than 2,
the sum (1.2) converges, but slowly, so that the residual oil
saturation receives contributions from clusters over a wide
size range.

It is not the purpose of this paper to present an exten-
sive justification of the percolation approach, but rather
to explore the consequences of these ideas in the realistic
situation where the forces of viscosity or buoyancy are
acting in addition to surface tension. In the viscous case
there is a dimensionless parameter, the capillary number,
which represents the competition between viscous and
capillary forces. Let us estimate the viscous pressure drop
across a typical grain size R using the water viscosity p,,,
the superficial (Darcy) velocity v, and the absolute per-
meability k:

wy,R
Apvisc~ wk .

(1.3)

Comparing this to a typical interfacial pressure difference

Y
Apint R’ (1.4)

where v is the interfacial tension, we obtain
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AP visc N, cap (1.5)
Ap int K ’ '
where
Kyl
Neap= —:— (1.6)

is the capillary number expressed in terms of the superfi-
cial velocity v, and K is a dimensionless geometrical con-
stant given by

_k
=%z
Since the permeability k is dominated by the narrow con-
strictions (throats) in the medium, the constant K is typi-
cally rather small, of order 10~3. When N, is finite
there is a characteristic length, the capillary length L,
which represents the distance over which viscous pressure
differences become comparable to interfacial pressure
differences. If we measure this length in units of a typical
grain size R, then

L, K
R Ny '

K (1.7)

(1.8)

It is known experimentally that as the capillary number
increases, the residual oil saturation decreases. Typical
experimental curves are shown in Fig. 1.1° The two
curves, labeled a and b represent entirely different experi-
mental procedures. The connected curve, labeled b, is the
result obtained by performing the displacement experi-
ment at a given capillary number with the sample initially
100% saturated with oil, i.e., the oil is initially in a single
connected cluster. Each point on curve b represents a
separate experiment. The disconnected curve, labeled aq, is
obtained by steadily increasing the capillary number in a
single experiment, starting with the oil in disconnected
clusters, i.e., in the configuration obtained at the end of a
type-b experiment. We see that curve b is unique, but
that there are many curves a, one for each value of the
capillary number of the initial flood. Typically, as in Fig.
1, only one curve a is reported, that corresponding to the
lowest capillary number used in the study, but in principle
there is a curve a corresponding to each of the data points
on curve b.
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FIG. 1. Typical experimental curves for the dependence of
residual oil saturation S, on capillary number Nc,,. The two
curves represent different experimental procedures as explained
in the text. Curves do not represent any particular experiment,
but are typical of results quoted, for example, in Ref. 10.
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In our percolation picture we may understand the quali-
tative features of these curves as follows. For curve a,
one starts at low capillary number with disconnected oil
clusters on a wide range of size scales. As the capillary
number is increased, the larger blobs are unable to with-
stand the viscous pressure gradient and begin to move.
However, it is widely believed that they are not expelled
from the sample, but rather become broken up into small-
er pieces which are stable at the existing flow rate.!! Thus
initially the residual oil saturation remains unchanged (the
flat portion of the curve). As the flow rate is gradually
increased, this process continues until all the clusters have
been broken down into pieces which occupy a single pore.
Further increase of the capillary number then results in
displacement of oil from single pores, and the residual sa-
turation decreases (the falling portion of the curve). The
characteristic knee in the curve corresponds to the capil-
lary number for which the capillary length (1.8) is com-
parable to a pore or grain size, i.e., Ncap~K.12 We see
that in this picture the shape of curve a has nothing to do
with percolation concepts, but rather is due to local pro-
cesses controlled by the geometry and size distribution of
individual pores.

In the disconnected case, curve b, there is interesting
structure at much lower capillary numbers, well below the
value required for mobilization of blobs in a single pore.
The shape of curve b is controlled by modification of the
original entrapment mechanism, and it is reasonable to
suppose that, at least at low flow rates, the main effect of
a nonzero capillary number is on what would have been
the larger trapped clusters had the flow rate been infini-
tesimal.

The idea of changing the residual saturation by cutting
off the cluster size distribution in some way has been sug-
gested in the important paper of Larson, Davis, and
Scriven.!* However, these authors apply this idea to the
disconnected oil data, curve a, rather than the connected
oil, curve b, as proposed here. In our language, their pro-
cedure consists of cutting off the size distribution (1.1) at
some maximum Size S,,,, Where s, is the typical size of
clusters of length L,,. This is in accord with the picture
that once a cluster becomes unstable against mobilization
it is expelled from the sample. As observed above, we do
not believe this is what actually happens. However, even
given this assumption, it should not be possible to fit a
curve of type a in this way, because the power-law distri-
bution (1.1) has no natural scale to provide the knee in the
curve. It seems that the only reason Larson, Davis, and
Scriven were able to “successfully” fit disconnected oil
data is that they used a cluster size distribution taken
from percolation simulations on a 30X 30X 30 lattice.
The knee in their fitted curve corresponds to a capillary
number for which the capillary length is approximately 30
pore lengths.

In the remainder of this paper we will discuss only the
case of displacement of connected oil, i.e., the type-b ex-
periment where the sample is initially fully saturated with
oil. In order to investigate this question in detail we will
first consider the related problem of quasistatic imbibition
in the presence of buoyancy forces. This problem is simi-
lar to the viscous case in that it involves pressure fields
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which vary as a function of position, but simpler in that
these pressure fields are determined by purely hydrostatic
rather than dynamic effects. If the density difference

Ap=py,—po (1.9)

is positive, and the water is introduced from below as in
Fig. 2, then the process of imbibition is hindered by the
buoyancy effects. In this situation there is a dimension-
less number, the Bond number, which represents the com-
petition between buoyancy and capillary forces. Over a
typical grain size R, the hydrostatic pressure difference
between the phase changes by an amount

Apgrav ~ApgR . (1.10)

Comparing this to a typical interfacial pressure difference
(1.4) we obtain

Apgrav _ Aeng —B

(1.11)
Apine Y

The ratio (1.11) is conventionally called the Bond number.
Just as in the viscous case there is a capillary length,
which here represents the distance over which buoyancy
pressure differences are comparable to interfacial pressure
differences. Measured in units of the grain size we have

Leap 1
R B’
We see that the Bond number is roughly equivalent to the
ratio N,,/K in (1.5). A more precise correspondence for
the purpose of determining the residual oil saturation will
be suggested in Sec. III.

The main results of this paper take the form of univer-
sal scaling formulas for the maximum cluster length L ,,
and residual oil saturation S, which are valid in the limit
of small Bond number B. Specifically we find

L max g
R , (1.13)

(1.12)
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FIG. 2. Schematic drawing of a quasistatic imbibition experi-
ment in the presence of buoyancy. The heavier fluid, water, is
introduced from below at very low flow rate, and the oil escapes
via the upper face of the sample. Sides of the sample are im-
permeable.

and

‘S"(“)r_‘sor“’-BA s (1.14)
where S, is the value at B=0, and the exponents take the
approximate values u ~0.47 and A ~0.77.

In Sec. II we present and analyze a simple quasistatic
model for imbibition in the presence of buoyancy. The re-
sults (1.13) and (1.14), and the values of the exponents A
and p, are obtained theoretically in terms of percolation
exponents, and confirmed directly by Monte Carlo com-
puter simulations of the model. In Sec. III we indicate
briefly how these ideas might be extended to the case
where the pressure field is generated by viscous effects
rather than buoyancy. Section IV contains a discussion of
the results.

II. BUOYANCY MODEL

The application of percolation ideas to immiscible dis-
placement rests on two crucial assumptions.

(1) The motion of the oil-water interface consists of a
discrete sequence of jumps of individual menisci at loca-
tions which are determined purely by surface tension ef-
fects.

(2) The pore space is multiply connected and in some
sense random.

The actual model we will consider is probably the sim-
plest possible one which realizes these ideas, and as such
is necessarily somewhat naive. Nevertheless, we believe it
captures some essential features of the problem, which
might be obscured in a more realistic and complicated
model. One reason a naive model can give useful infor-
mation is that percolation is a critical phenomenon with
universal behavior in the critical region; for example, the
size distribution (1.1) has an exponent 7 which should be
independent of local details of the geometry such as coor-
dination number and pore size distribution.

We consider a geometric model for the medium which
consists of pores joined together by narrower connecting
throats. In an imbibition process (water displacing oil),
interfacial pressures always drive the oil-water interfaces
through the throats, but at a given pressure difference be-
tween the phases (capillary pressure)

Pcap=P0—Pw (2.1)

the water can penetrate only the smaller pores. For given
Dcap let g represent the “allowed water fraction,” i.e., the
fraction of pores which could become water filled, given
that one or more of their neighboring pores contained wa-
ter. (Note that this is not the same as the water saturation
S, since not all allowed pores are accessible.) Let us ex-
press the relationship between p.,;, and q as

Pcap= -I%f(q) ’ (2.2)

where R is a typical grain size and f(q) is dimensionless
and of order unity. The function f(q) is positive and
monotonically decreasing, and contains information about
the pore size distribution of the material. If we assume
that the pores are statistically independent, we may imple-
ment this idea in a model by assigning a random number
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r, drawn from a uniform distribution on the unit interval
0<r <1, to each pore. A pore assigned random number r
can be filled when the capillary pressure p,, falls below a
threshold value pp...n given by
Dthresh = lf(r) . (2.3)
R
At a given capillary pressure p,p, i.e., a given allowed
fraction g, those pores with pipresh > Pcaps i-€., those with
r <gq, are allowed.

In the absence of buoyancy, the quasistatic model we
discuss is based on the physical picture that at any given
instant the system is in hydrostatic equilibrium; the pres-
sure in each phase, and hence the capillary pressure, is
everywhere constant. The oil-water menisci in the system
all have the same curvature and are assumed to be in
stable configurations. As the water advances due to the
externally applied infinitesimal flow rate, the capillary
pressure gradually decreases and the menisci adjust them-
selves adiabatically, until such time as the capillary pres-
sure reaches the threshold pressure for one of the pores to
fill. At this point the meniscus in the pore in question
finds itself in an unstable configuration, and moves rapid-
ly at a rate which is determined not by the bulk flow but
rather by the local competition between capillary, viscous,
and inertial forces. Such rapid motions are known as
Haines jumps.!* The present model does not attempt to
treat these motions, but simply assumes that the net effect
is that the pore in question fills with water, the pressure in
the water phase drops, and the system again comes to hy-
drostatic equilibrium. These processes are assumed to
occur instantaneously compared to the time scale of the
bulk flow. Based on these ideas we may construct a sim-
ple percolation model of the displacement process as fol-
lows.

(1) The medium is represented as a regular lattice struc-
ture in which the sites represent pores and the bonds
represent throats. The lattice spacing represents the grain
size R. Each pore is assigned a random number 7, drawn
from a uniform distribution on the unit interval [0,1],
which specifies the pressure at which it can fill with wa-
ter, according to (2.3).

(2) The lattice is initially filled with oil, and water is in-
troduced from one face. The sides of the lattice are treat-
ed as impermeable barriers, or alternatively periodic boun-
dary conditions are imposed. The displaced oil escapes
from the opposite face of the lattice.

(3) The advance of the water into the oil consists of a
sequence of discrete steps in which at each stage the water
displaces the oil from that pore on the interface which has
the highest threshold capillary pressure, i.e., the one with
the smallest assigned random number.

(4) Regions of oil which are surrounded by water can-
not be invaded, and remain trapped as residual oil.

(5) The process stops when all remaining oil is con-
tained in these trapped clusters.

The rules above describe a variant of percolation theory
which has become known as invasion percolation.®% !
Although there is no reference to the allowed water frac-
tion in the algorithm for invasion percolation, one finds,
for a large system, that at any stage in the process the wa-

ter has occupied only sites with random numbers r below
some threshold value g, and it is natural to identify this ¢
as the allowed water fraction. This leads to many similar-
ities between invasion percolation and ordinary percola-
tion. However, there are also some important differences.

(1) The invading water in invasion percolation consists
of a single connected cluster in accordance with the nature
of the displacement process. By contrast, in ordinary per-
colation one normally fill all sites in the lattice with prob-
ability g (i.e., one fills all those with random number
r <q), thus producing many disjoint water clusters. This
can be circumvented by simply declaring that only those
clusters which are accessible to the inlet face are actually
filled with water. However, one then has the problem that
there is no specified order in which the sites are filled, and
it is impossible to decide unambiguously which regions of
the oil phase become trapped. This difficulty does not
arise in invasion percolation, which describes a unique
time sequence of advances of the interface, and hence a
unique way of determining the trapping configurations.

(2) Because the rules of invasion percolation specify
that regions of oil which are surrounded are not subse-
quently invaded, one finds at any stage that not all the ac-
cessible sites with 7 <g have been invaded because some
of them were already trapped at the time when they
would otherwise have been chosen. One consequence of
this is that regions of oil which become trapped at high
capillary pressures, i.e., low values of g, do not become
smaller as g is increased. Thus the final distribution of
trapped oil clusters consists of clusters produced at many
different ¢ values, and cannot be simply described in
terms of ordinary percolation.

The main results in invasion percolation in three di-
mensions relevant to our purpose are the following.®°

(1) As the simulation proceeds, the allowed water frac-
tion g steadily increases. Except in the very early stages,
there is no flood front as in a viscosity dominated flood,
but rather the water first fills the entire sample at a low
saturation, and then grows in a statistically homogeneous
and isotropic fashion.

(2) At breakthrough, i.e., when the water first forms a
connected path across the sample, the water is at percola-
tion threshold, and the allowed water fraction g takes the
value g, the percolation threshold for the lattice. Up to
this point there is very little trapping, and the only
trapped clusters are very small. The water occupies a sin-
gle percolation cluster at threshold and so is a fractal set;
if the simulation is performed on a sample of linear di-
mension L, then the water saturation (the fraction of sites
occupied by water) shows a finite size scaling behavior

—-a

S, ~
v R

) (2.4)

where the exponent « is related to the fractal dimension D
and space dimension d by

a=d—D . (2.5)

For d=3 we find a~0.5, i.e., D ~2.5, in agreement with
the z}(gcepted fractal dimension 2.49 in ordinary percola-
tion. ’
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(3) As the water saturation increases, more trapping
takes place and larger trapped clusters are created. Even-
tually all the remaining oil is in trapped clusters and the
process ends. At this point the oil is at percolation
threshold, and the allowed water fraction g equals 1—g,.
For a medium represented by a simple cubic lattice, the
residual oil saturation S%, (the fraction of sites containing
oil) found in computer simulations is approximately

St =0.341, (2.6)

which is comparable to but somewhat larger than the per-
colation threshold 0.312 for a simple cubic lattice. The
cluster size distribution shows the power-law behavior
(1.1) discussed in the Introduction. This behavior is ex-
pected to be universal, and illustrates the absence of any
finite length scale at the percolation threshold. [Of course
in practice the distribution (1.1) is cut off by the finite
sample size.] The exponent 7~2.07 found in the Monte
Carlo simulations is somewhat smaller than the value 2.20
observed in ordinary percolation;16 this may be due to the
fact that the clusters in invasion percolation are formed
over a range of g values as discussed above.

Note that in order for the above description to make
sense, it is necessary that g. be less than 1—gq,, i.e.,
q. < % This is always the case for a three-dimensional
system, but for a planar two-dimensional system one al-
ways has g, > 3 because the two species cannot percolate
together. If one wishes for convenience to use a two-
dimensional representation of the medium, it is necessary
to use a nonplanar structure in order to observe the
correct qualitative behavior. Examples of such structures
are the lattice obtained by inserting all the diagonals on a
square lattice (coordination number 8), or that obtained by
stacking two square lattices (coordination number 5).

In the presence of buoyancy we may generalize the
above model by assuming that at any instant the system is
in vertical equilibrium, so that the capillary pressure de-
pends linearly on height x:

Peap(X) —Pcap(x =0)=Apgx . (2.7)

Given such a capillary pressure field we define a jump po-
tential? for each pore on the interface by

Pjump =Pthresh —Pcap (x)

=-I%f(r)—Apgx +const , (2.8)
where 7 is the random number assigned to the pore, x is
its vertical height, and f(#) is the function introduced in
(2.2). The pore which fills is now the one with the largest
jump potential rather than simply that with the largest
threshold pressure.

In the presence of this vertical bias, the system at any
time is no longer statistically homogeneous, but rather
there is a well-defined transition region as shown
schematically in Fig. 3. At the top of the transition zone,
the water is at percolation threshold and the allowed wa-
ter fraction q is g.. At the bottom of this zone, the oil is
at percolation threshold and g equals 1—g,. Below the
transition region, the ocil is completely disconnected. By
considering the values of the capillary pressure at the top

: [ water
E 0il

L—q=1—q,

FIG. 3. Schematic picture of the transition zone in a
buoyancy-hindered flood. Figure does not mean to indicate the
shapes of the clusters, which are fractal-like objects, but merely
the connectedness properties and relative cluster size as a func-
tion of height. Each vertical position represents a stage of evo-
lution of the system, the top of the transition zone being at an
early stage and the bottom at a later stage. Cluster size distribu-
tion at any height consists of the clusters “inherited” from ear-
lier stages of evolution, together with new clusters being gen-
erated at that height, the latter being typically larger than the
former. At any time, as shown in figure, the largest clusters, of
length L,,,,, are those being created at the bottom of the zone.

and bottom of the zone, it is easy to see that the height A
of the transition zone is given by

b flg)—f—gq.)
R B ’

where B is the Bond number (1.11). Since the function
f(q) is of order unity, we see

b1 Ly

R B~ R’
so that h is of order L,, as one would expect.

We first consider how the buoyancy effects determine

the maximum size of the trapped oil clusters. As indicat-
ed in Fig. 3, the largest clusters are created near the bot-
tom of the zone where the oil is approaching percolation
threshold. At some fixed time, let us consider an arbi-
trary location in the zone and define Ag by

(2.9)

(2.10)

(2.11)

where g is the local value of the allowed water fraction at
this position. Define L to be the local correlation length,
i.e.,, the linear extent of the largest clusters being formed.
In order for it to make sense to say that these clusters are
being generated at a particular value of g, it must be that
the change in g over a distance L is small compared to
Ag,i.e.,

9g=1—g.—Aq,

L <Aq . (2.12)

99
ax

If this inequality is violated, it is meaningless to regard g
as a macroscopic variable, since there is no region larger
than the correlation length over which ¢ remains effec-



tively constant. From (2.2) we have

9p.
99 R _Pap (2.13)
dx vyf'lg) ox
so that (2.12) reduces to
LR P
— <Agq . (2.14)
vIf(@| ox i
Since Op,,/dx equals Apg this may be expressed as
L_B g, (2.15)

R |f(q|
where B is the Bond number (1.11). Since f’(q) is of or-
der unity and we are considering small Bond numbers B,
this inequality is always satisfied provided Agq is not too
small, since outside the critical region the dimensionless
correlation length L /R is of order unity. As Ag—0,
however, the correlation length diverges, since oil clusters
of arbitrarily large size are being created,

L —v
R AT
where v is a critical exponent which we expect to be
universal. We will assume that this exponent is the same
as in ordinary percolation in three dimensions, i.e.,
v~0.88.1° Thus as Ag—0, i.e., as we approach the bot-
tom of the transition zone, the inequality (2.15) is neces-
sarily violated, no matter how small the Bond number B.
If we convert (2.15) from an inequality to an equality, and
use (2.16), we may estimate the value of Ag where (2.15)
breaks down, and the corresponding maximum attainable
correlation length L.,

(2.16)

Lmax 1 "'
=g 2.17)
with
p= 1: ~0.47, (2.18)
Y

where we have used the percolation value v~0.88. Note
that we have suppressed f'(g), which should be evaluated
at ¢ =1—g,., because it is of order unity. It is natural to
assume that L,,, is the maximum vertical extent of the
trapped clusters formed; the fundamental result (2.17) in-
dicates that this length scales as a fractional power of the
inverse Bond number, as opposed to the capillary length
L, (which measures the total height of the transition
zone) which scales directly as the inverse Bond number.

The effect of this cutoff in the cluster size distribution
on the residual oil saturation S, is not so easy to deter-
mine. Unlike the scaling behavior of the maximum corre-
lation length (2.17), this effect depends crucially on the
distinction between invasion percolation and ordinary per-
colation. In the Appendix we present an argument, sug-
gested to the author by Halperin, leading to the prediction
that at finite Bond number B the residual oil saturation
S, differs from the value S7%, obtained when B=0 by an
amount which scales for small B as

St —So~B", (2.19)
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where the exponent A is related to the correlation length
exponent v and order parameter exponent 3 by

A 1+8
1+v

where we have used the three-dimensional percolation
values v~0.88 and 8~0.45.! Although we do not give
the details here, we observe that if one assumed that the
power-law distribution (1.1) were simply cut off at a max-
imum size s.,, corresponding to the maximum length
L. in (2.17), then the exponent A in (2.19) would be
much smaller, of order 0.25.

In order to check the above theoretical predictions we
have performed Monte Carlo computer simulations of the
model. Unlike the case with B=0 we see from (2.8) that
it is necessary to know the function f(g) in (2.2) in order
to specify the time ordering of the jumps. In our simula-
tions we have made the simple choice

~0.77, (2.20)

f(g)=—q +const (2.21)

which means that the threshold pressures of the pores are
uniformly distributed. While this choice is clearly arbi-
trary, the universal predictions (2.17) and (2.19) should
hold for any reasonable choice of f(gq).

In Fig. 4 we show the results of Monte Carlo simula-
tions at three different Bond numbers. In each case both
the breakthrough point and the final configuration are
shown. The simulations were done on a nonplanar two-
dimensional lattice obtained by inserting the diagonals on
a square lattice; such a lattice has behavior qualitatively
similar to the three-dimensional case but with two-
dimensional critical exponents. We see that as the Bond

L B
R
NI B
: A/%‘ e
v "

B=0 B=1003 B=01

FIG. 4. Results of Monte Carlo simulations for three dif-
ferent Bond numbers. For each Bond number (a) is the break-
through point and (b) is the final configuration when all the oil
is trapped. Flow direction is from bottom to top. Samples in
the three cases are taken from the same statistical distribution
but are not identical. Connectedness of the lattice is that ob-
tained by inserting all the diagonals on a square lattice. Sites
marked with an asterisk contain oil, and the lines represent the
connectedness of the oil phase.
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number is increased, the transition zone becomes shorter
and the largest clusters smaller. The total residual satura-
tion decreases but the number of small clusters increases,
so that the large clusters are not totally missing from the
distribution, but rather get partially broken up into small-
er ones. This observation, which we shall see confirmed
in our three-dimensional numerical data, means that the
decrease in residual saturation with increasing Bond num-
ber is not as rapid as one would otherwise expect.

Our actual numerical results are based on simulations
on a 30x 30X 60 simple cubic lattice with periodic boun-
dary conditions on the sides. On such a finite lattice,
there is a lower limit to the Bond number which can be
studied, since at low enough B the largest clusters become
limited by the lattice size rather than the buoyancy ef-
fects. For this reason we have considered only Bond
numbers greater than 0.001. In order to investigate the
maximum cluster size we have computed the moment ra-
tios

(LA
Sk

where (L*) denotes the average of the kth power of the
lengths of the clusters generated. Clearly, as k— oo the
L, are dominated by the largest clusters. On the other
hand, the statistics get worse because the moments are
determined by fewer of the clusters in the sample, so that
in practice, for a given range of B values, it is better to
use a finite value for k. In Fig. 5 the quantity L, for
various k is plotted against the Bond number B. It is seen
that the larger k values give reasonable straight lines on
the log-log plot; for k=4, 6, 8, and 10 we obtain values
0.43, 0.50, 0.51, and 0.50 for the exponent u in (2.18).
This suggests that k=6 is already large enough for the
range of B values considered here. We see that the value
p~0.50 is in reasonable agreement with the theoretical
prediction 0.47 based on percolation exponents.

The dependence of residual saturation on Bond number
is shown in Fig. 6. As B increases, the residual oil satura-
tion S, decreases from its B=0 value S*.=0.341, falling
to S,;=0.241 for B=0.1. Another way to plot the same
data is shown in Fig. 7, where the difference S r—Sor is

Ly (2.22)
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FIG. 5. Plot of the ratio of moments L, [Eq. (2.22)] against
Bond number B, for various values of k. Despite the progres-
sively poorer statistics, it is seen that the larger k values yield a
reasonable straight-line fit to the data.
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FIG. 6. Plot of the residual oil saturation S, against Bond
number B. In our simple model we estimate residual oil satura-
tion by counting the fraction of pores containing oil at the end
of the simulation. As B increases, S, decreases from the value
S obtained in the absence of buoyancy.

plotted as a function of B. The exponent A=0.76 ob-
tained from the plot is again in excellent agreement with
the theoretical prediction A ~0.77.

In Fig. 8 we have plotted the cluster size distribution
for various values of B. We see that at nonzero B the dis-
tribution is cut off above a maximum size S,4, but that
for s <Sma, the number of clusters exceeds that at B=0.
The fact that the exponent A is much larger than would be
obtained by assuming that the distribution is simply cut
off indicates that in fact these two effects exactly cancel
to leading order in B.

III. VISCOUS CASE

In this section we suggest how the above analysis might
be extended to the case where the pressure field is generat-
ed by viscous forces. This is a fundamentally more com-
plicated problem than the buoyancy case, because the
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FIG. 7. Log-log plot of the change in residual saturation
Sk —S, against Bond number B. Error bars represent one
standard deviation.
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FIG. 8. Plot of the cluster size distribution n(s). Plot is ac-
tually a logarithmic histogram, i.e., the value plotted for
log,s =n is the number of clusters whose size s was in the range
2"<s <2"*!_1. Thus the slope of the straight portion of the
B=0 curve is not —7 as in (1.1) but rather 1—7. We see that
for B0 the distribution is cut off above some s, but for
S < Smax the distribution exceeds that at B=0.

pressure variations in the system are dynamically deter-
mined by the fluid configurations rather than being purely
hydrostatic. The picture we will adopt is a mean-field
description in which each interface moves under the aver-
age pressure field produced by the motion of the others.
In order to estimate the pressure fields we will use the
one-dimensional version of the usual multiphase Darcy
equations'’

3py, Kby
= — 3.1
ox kk., 3D
apo HoVo
£ _ 3.2
ox kk, ’ (32
Po—Pw=Dcap > (3.3)

where p;, u;, v;, and k,; are the pressure, viscosity, Darcy
velocity, and relative permeability of phase i, k is the ab-
solute permeability, and p.,, is the capillary pressure; all
these quantities are macroscopic variables, obtained by
averaging the microscopic quantities over some suitable
region. The position variable x denotes the distance from
the inlet face of the sample. The physical idea behind the
relative permeability concept embodied in these equations
is that when two fluids are present in the medium the per-
meability to each phase is reduced because some of the
flow channels are occupied by the other fluid. In order to
implement this idea it is necessary to specify the function-
al dependence of the relative permeabilities k,;, and also
of the capillary pressure p.,,. The usual hypothesis is
that these quantities depend only on how much of each
fluid is present, i.e., they are unique functions of satura-
tion. The correctness of this hypothesis can be substan-
tiated theoretically, if at all, only by a detailed examina-
tion of length and time scales and/or a microscopic com-
puter simulation which includes both viscous and capil-
lary forces. Such an attempt is far beyond the scope of

this paper; here we will merely point out two key assump-
tions implicit in the application of these ideas.

(1) At any given saturation, each fluid flows in its own
set of flow channels and exerts negligible shear stress on
the other fluid.

(2) From the microscopic point of view, the only effect
of the bulk flow is to produce a local capillary pressure
between the phases which evolves in time; the interface
motions respond to this pressure difference in the same
way as they would in the quasistatic limit. Under this as-
sumption, the sequence of configurations that a given re-
gion passes through is independent of the bulk capillary
number (only the rate at which these changes take place is
altered) and it makes sense to assume that the relative per-
meabilities and capillary pressure are unique functions of
saturation, independent of the flow rate. (While the above
assumption is clearly sufficient to obtain this result, it
seems to the present author that it is also necessary; if the
actual fluid configurations at a given saturation depended
on the flow rate which created them, it would seem most
implausible that the relative permeabilities and capillary
pressure would be functions only of saturation.) Thus the
relative permeability and capillary pressure functions may
be determined theoretically from a model which operates
at infinitesimal flow rate, e.g., the B=0 version of the
model considered in Sec. II. This basic idea has been ad-
vanced recently by Heiba, Sahimi, Scriven, and Davis,!®
although we would argue that invasion percolation is a
better quasistatic model than ordinary percolation as as-
sumed by these authors. We will not dwell on these
differences here but merely note that the relative per-
meabilities and capillary pressure functions obtained in ei-
ther case are in qualitative agreement with experiment,
and of the typical form shown in Fig. 9.

Although we will provisionally adopt assumption (2),
the main result of this section will be that in fact this as-
sumption necessarily breaks down as the system ap-
proaches residual oil saturation. In order to see how this
comes about we must examine the nature of the solutions
to the Egs. (3.1)—(3.3). In addition to these equations we
have the mass balance equations for each phase

PR
at¢‘+ax‘ , (3.4)

where ¢ is the porosity and the S; are the fluid satura-
tions. The initial condition is

S,=0 att=0 (3.5)
and the boundary condition at the inlet face is

vo=0 atx =0 (3.6a)

v,=v atx =0 (3.6b)

where v is the imposed Darcy velocity of the flow. In the
absence of the capillary pressure term (3.3), we have the
well-known Buckley-Leverett problem,’9 and the condi-
tion (3.6a) is satisfied by requiring k,,=0 at x=0, i.e,
S,=1—S%. In the presence of the capillary pressure
term, however, the correct boundary condition is
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FIG. 9. Typical imbibition curves for water relative permea-
bility k., oil relative permeability k., and capillary pressure
Peap as functions of the water saturation S,. The arrows
represent the direction of saturation change, i.e., increasing wa-

ter saturation.

90 _

ax
a possibility which is excluded in the Buckley-Leverett
problem because it would cause dp,, /0x to vanish also. A
typical solution to (3.1)—(3.7) is sketched in Fig. 10. At
fixed position x, the water saturation S, approaches
1—S% as time — . Just as in the buoyancy case we
will find it useful to consider the allowed fraction q as a
macroscopic variable. As the oil saturation at any posi-
tion approaches residual, the value of g approaches 1—gq,,
i.e., Ag in (2.11) goes to zero. Eventually a situation is
reached where the change in g over a correlation length is
no longer small and, just as in the buoyancy case, it no
longer makes sense to consider g as a macroscopic vari-
able. It is clear that the inequality (2.12), or its equivalent

’ (3.7

FIG. 10. Typical solutions of Egs. (3.1)—(3.7) for the water
saturation S, as a function of position x, at various times
i <ty<tz3<ty<ts.

(2.14), is first violated at x=0, since the water saturation
is always largest there. At x=0 we have from (3.3), (3.7),
(3.1), and (3.6b)

OPeap _ OPu
ax  ox
Hw?
= (3.8)

Since we are considering small capillary numbers, i.e.,
small changes in the residual saturation, the relative per-
meability k., should be evaluated at S, =1—S},. Com-
puting the maximum cluster size in the same way as in
Sec. II, we obtain

L max N cap
R K,

v/(1+v)
) (3.9)

where the suppressed factors of order unity are the same
as in (2.17), N, is the capillary number (1.6), and the di-
mensionless constant K, is given by

kk
ok
If we assume that the effect of the cutoff in the blob size
distribution on the residual saturation is the same as in
the buoyancy case, we obtain
(14B)/(1+v)

N,
— , (3.11)
K,

K,= (3.10)

S;r_sor"’ l

where again the suppressed factors are the same as in the
buoyancy case (2.19). In the situation where both viscosi-
ty and buoyancy act, the contributions to Op,,/0x in
(2.14) are additive, and the residual oil saturation should
depend on the combination

kk
Ncap"‘_zB . (3.12)
R
The conclusion that residual saturation should scale as
some such linear combination of N, and B is in agree-
ment with the experiments of Morrow and Songkran,?
who find for their sphere pack materials the combination

N o, +0.00141B . (3.13)
Using the values given by Morrow and Songkran,

% =0.00317
and

kw=0.63, (3.14)

yields a value 2.0 1073 for K,, in (3.10), in reasonable
agreement with the value 1.141X 10~2 obtained by direct
correlation of the experimental data for various capillary
and Bond numbers.

IV. DISCUSSION

In this paper we have considered a simple model of
quasistatic immiscible displacement in the presence of
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buoyancy forces. The fundamental idea of the model is
that the individual oil-water interfaces “see” only the local
value of the capillary pressure, and for small Bond num-
bers are not affected by the pressure gradient. However,
as residual oil saturation is approached, the clusters being
produced become so large that they do begin to see the
gradient in the pressure. The net effect is that the largest
clusters are absent from the distribution and the residual
oil saturation is reduced. The chief results obtained were
the small B scaling behavior of the maximum cluster size
and of the residual saturation, Egs. (2.17) and (2.19). The
reason for this focus was partly because, due to the distor-
tion of individual interfaces, the model loses its validity if
B is not small, but more importantly because such scaling
laws are expected to be universal for any system which ex-
hibits percolationlike behavior. For example, these results
should not be affected by the inclusion of snap-off pro-
cesses, provided these processes are triggered by some
kind of instability controlled by the local value of the
capillary pressure. Although we do not try to justify per-
colation ideas in detail, we would point out that the ef-
fects discussed here depend on the nature of the percola-
tion threshold of the nonwetting, oil, phase. The actual
model we consider exhibits percolation thresholds in both
phases, but it is possible that this is an artifact of the
model. It may be that in reality the wetting phase coats
the grains of the material and hence is always continuous;
on the other hand, it is generally accepted that at residual
saturation the nonwetting phase is broken up into disjoint
clusters so that in some sense the approach to residual sa-
turation must be a percolation threshold.

The major advantage of percolation ideas in immiscible
displacement is that they can provide qualitative under-
standing without great computational effort. However, it
is important that claims made for the percolation ap-
proach are in accord with what actually happens in a sim-
ple model based on these concepts. For example, the idea
that residual saturations are reduced at finite Bond num-
ber or capillary number because the largest clusters are
missing is very appealing, but we have seen that the way
in which this effect operates is much more complicated
than one might imagine. This is partly due to the fact
that the model, invasion percolation, is not exactly the
same as ordinary percolation. Although we have argued
that the scaling laws (2.17) and (2.19) can be understood
in terms of ordinary percolation ideas, the arguments are
somewhat complex, and one can take the more pragmatic
view that on general grounds one would expect such
universal scaling laws, and then obtain the critical ex-
ponents from computer simulations of the invasion per-
colation model in the presence of buoyancy. Such simula-
tions are in any case not much more complicated than
those of ordinary percolation. From this point of view,
the fact that the critical exponents can be expressed in
terms of percolation exponents is of merely academic in-
terest.

The expected universality of the scaling laws means
that they can provide crucial tests of the entire percolation
approach, and hence to some extent of the assumed under-
lying pore level processes. While in artificial two-
dimensional micromodels these processes can in principle

be observed directly, in a real material this will probably
never be possible, and one must rely on more macroscopic
observations such as residual saturation and cluster size
distribution. The former is a truly global measurement
and does not require observations inside the system, but
has the disadvantage that the scaling law (2.19) involves
the deviation of the residual saturation from its B=0
value and so requires very accurate measurements; for this
reason the data of Morrow and Songkran seems not of
sufficient quality to estimate the exponent A reliably. The
maximum cluster size (2.17) requires internal measure-
ments of the system, but is potentially more interesting
because the predicted value 0.47 of the critical exponent u
is strikingly different from the naive value of unity. Un-
fortunately, all experiments involving buoyancy suffer
from the disadvantage that the Bond number (1.11) is not
easy to control. The experiments of Morrow and Song-
kran used a glass-sphere pack for the medium, and altered
the sphere size R; this has the defect that changes in
packing geometry can obscure the effects due to buoyan-
cy. Alternatively one can alter the fluids to change the
density difference Ap or interfacial tension y, but this
runs the risk of changing the wettability characteristics.
The ideal way to change the Bond number is to use a cen-
trifuge to alter the effective acceleration g due to gravity;
this is somewhat cumbersome but doubtless possible.

In Sec. III we suggested how the analysis might be ex-
tended to the case of pressure fields created by viscous
rather than buoyancy effects. From the experimental
point of view this is much simpler because the capillary
number N, in (1.6) can be simply controlled by adjust-
ing the flow rate. Even here, though, we know of no data
which is of sufficient quality to test the predictions (3.9)
and (3.11) accurately. In particular there exists no sys-
tematic data on the variation of cluster size distribution
with capillary number. Qualitatively, however, the pre-
diction that the maximum cluster size (3.9) should scale as
something like the square root of the inverse capillary
number is very important. For example, if the capillary
number is 10° (a typical reservoir waterflood value), and
the constant K, is of order 10~3, then (3.9) predicts a
maximum cluster length of about 30 pore radii, as op-
posed to the naive estimate based on the capillary length
(1.8) which is of the order of 1000 pore lengths. While
typically clusters even as large as 30 pore radii are not re-
ported, the prediction of this paper is certainly a great im-
provement over the naive estimate. Another interesting
aspect of this prediction is that the clusters which are
formed at a given capillary number are well below the
mobilization length (at that capillary number), because the
mobilization length is typically of the order of Lcap.3’13
This can provide another explanation of the initial flat-
ness of the disconnected oil curve a in Fig. 1 which would
hold even if it were true that clusters were displaced from
the sample once they were mobilized.

The theoretical situation in the viscous case is more
complex because there is no simple model which takes
into account the viscous effects. The analysis of this pa-
per merely shows that if one accepts the mean-field pic-
ture in which each meniscus moves in the average pres-
sure field due to the other motions, then effects similar to
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the buoyancy case will occur as residual saturation is ap-
proached. One way to investigate the validity of these as-
sumptions theoretically is to use computer simulations
such as those of Koplik and Lasseter?! or of Dias*?> which
perform an exact calculation of the viscous pressure field
at each step of the process, as well as keeping track of the
interfacial pressure drops due to the individual oil-water
menisci. Such a simulation naturally takes into account
both the viscous pressure fields due to the local motions
(which occur even in the absence of a bulk flow) and those
due to the bulk flow itself, so that in practice it is not easy
or even possible to separate these effects. Nevertheless, it
is certainly possible in principle to examine whether the
behavior of the maximum cluster size and of the residual
saturation at low capillary numbers is in agreement with
the scaling predictions (3.9) and (3.11). Unfortunately,
due to computational complexity, these simulations are at
present limited to somewhat small networks so that there
is a limit to the range of capillary numbers which can be
investigated. Furthermore, the networks are two-
dimensional and therefore do not have the correct topo-
logical properties. Hopefully, improvements in the effi-
ciency of the algorithms and in computational power will
remedy these deficiences in the not too distant future.
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APPENDIX

In this Appendix we investigate the effect of buoyancy
on the residual oil saturation S,;. To do this we will first
investigate the effect of a finite system size of linear size
L, and then replace L by the maximum cluster length
L . obtained in (2.17). In this Appendix only, we will
use the notation p =1—gq to denote the allowed oil frac-
tion, where g is the allowed water fraction defined in Sec.
II. Since we will be concerned with the connectedness
properties of both phases, we will generically refer to the
allowed fraction (occupation probability) as x, and denote
the percolation threshold by x.. The argument is based
on properties of the percolation-theory order parameter
P(x), defined for an infinite system to be the fraction of
occupied sites which are in the infinite cluster when the
sites are randomly occupied with probability x. On a fin-
ite system of dimension L we may define an analogous
quantity P;(x) if we identify the “infinite cluster” as
those occupied sites connected to the boundary, or more
appropriate for our case, those connected to the inlet (or
outlet) face. Any such definition is expected to converge
to P(x) as L— «. Typical curves are sketched in Fig.
11. We note that P(x) and P, (x) differ appreciably only
in the critical region close to x.. Close to the critical
point, P(x) has the behavior

P(x)~(x —x,)?, (A1)

Px), Py (x)

1.0+~

P (x)

\ Pl

X 1‘0 X

FIG. 11. Typical plots of the percolation-theory order pa-
rameter as a function of occupation probability x. The curve
P(x) represents an infinite system, and the curve Pp(x) the
analogous quantity on a system of finite size L. Note that the
curves differ appreciably only in the critical region where the
correlation length becomes large.

where 3~0.45 is a universal critical exponent, while for
x >>x, we see that P(x) quickly approaches unity, i.e., al-
most all the occupied sites are in the infinite cluster.

The point of view adopted here, as throughout this pa-
per, is that invasion percolation in three dimensions can
be understood in terms of ordinary percolation, provided
one is careful to make the correct comparisons. In partic-
ular we must take careful account of the two main differ-
ences listed in Sec. II, namely, that the water in invasion
percolation consists of only a single cluster, and that the
water does not invade finite clusters of oil. In order to
deal with the first point we observe that the important ef-
fects of a size cutoff L occur when the trapped oil clusters
are becoming large, i.e., when the oil is approaching its
percolation threshold and ¢ ~1—x,.. At this value of q it
is reasonable to treat the water as a random ¢ fraction as
in ordinary percolation, since P(q) is close to unity and
the finite water clusters which would occur in ordinary
percolation are very few and very small. Given this as-
sumption the second point can be treated exactly. The
key observation is that the way in which the infinite oil
cluster is broken down does not depend on whether or not
the water invades the finite oil clusters. Thus it is permis-
sible to “imagine” that the water does, in fact, invade
these clusters, provided one keeps track of how much of
the water actually displaced oil from the infinite cluster.
Let us consider the process of reducing the oil fraction
from p to p —dp. The fraction of oil which is in the in-
finite cluster at this value of p is by definition P(p) so
that the water saturation increases by an amount

dS,=P(p)dp . (A2)
Thus at the end of the process the water saturation is
1
Su= [, P(p)dp , (A3)
i.e., the residual oil saturation is
1
See=1— [ P(p)dp . (A4)

Since the same result holds for a finite system we obtain
1
Ser—Se(L)= [ [PL(p)—P(p)ldp , (A5)

where S%.(L) is the residual saturation for a system of
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linear size L. Actually, the result (A2) is only really
correct when p is appreciably less than 1—x,, i.e., g >x,,
since only then is it reasonable to ignore the fact that the
water is a single connected cluster as opposed to a random
q fraction. However, we believe that this error will cancel
in the difference (A5), so that (A5) does give the correct
leading behavior in L. Since we see from Fig. 11 that the
curves P(p) and P;(p) differ only over an area near the
critical point of width Ap and height Ap#, where Ap scales
as L ~17Y, we obtain

| S% —S*(L)| ~L =148/

(A6)

with B~0.45 and v~0.88.!° Since the exponent in (A6) is
large, of order 1.6, we see that the convergence of S%; to
its asymptotic value for L — o is very rapid. Such rapid
convergence is indeed seen in our simulations at B=0,
though the quality of our data is not sufficient to obtain a
good value for the exponent. Replacing the system size L
by the cutoff L, obtained in the buoyancy calculation
we obtain the scaling form of the buoyancy dependence as

S;r_sorNB(1+ﬂ)/(l+v) , (A7)

which is the result given in (2.19).
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