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Screening in quantum charged systems

Ph. A. Martin and Ch. Gruber
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For stationary states of quantum charged systems in v dimensions, v) 2, it is proven that the
reduced-density matrices satisfy a set of sum rules whenever the clustering is faster than

~

x
~

'"+ '.

These sum rules, describing the screening properties, are analogous to those previously derived for
classical systems. For neutral quantum fluids, it is shown that the clustering cannot be faster than
the decay of the force.

I. INTRODUCTION

In this paper, we generalize to quantum systems the
sum rules which have been obtained for classical charged
systems. ' In the classical case we proved that if the
correlations cluster faster than

~

x
~

'"+" (v is the space
dimensionality), then the I first multipole moments of the
charge density, l =0, 1,2, . . . , induced by specifying the
position of any n particles must vanish. This implied a
number of exact sum rules, the first one (corresponding to
1=0) being the well-known electroneutrality condition.
We show here that under the same clustering assumptions
the diagonal part of the reduced density matrices (RDM)
obey the same relations. Moreover the off-diagonal part
of the RDM satisfy a similar set of sum rules which are
specific to the quantum-mechanical situation. This holds
for systems with several kinds of particles having arbi-
trary statistics.

As in the classical case, the origin of the sum rules lies
in the long range of the Coulomb force. Generally, the
sum rules will hold whenever the rate of clustering of the
correlations is faster than the decay of the potential.
Since charged systems are expected to have good cluster-
ing properties at sufficiently high temperature (Debye
screening has been proved rigorously in the classical
case '

) the sum rules will be true in such phases. As a
consequence, their implication on the nature of the fluc-
tuations developed in Refs. 6 and 7 can be directly carried
over the quantum-mechanical description. In particular,
the bulk charge fluctuations are of the order of the sur-
face, the covariance of the potential and the field can be
expressed in terms of the diagonal part of the RDM and
have slowly decaying parts as in Ref. 7. Other applica-
tions will be discussed elsewhere.

Our study of the quantum situation is analogous to the
classical one. We consider stationary states of infinite
charged systems described locally in terms of reduced
density matrices (recall that the existence of the RDM has
been established for short-range interactions at high tem-
peratures and small activities, and for systems of two
types of charged bosons with same masses, activities and
opposite charges' ). These RDM are assumed to satisfy
the usual Bogoliubov hierarchy of equations expressing
the stationarity of the state. " The sum rules follow then
from an analysis of the asymptotic behavior of these

II. GENERAL SETTING

The system consists of X species of quantum particles
with mass m~, charge e~, chemical potential p, and
statistics e, a=1, . . . , N (e=+1 for bosons and e= —1

for fermions). The particles move in the whole v-
dimensional space 8 and interact by means of the
Coulomb potential

1
tf v+2

~ (x& —x2)=e e

—ln~x, —x,
~

if v=2 '

(2.1)

The particles may be submitted to the action of static
external forces such as the field due to a fixed distribution
of charges, or forces which are not of electrical nature
(walls).

In order to emphasize the special properties due to the
long range of the potential and to take into account addi-
tional short-range interactions, we shall consider a more
general class of translation invariant two-body potentials

(x~,x2) with a power-law decay at infinity; we as-

sume that P (x&,x2) satisfies the following conditions:
1 2

(1) P (x~ —x2)=e e P( ~x~ —x2
~

),

(2) P(x) is locally integrable, twice differentiable and

equations as one of the particles is sent to infinity. It is
worth noting that in this derivation the equilibrium condi-
tions are not used but only the stationarity and some in-
variance properties of the state. In particular the sum rule
will hold for equilibrium states having sufficiently fast
clustering properties.

In Sec. II, we give the general quantum-mechanical set-
ting and the sum rules are derived in Sec. III. Some gen-
eralizations are considered in Sec. IV. As an application
it is shown that the correlations of a quantum fluid with
infinite range but integrable potential (e.g., Lenard-Jones
interactions) cannot decay faster than the force. For the
sake of convenience, we state in the Appendix two lem-
mas of Ref. 2 which we use in the asymptotic analysis.
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lim krP(ku ) =do&0
I

u
I

= 1
A~ oQ

lim Ar+'(i};P)(Au) =d, u;, d, ~0
A~oQ

a,jy(x) =a 1
as x

=(a'(qi) . a'(q/)a(qt, ). a(qi)},
where Q and Q' are the ordered sets

(2.2)

The case y=v —2 corresponds to a potential which is
asymptotically like the Coulomb potential. The case y & v
and a= 1 corresponds to a quantum fluid with one kind
of particle interacting with an infinite range integrable po-
tential. If the particles have spins, a will label the species
of the particle together with its spin state, and our whole
discussion applies provided that the potential is spin in-
dependent.

The state of the system is described by the reduced den-
sity matrices p(Q I

Q'), formally defined as

p(Q I

Q') =p(qi . . . qi I qi . .e' )

By definition the state is gauge invariant (with respect
to the charge) if

(C(Q) —C(Q'))p(Q
I

Q')=0 for all Q, Q'

where

k

C(Q)= g e (2.3)

The state is invariant under time reversa/ if

p(Q I

Q') =p(Q'
I Q) for all Q, Q'

i.e., the density matrices are real.
The state is translation invariant if

(2.4)

From these relations and the formal representation (2.2)
one can easily infer the symmetry properties of p(Q I

Q');
in particular the RDM are Hermitian, i.e.,
p(Q I

Q')*=p(Q'I Q). In the following we shall use the
notation 5»» =5, ,5(xi —xz) and

f dq= f dxy.

Q=(qi . .qt) Q =(qi. . ~ q() IQ I

=I

I

Q'I =1, q=(x, a), xER", a=1,2, . . . , X.
The creation and annihilation operators a*(q),a (q) satisfy
the canonical commutation relations

p(Q+a IQ'+a)=p(Q IQ'),

where

Q+a =((xi+a,ai), . . . , (x~+a, ai, ))

(2.5)

[a (x,a),a*(y,a)], =5(x —y),

[a (x,ct),a (y,ct)], =0,
[a (x,a),a "(y,P)] =[a (x,a),a (y, P)] =0

if a~P.

and similar relations for the invariance under rotations
and space reflection.

Throughout the whole paper we are concerned with
"stationary states" (i.e., invariant under the time evolu-
tion). The RDM are then solution of the following Bogo-
liubov hierarchy (see Ref. 11):

k I—(~(Q) —H(Q'))p(Q
I

Q')= f dq y e(q, q) g4(q, ' q) —[p(Q q I

Q' q) p(Q I
Q')p(q —

I
q)], (2.6)

where

k

H(Q)= g 2ma
l

&,+p . +P~(q;)
with

b,P' '(q)=co,Cp(x) (aii ——2, ai2 ——2ir, co3 ——4m)

Cz(x) = g e p(x, a;x,a)+ C'"'(x)
k

+ X 4(q, q, )
ij =1

l (J
is the

I Q I

-particle Hamiltonian; b,„ is the Laplacian act-
ing on the coordinates of the a particle; and P&(q) is the
total average potential on species a at x.

This potential Pz(q) has a short-range contribution
Pz'(q) and a Coulomb contribution Pz"(q), i.e.,

P (q)=P"(q)+P' '(q),

0I'(q) =4'""'(q)+ f dqi4"(q, qi)p(q qi),
P'""'(q)»d P"(q,qi)=P(q, qi) —P' '(q, qi) are the
non-Coulombic part of the potentials, and

Pz '(q) =e Pz '(x), where Pz '(x) is solution of

p(Q q I

Q', q') p(q I
q')p(Q

I

Q') =-o
Ix I"

(2.7)

with q =(x,a), q'=(x+a, a), a fixed, and g&v (W'-
clustering). In particular, under this condition the in-

tegral in the right-hand side of (2.6) is absolutely conver-
gent.

We need an additional uniformity condition when two
particles are sent to infinity. We define

the total charge density at x. This formulation of the Bo-
goliubov equation for Coulomb systems is analogous to
the classical one.

We assume that the RDM have the following clustering
properties as one particle is sent to infinity:
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M(Q, qo, q I

Q', qo, q') =p(Q, qo, q I

Q', qo q') p—(q
I
q')p(Q, qo I

Q' qo )

p—(qo I qo )lp(Q, q I

Q', q') —p(q I
q')p(Q

I

Q')f

—p(Q I

Q') Ip(qo, q I qo, q') —p(q
I
q')p(qo

I qo ) f (2.8)

with

q =(x,a), q'=(x+a, a), a fixed

qp=(xp, a, ), qp ——(xo+b, ap), b fixed .

By (2.7) this quantity tends to zero as
I
x

I

"(
I
xp

I

") when x (xp) tends to infinity. We then require that

1
M(Q qp q I

Q', qp, q)=O, r =max(
I
x

I
xo I

)
T

(2.9)

Following the classical analysis, we want to investigate the asymptotic behavior of the Bogoliubov hierarchy as one
particle is sent to infinity, i.e., we investigate the equation for

p(Q qo I

Q' qo) —p(Q I
Q')p(qo

I
qo)

with

qo=«o, ao» qo=(xo+& ao)
I
"o

I

Using Eqs. (2.6) and (2.8) we find for arbitrary Q, qp, Q', qp.

—[~(Q qo) —H(Q' qo)l~p(Q qo I

Q' qo) p(Q I

—Q')p(qo
I qo)]

k I

g 0(q qo) —g 0(qj' qo ) p(Q I
Q')p(qo

I qo )

+ f dq(4(qo q) —0(qo q)/Ip(qo I qo)(p(Q q I

Q' q) —p(Q I
Q')p(q

I
q)1+M(Q qo q I

Q' qo q)I

k I

+ dq q; q — q,' q p
'

p qo q qo q —p qo qo p q q +~ qo q
'

qo q
i =1 j=1

We define now

k I

p(Q, q I

Q', q) =p(Q, q I
Q', q) —p(Q I

Q')p(q
I
q)+

2 2 &q, + 2 &, , p« I
Q')

i =1 j=1

When Q =Q', p(Q, q I Q, q) is the quantum analog of the excess particle density introduced in the classical case.
Equation (2.10) can be written as

—[H(Q qo) —II(Q' qo)][p(Q qo I

Q' qo) —p(Q I
Q')p(qo

I qo)]

=p(qo
I qo) f dq«, l:&(xo —x) 4(xo x)/p(Q q I

Q' q

k I

+p(Q
I

Q') f dq e g e p(x; —x) —g e, p(xi —x) p(qp, q I qo, q)
i=1 J

(2.11)

(2.12a)

(2.12b)

+&(Q qo I

Q' qo ) (2.12c)

with

&(Q qo I

Q' qo)= f "q« I:4(xo—x) —4«o x)]M(Q qo —q I

Q' qo q)

k I

+ dq e e x; —x — e, xJ —x M, qo, q ', qo, q
i=1 J

(2.13a)

(2.13b)
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This equation (2.12) will be the starting point of the
derivation of the sum rules.

dx e~ I~ p,q, g (3.1)

III. SUM RULES FOR CHARGED SYSTEMS

In this section, we treat a system of charged particles
with pure Coulomb interactions (2.1), or with Coulomb
interactions plus a strictly finite range potential. The
latter is certainly needed for stability if all species have
the Bose statistics. The one-component jellium (with ei-
ther Bose or Fermi statistics) is also included in our dis-
cussion. Except for the uniform neutralizing background
of jellium systems, there are no external forces acting on
the particles. The state is assumed to be gauge invariant
and invariant under translations, i.e., (2.3) and (2.5) hold
for the RDM. In this case the average potential Pz in Eq.
(2.6) is independent of x and can be included in the chem-
ical potential.

The I-sum rules are exact relations between the RDM
which are expressed as follows in three dimensions:

where Yt (x), x =x/l x
l

are the spherical harmonics.
For Q =Q' (3.1) has thus exactly the same form as the
classical l-sum rules.

We first establish the l =0 sum rule for arbitrary v
under the clustering conditions (2.7) and (2.9). It can be
written equivalently as

C(Q)p(Q I
Q')+ f dq e [p(g, q l

Q', q)

—p(g l
g')p(q

l
q)] =0 . (3.2)

We shall then proceed by induction for arbitrary l.
Let F(xp, xp, Q, Q') be a function which is twice dif-

ferentiable and has compact support in all its arguments

xo, xo, x;, xz, and let u be a fixed unit vector. We multi-

ply Eq. (2.12) by A"'F.(x, —Au, xo —Au, g, g'), integrate
over all variables, and then take the limit A, ~co. After
integration by parts, and using the invariance under
translations, the left-hand side of Eq. (2.12) is

f dxpdxpdQ dg I [H(Q qp) —H(g qp )]F(xp xp Q Q )J

x~" '[p(g;xo+», ao
l

Q', xo+~u ao) —p«o ao
l
xo ao)p(Q

l

Q')] . (3.3)

When (2.7) holds with q & v, this term tends to zero as A,~ Oo by dominated convergence.
By using translation invariance again, the term (2.12a) gives

f dxodx'dg dg'F(xo, x', g, g')e. p(x. ,a.
l
x',a.)

&"-' f dq e [P(xo+» —x) —P(xo+» —x)]p(g q l

g' q)

(3.4)

Since

lim A,
" '[P(x)+A,u) —P(xi+A.u)]= —(x) —xq) u

A ~ oo

lemma 1 shows that the large curly brackets in (3.4) tends to

—e p(xp, ap xo, ap)(xo —xo) u f dqe p(g, q l

Q', q)

and, in (3.4), the limit can be taken under the integral by dominated convergence.
By using gauge and translation invariance the term (2.12b) becomes

f dxpdxpdgdg F(xp xo Q Q )p(Q
l Q )

k
' f dqe g e [P(»+x —x;)—P(A,u+x)],

(3.5)

I—g e, [p(»+x —x~ ) —P(»+x)] p(xp, ap, q l
xp, ap, q)

J
(3.6)

By the lemma 1, the large curly brackets converges to

k

g e~, x; —g e, xj .u f dq e~p(xo, ao, q l
xo,ao, q)

i =1 j=1

as k~ ao and the term (3.6) converges accordingly.
Finally, with the same arguments, the condition (2.9) and the lemma 2, one gets for the term (2.12c):

lim k" ' f dxp f dxoF(xp, xo, g, g')N(g;xp+ku, apl g', xo+ku, ap)=0.
A,~ 00

Since F(xp, x p, Q, g') is arbitrary, we must conclude from (3.3)—(3.8) that for all u:

(3.7)

(3.8)
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k I
—u'(xo —xo)ea p(qo I

qp) f dq e p(g q I

Q' q)+"" 2 ea xi —p e xj p(g I
g') f dq e p(qo q I qo q)=0

i =1 j=1

(3.9)

Taking in particular u (xp —xp ) =0, f dq e p(xp, ap, q I
xp, ap, q) =0 for all xp, xp, and therefore

f dq e p(g, q I
Q', q) =0 for all Q, g' .

We establish now the 1-sum rules for 1&0 and v=3. Assume that the conditions (2.7) and (2.9) hold with i) g v+1 and
that the sum rules (3.1) are satisfied for k =0, 1, . . . , 1 —1. To establish the 1-sum rule, we multiply Eq. (2.12) by A,

"+'
and average it with the function F(xo A,u, x—p

—A,u, Q, Q') as before.
The multipole expansion of the Coulomb potential gives the identity for

I
x

I
&

I
xp

I

( 1)k

k& " '" Ix
L

2k+1
(3.10)

and thus by the recursion hypothesis

1

Ix f dqe x ' x p(gq lg'q)=0, k=0, . . . , 1 —1. (3.1 1)

Let

1
Ri i(xo~xo») =

Xp —X

and

i —i
( 1)k

Ixo —x
I k o k' " '"

Ixp
I Ixo

I

be the rest of the Taylor expansion of 1/
I
xp —x

I

—1/
I
xp —x around x =0.

Using (3.11) we subtract in the large curly brackets of (3.4) and (3.6) the (1 —1) first terms of the Taylor expansion of
the Coulomb potential; since in the limit A, ~Do the finite-range contribution is zero we can ignore it and replace the
large curly brackets of (3.4) and (3.6) by

& +'-' f dq e Ri i(xo+—~u xo+Au x)p(Q q I g q) (3.12)

k IX"+'-' f dq e g e~ Ri i(t u x;,Xu, —x—) —g e, Ri i(Xu xj Xu —x—) 'p(xo ao q I
xo ao q) .

i=1 J
(3.13)

By using the clustering conditions and lemma 2, the terms (3.3) and (3.8) (with k' ' replaced by A,
"+' ') vanish in the

limit A,~ oo.
Then using lemma 1 and the fact that

11m A,
1

A~00 Ixp+~u
I

1

I
xp+Au

I

=d;, . . . ;,J(u)(xp —xp V (3.14)

with d; . . . ;,(u)=B; . . . ; (1/lx
I
)„-,i.e.,

1

A,~ oo

lim A"+' 'Ri i(xo+, Au&x'o+Au, x)= d; . . . ; (u)x ' . . x '(xo —xo V1! " iij o

we conclude from (3.12)—(3.14) that

0

( —1) e~p(xp, ap
I
xp, ap)d;, . . . ;,J(u )(xp —xp V f dq e x ' ' ' x 'p(g q I

Q' q)

k I J
—p(g

I

Q') g e x; —g e ~,xj d; . . . ; J(u) f dqe~x ' . x 'p(xo, ao q I
xo,ao q)=0.

i =1 j'=1
(3.15)

We shall show below that each of the two terms (3.15) vanishes; therefore, choosing the third axis parallel to xo —xp:
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d . . . ; 3(u )(xp —xp') f dq e~x ' . . x 'p(Q, q
~

Q', q) =0 (3.16)

I

(xp xp ) g Clm~l+1m(u) f dqe Ix
I
'~i~«)p«q

I

Q' q»

where Ci are nonzero constants. The last equality (3.16)
is established in Appendix B. Since u is arbitrary and the
spherical harmonics are linearly independent, the l-sum
rules follow.

Equation (3.16) obviously holds for the diagonal part of
the RDM since the second term of (3.15) vanishes when

Q =Q'. To prove (3.16) when Q&Q', we first remark
that for l odd and the particular choice Q =(xp, ap) and
Q'=(xp, ap) in (3.15), both terms are identical. It follows
that (3.16) holds for l odd and general Q and Q'. For l
even, (3.16) is also true if the state is invariant under time
reflection or space inversion. The first term of (3.15) is
then invariant under the exchange of Q and Q' [time re-
flection, see (2.4)] or under the transformation
x;~ —x;,xj ~—x~ (space inversion) whereas the second
term of (3.15) changes its sign in both cases. This implies
again (3.16).

We summarize our results for stationary, gauge and
translation invariant states of charged quantum systems
in lR, v) 2, in the following proposition.

Proposition:
If the clustering properties (2.7),(2.9) hold with il ~ v+ l

then
(i) the diagonal part of the RDM satisfy the sum rules

(3.2) for k =0, . . . , l;
(ii) when the state is invariant under time reflection or

space inversion, the off-diagonal RDM satisfy also the
sum rules (3.2) for k =0, . . . , l.

Comments.
(1) We have carried out the proof for l&0 in three di-

mensions, but the two-dimensional case is treated in the
same way. In one dimension, however, only the l =0 sum
rule can be established. This is due to the fact that for the
one-dimensional Coulomb potential —

~

x
~

all the terms
of the expansion of —

~
xp —x

~
+

~
xp —x

~

«r»rge
xp

~ ~
xp

~

vanish except the first one, i.e., the limit
(3.14) is zero for l ) 1. Hence nothing can be concluded
in this case for l & 1. We gave the proof for the Coulomb
case plus a finite range potential. It is clear that the
asymptotic form (3.14) remains the same for all l if an ex-
ponentially decaying potential is added, and the same pro-
position holds true. This would however not be the case
with an additional potential decaying as some inverse
power.

(2) Notice that the terms (2.12b), (2.13b) vanish when

Q =Q', gauge and translation invariance has been used
only in these terms for Q&Q'. Therefore, gauge invari-
ance is not needed in the proof for the diagonal part of the
RDM. The diagonal part of the RDM satisfies also the
sum rules in inhomogeneous Coulomb systems submitted
to localized fields or bounded by hard walls (as the semi-
infinite system) provided that the state has suitably fast
clustering properties. In fact, when Q =Q', one can
prove the sum rules for general domains &C:II" and

+5~p5(x)p(O, a
~

O, a) (3.17)

is the (truncated) charge-charge correlation and

CA ——f dx g e a*(x,a)a(x, a)

is (formally) the charge in the region A, under the same
assumptions as in Ref. 6, the bulk charge fluctuations
behave as the surface BA,

(C'. )
lim = ——,

' f dx ~x ~S(x)

and we have a central limit theorem as in proposition 4 of
Ref. 6. The analysis of Ref. 7 can be reproduced for the
quantum situation. Under the assumptions of Ref. 7, the
potential correlations ( V(x) V(y) ) and field correlations
(E'( )Ex~(y)) at two points in space are given by the for-
mulas (3.7) and (4.1) of Ref. 7 with the quantum charge
correlation (3.17). The potential and field correlations de-
crease slowly even in phases where particle correlations
have a fast clustering, i.e.,

( V(x) V(0)) = j. f dy ly I'S(y) +o

( E'(x)EJ(0) ) = 6'J —3x 'x J

/x /'

3 f dy ly I'S(y) +o

(4) One can check that the l =0 sum rule is equivalent
with

lim ((CAA ) —(C~)(A ))=0
A g"

for any local multiparticle observable A (cf. proposition 6
in Ref. 6).

IV. APPLICATION TO NEUTRAL FLUIDS
AND CONCLUDING REMARKS

We consider here a translation invariant stationary state
of a one-component system of neutral particles with a po-

external fields as in the classical case under exactly the
same assumptions as in Ref. 2.

(3) The implications of the sum rules on the charge, po-
tential, and field fluctuations are the same as in the classi-
cal case. ' In particular, if

S(x)= g e ep[p(x, a;O, P ~
x,a;O, P)

a, P
—p(O, a

~
O, a)p(O, P

~

O, P)]
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tential satisfying the condition (2) with y & v. Following
the argument given in Ref. 1 for the corresponding classi-
cal case, we show that the correlations cannot decrease
faster than

I

x
I

'r+" if the fluid has a strictly positive
compressibility XT, i.e., if

&T=p+ f dx[p(x, 0 lx, o) —p']&0 (4.1)

p=p(0
I
0) is the density.

In the absence of external forces, the state obeys the Bo-
goliubov hierarchy (2.6) [with P&(q) =p f P(x)dx] and the
analysis leading to the 1 =0 sum rules (3.2) can be carried
through as before. Precisely, consider the particular
choice Q =Q' = [x i

——0 j [then the terms (2.12b) and
(2.13b) vanish] and assume that (2.7) and (2.9) hold with

g) @+1. Applying now the lemmas 1 and 2, we find
that (3.9) holds, giving in this case (e = 1)

p+ f dx[p(x, o
I
x,o) —p ]=0 . (4.2)

This contradicts (4.1). Therefore, the clustering of the
RDM (2.7) and (2.9) cannot be faster than

I

x
I

'r+".
This lower bound is probably not optimal and should be

replaced by
I
x

I
". We expect indeed that in the high-

temperature (low density) phase, the quantum system
behaves in the same way as the classical one where we
know that the truncated correlations decay exactly as the
potential itself. (See Ref. 12.)

To conclude this section, we give a brief discussion of
the situation where the gauge invariance (2.3) may be bro-
ken. By allowing ao&ao in (2.10), the terms (2.12a) and
(2.13a) are modified, e [P(xo —x)—P(xo —x)] being re-

placed then by e P(xo —x)—e, P(xo —x). If we have
~o

g & y & v or g & v& y in (2.7),(2.9) with ao&ao, the
asymptotic analysis of Eq. (2.12) gives

(e —e )p(qo I qo) f dqe p(Q q I

Q' q)+p(Q I
g')[C(g) —C(Q')] f dqe p(qo q I qo q)=0. (4.3)

In the case of a one-component neutral fluid y & v and for
the choice qo ——qo

——(O,ao), (4.3) reduces to

p(g
I
g')(I g I

—
I

g'I )x =o. (4.4)

dqe p, q ', q =0

Thus XT &0 implies p(g I
Q')=0 when

I Q I
&

I

Q'
We must therefore conclude that in a state with broken
gauge invariance the clustering of the RDM is not faster
than the decay of the potential. In fact one knows that
the spontaneous breaking of a continuous symmetry is ac-
companied by a weak clustering for instance as slow as

I
x

I

' in the condensed phase of the Bose gas. '3

In Coulomb non-gauge-invariant systems (y =v —2), we
consider first the case where (e —e, )p(qo

I
qo)&0 for

0

some species ao, ao. Equation (4.3) with Q = [qo ),
Q'= tqo J implies

f dq e p(qo, q qo, q) =0

and hence also

I

Since u is arbitrary this implies again the general l =0
sum rules.

Proceeding recursively one can show that the l-sum
rules for general Q, g' hold if the clustering is faster than

I

x
I

' +'+ ". These considerations are admittedly
speculative since states of Coulomb system with broken
gauge invariance (if they exist) are not expected to cluster
sufficiently fast to allow the assumptions made in the
above analysis.

ACKNOWLEDGMENTS

This work was partially supported by the Swiss Nation-
al Foundation for Scientific Research.

APPENDIX A

The following lemma concerns the asymptotic expan-
sion of a convolution (see Ref. 2).

Lemma 1. Let F(x) be a locally integrable function on
1R ", continuously differentiably in a neighborhood of
x =~ with

for all Q, Q': we find again the 1 =0 sum rules. If
(e —e, )p(qo

I qo ) =0 for all ao, ao (but

p(g I
Q')[C(g) —C(g')]&0 for some Q, Q') Eq. (4.3)

reduces to

F(x)=0 1

(8;F)(x)=0 1
y&0

p(Q
I
q')[«Q) —C(Q')] f dq e.p(qo, q I qo q)=0

and thus we have the l =0 sum rule

f dq e p(qo, q I qo, q) =0 .

(4.5)

[C(g)—C(Q')]p(g
I

Q')ii f dqe p(qo, q I qo, q) .

However, to obtain the 1 =0 sum rule for general Q and
Q' we need the stronger clustering condition g&v+ 1.
Indeed Eq. (4.5) can be used to write (2.11b) in the form
(3.6). If g&v+1, the asymptotic form of (2.11) gives
(3.9) with the additional contribution

and g(x) a bounded function such that g(x)
=0(1/

I
x

I

"). Then for q & max(y, v) we have

f F(x —y)g(y)dy=F(x) f g(y)dy+o
1

lx Ir

Moreover, if F(x) is continuously differentiable to order
l + 1 in a neighborhood of x = oo with

(a',"!,F)(x)=0 ' „,k=O 1, . . . , 1+1

we have for 0 & y (v and g ~ v+ l, l integer:
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f F(x —y)g (y)dy = g (t);, .

k=O
, F)(x) dyy '.

y "g(y)+o
ix &+t

lim
Ix I

~m

Lemma 2. Let F(x) be a locally integrable function on
R " with F(x) =0 (1/

~

x
i

r ) and g (x,y) a bounded func-

tion on R X R such that g (x,y) =0( 1 lr"),
r =max(

~

x ~, ~
y ~

). Then for r) )y )v, one has

~

x
~

r f dyF(x —y)g(x, y)

and for 0& y & v and g) v+I, l integer

lim
i
x

~

r+ f dy F(x —y)g(x, y}
/X

f

~oo

lim
/x

/

~a) ~

x
i

~ f dy F (y)g (x,y) =0
lim ix &+t f dyF(y)g(xy) —0

ix

Setting

ge p(Q, q ~

Q', q)=C(x), a =x,' —x,'',

APPENDIX B

one has

li a lld;, 3(u)a dxx i. . XIC(x)= d, . . . , (u) dx (x i . xi+i) C(x)' ' ' lI I+l ()x

1+1
X Yi*+i, (u} f dx, (~x ~'+'Yi+i, (x)) C(x),

+ 21+ I (i+i) Bx

where the last equality follows from (3.10).
The I-order harmonic polynomial is given by

~x ~'Yt (x)=bt (L )' (x'+tx )',

where

(B1)

(B2}

L =L iL =(x —ix ) ——x1 ~ 2 1 ~ 2 ~ 3 ~ ~—l
ax' Ox ' ax'

and bt is a normalization constant. (B2) implies [t)/r)x, L ]= 2L (t)/Bx ' i r)—/t)x )—and hence

[ ~

x
~

'Yi~(x)]= —2bi~L' ', i (x—'+ix )'
Bx ax' ax'

(B3)

bl= —21 ~x ~' 'Yi i~(x) . (B4)

Inserting (B4) in (Bl) leads to (3.16).
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