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Ergodicity and mixing in quantum theory. II
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The approach proposed in the first part of this paper is illustrated by two examples. The first one

involves the Henon-Heiles model. A small wave packet, initially localized in the classically chaotic
region, evolves so that (x ) and (x ) rapidly reach their equilibrium values. The second example

makes use of a pair of rotators with nonlinear coupling. The matrix elements of J„in the energy

representation, are pseudorandom in the energy range which is classically chaotic, but obey selection

rules in the classically regular energy range.

In paper I' it was suggested that the hallmark of quantum
chaos is that simple dynamical variables are represented
by pseudorandom matrices when the Hamiltonian is diag-
onalized. As a consequence, the expectation values of
these variables tend to equilibrium values which are in-
sensitive to the initial state preparation, for nearly all
preparations involving many energy levels. We shall now
illustrate this approach by investigating the quantum
behavior of two physical systems which are classically
chaotic in some regions of phase space and regular in oth-
ers.

I. HENON-HEILES WAVE PACKET

The Henon-Heiles oscillator is defined by the Hamil-
tonian

H= —,'(p„+p~+x +y )+x y ——,y

Its classical behavior is well documented. ' In some re-
gions of phase space most orbits are regular, in others
most are chaotic, and there are also some regions with
mixed behavior.

The time evolution of a small wave packet, in the quan-
tized version, was recently investigated by two of us. A
wave packet initially located in a regular region of the
classical phase space follows the classical trajectory and
spreads very slowly. On the other hand, a wave packet in-
itially located in chaotic region spreads very rapidly. This
may perhaps be considered as a trivial consequence of the
classical limit of Schrodinger's equation. However, it is
not trivial that the second wave packet, when observed on
a coarse scale, also tends to an equilibrium configuration.
Figure 1 shows the behavior of (x) and (x ) for the
wave packet initially given by

ixox (y —yo)
P=(vrA') ' exp — +

2A

with xo ——0.459757 and yo ———0.185405 (this is a hyper-

bolic fixed point in the chaotic region of phase space, cor-
responding to an unstable periodic orbit, with energy
0.125 and period r=6.90853). We see from Fig. 1 that
after a few periods (x) and (x ) are very close to their
equilibrium values 0 and -0.095, respectively. The ten-
dency of such wave packets to "settle" around equilibrium
values was also noted by other authors.

In these calculations we took %=0.015 and used 324
basis functions. The Hamiltonian matrix had to be trun-
cated (because of computer limitations). Relatively few
(about 50) energy levels were appreciably populated. '
Thus, if Fig. 1 were extended for longer times, it would
soon display fluctuations of (x) and (x ), possibly large
ones. It may be objected that this truncation of the Ham-
iltonian alters the nature of the Henon-Heiles system and
impairs the correspondence between its classical and
quantized versions. The dynamical model discussed in
Sec. II overcomes these difficulties.
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FIG. 1. The chaotic wave packet initially given by Eq. (2)
reaches equilibrium after only a few oscillations. The classical
period is ~=6.908 53.
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II. NONLINEARLY COUPLED ROTATORS

We consider two "rotators, " namely, physical systems
having the same commutation relations as angular mo-

menta L and M,

[L„,Ly ]=i fiL, ,

[M„,My] =i AM, ,

and cyclic permutations, and

[L;,Mi]=0,
for all i and j.

The Hamiltonian in this model is taken as

(3a)

(3b)

(3c)

Lz +Mz +LxMx (4)

(There is no physical system with such a Hamiltonian, but
it is somewhat similar to those used with quasispins in nu-
clear physics or pseudospins in solid state physics. '

) It
will be convenient to define

2L if L(1,
E 1+L if L)1.

(6a)

(6b)

While the values of L and M are arbitrary in classical
physics, their quantum counterparts must satisfy

~ E~~Emax
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FIG. 2. The regular and chaotic domains of the Hamiltonian
(4) when the constants of motion L and M are equal. In the
hatched region we found both regular and chaotic orbits. As
shown in Ref. 8, the figure is symmetric with respect to the sign
of the energy E. The maximum classical value of

~

E
~

for
given L =M is given by Eq. (6).

J,=L,+M, .

The "classical" constants of motion (those which are
well behaved in the limit iri~0) are H, L, and M .
There is also one modular" (nonclassical) constant of
motion which can be written as J, (mod2fi) or cos(m J, /fi),
etc., because the L„M„ term in (4) has selection rules

Jz =0, +2
The classical system with Hamiltonian (4) and Poisson

brackets in lieu of commutators has both regular and
chaotic orbits, just like the Henon-Heiles oscillator. Fig-
ure 2 shows the regions of phase space where we found
only regular orbits, only chaotic ones, or orbits of both
types in the special case L =M. The energy scale in Fig.
2 has been normalized by dividing the energy E by its
maximum classica1 value

L =iti l(1+I) and M =iri m(m+1), where 1 and m are
integers or half integers. As these are constants of the
motion, the Hamiltonian matrix is reducible (block diago-
nal), each block being labeled by the values of I and m. In
other words, for given l and m, the Harniltonian is a ma-
trix of finite order. There is no need of truncation.

Naturally, we cannot have true chaos in a finite dimen-

sional Hilbert space. We can nevertheless inquire how

these matrices behave in the semiclassical limit A~O,
when the values of L and M are kept finite, so that I and

m become very large. We thus write L =A 1 and M =Am,

where 1 and m are standard numerical matrices' or order
2l + 1 and 2 m + 1, respectively. The Hamiltonian H re-

quires a direct product of these matrices' and is therefore
represented by a matrix of order (2l+1)(2m+1).

Our first task is to find the eigenvalues and eigenvec-
tors of H. It is convenient to take a representation where

l, and m, are diagonal. Note that the maximum value of
j,=l, +m, is l+m. We can therefore study separately
the two subspaces where l+rn —j, is odd or even because
of the selection rule mentioned above. Moreover, in the
special case l =m, a further reduction is possible. The
Hamiltonian is conspicuously invariant under the inter-

change of L and M and, therefore, if l =m, its eigenfunc-
tions g(m, m, l„m, ) must be either odd or even with

respect to the interchange of l, and m, . No further
reduction of the Hamiltonian matrix is possible (for lack
of a better proof we note that such a reduction would
have been immediately detected in the calculations dis-
cussed below).

The properties of the energy eigenvalues have been dis-

cussed elsewhere. ' As expected from the correspondence
principle, the quantum energy levels are arranged in near-

ly equidistant sets in the regular region of the classical
phase (say, for L =M & 0.g). There is no such regular
spacing in the chaotic region. ' However, for finite i'
quantum chaos is more remote than classical chaos. This
can be explained by the existence of tori remnants. ' ' As
long as the missing parts of these "vague tori" are small
compared to 2iriii, the quantum system behaves as if it
were regular, with nearly equidistant sets of energy levels,
selection rules, etc.

As an example we examined the case L =M=3.5. We
then have from Eq. (6), E,„=13.25 and we see from
Fig. 2 that classical orbits are mostly regular for

~

E
~

)9.1 and mostly chaotic for
~

E
~

&6.6. From the
general arguments of paper I' we thus expect that when a
"reasonable" operator such as J, is represented in the en-

ergy basis, it will have "random" matrix elements (J, )z ~-
when ~E'~ and ~E"

~

&6.6 and "regular" (mostly zero)
matrix elements when

~

E'
~

and
~

E"
~

)9.1. These fig-
ures are actually valid only in the semiclassical limit
fi~O. For finite A the regular domain is larger and the
chaotic domain smaller because of the vague tori.

The reader should note that what we propose here is to
consider two submatrices of the same matrix (i.e., the
same operator of the same physical system, with the same
Hamiltonian, the same value of A, etc., but in different
parts of the energy spectrum, corresponding to different
regions of the classical phase space). This choice is neces-
sary in order to obtain an unbiased comparison between
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"chaotic" and "regular" matrix elements.
%e have performed the calculations by taking

I=m=20 (this corresponds to %=0.1707825 to make
L =M=3.5). We considered only the "even-even" sub-

space of the Hamiltonian, i.e., eigenfunctions
g(20, 20, l„m, ) with even j,=l, +m, and which are in-
variant under I,+-+m, . This subspace has dimension

VALUE OF MAT Rl X ELEMENT

FIG. 3. Histograms for the values of the matrix elements

(J, )~E- in two 40)&40 submatrices: E',E"~6.98 (solid line)
and 0 ~E',E"& 1.24 (broken line). The first submatrix, which

corresponds to the regular part of the spectrum, has most of its
elements very close to zero. Gn the other hand, the elements of
the second submatrix, which corresponds to the chaotic part of
the spectrum, have a roughly Gaussian distribution. Not shown

on these histograms are 94 elements of the first submatrix and 5

elements of the second one whose absolute values exceed 1 (see
text).

(I+ I) =441. We diagonalized H and found its eigen-
functions. It turned out, as expected, that most energy
levels were regular (i.e., arranged in nearly equidistant
sets) down to about

~

E
~

=6.8. This roughly corresponds
to the middle of the transition region in Fig. 2 less 2M.
Of course there is no sharp "phase transition" in the spec-
trum, but a gradual change from regularity to chaos.

We computed the matrix elements (J, )z ~ .' We then
examined three 40&40 submatrices of J,: one with the 40
highest eigenvalues of E' and E" (namely, E',E"& 6.98,
in the regular region), one with O~E', E"& 1.24 {in the
chaotic region), and one off-diagonal submatrix, with E'
in the regular region and E" in the chaotic region.

The 1600 elements of the first two submatrices of J,
were placed in bins of width 0.02. The result is shown in

Fig. 3. As expected, most elements of the regular subma-
trix are very close to zero, while most of those of the
chaotic submatrix are not. Their distribution appears
roughly Gaussian. The histograms of Fig. 3 were truncat-
ed, for lack of space, at —1 and 1. The regular submatrix
also had 62 elements between 1 and 3.27, and 32 elements
between —2.01 and —1. The chaotic submatrix had only
5 elements between 1 and 1.18 and no element below —1.

The off-diagonal submatrix (E' regular, E" chaotic)
had all its elements very small. Only 51 of them exceeded
(in absolute value) 10;none exceeded 10 . This result
was expected bacause regular and chaotic wave functions
do not overlap. They "exist" mostly in the regular and
chaotic regions of classical phase space, respectively. '

Similar results hold in the other invariant subspaces of
the Hamiltonian and for otheI "simple" operators such as
L„or M», etc. , or powers thereof. In summary, our defi-
nition of quantum chaos' (simple dynamical variables are
represented by pseudorandom matrices when H is diago-
nal) appears unambiguously satisfied in the model of non-

linearly coupled rotators.
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