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Electrostatic stability properties of nonrelativistic non-neutral electron flow in a cylindrical diode

with applied magnetic field Boe, are investigated within the framework of the macroscopic cold-
fluid-Poisson equations. The electrostatic eigenvalue equation is derived for perturbations about the

general class of slow rotational equilibria with angular velocity profile roI, (r) = Ve&(r)/r

=(ro, /2}t1 —[1—(4/ro,'r'} I dr'r'roar(r')]' ']. Here, ro, =eBO/mc, ro~q(r)=4nnr(r)e'/m, nt(r)
is the equilibrium electron density profile, and the cathode is located at r =a and the anode at r =b.
Space-charge-limited flow is assumed with E„(r=a)=0 and P (r=a)=0. The exact eigenvalue

equation is simplified for low-frequency flute perturbations with k, =0 and
~

ro —lrot, (r)
~

&(co cop& (r ), assuming co~q ( r ) & co, and a moderate-aspect-ratio diode ( R o &&b —a ). In this re-

gime, it is shown that Bnr, /r)r &0 over the interval a & r & b is a sufficient condition for stability, and

specific examples of stable oscillations (rectangular density profile) and weak resonant diocotron in-

stability (gentle density bump) are analyzed in detail. Finally, the exact eigenvalue equation is

solved numerically for a wide range of density profiles n&(r) and values of cop&(r)/co, leading to
weak and strong instability driven by velocity shear with Boob (r)/Br&0.

I. INTRODUCTION AND SUMMARY

The use of high-voltage diodes to generate intense
charged particle beams for inertial-confinement fusion ap-
plications' has resulted in a concomitant need for a
better theoretical understanding of the equilibrium and
stability properties of non-neutral electron flow in various
diode configurations. %'hile there is a growing litera-
ture ' on the equilibrium and stability properties of
non-neutral plasmas based on the Vlasov-Maxwell equa-
tions, it is often difficult in a kinetic treatment to obtain
detailed estimates of instability growth rates, primarily
because of the complications introduced by strong spatial
inhomogeneities and intense self-generated fields. There-
fore, in the present analysis, we investigate the stability
properties of non-neutral electron flow in a cylindrical
diode making use of a macroscopic cold-fluid model'
for the electrons. The stability analysis is electrostatic
and assumes nonrelativistic laminar electron flow. How-
ever, the present formalism can be extended in a relatively
straightforward manner to include the electromagnetic
and relativistic effects.

In a recent calculation, ' we made use of global conser-
vation constraints satisfied by the fully nonlinear Vlasov-
Maxwell equations to derive a sufficient condition for sta-

bility of the class of self-consistent planar diode equilibria

fb(H VbP~), where Va ———const. In the present analysis,
we make use of a macroscopic, cold fluid model (Secs. II-
and III) to investigate electrostatic stability properties of
nonrelatiuistic sheared electron flow in a cylindrical diode
with strong applied axial magnetic field Boe, (Fig. 1).

After reviewing the cold-fluid equilibrium properties, the
linearized fluid-Poisson equations (25}—(27) are used in
Sec. III to investigate stability behavior for electrostatic
perturbations about a non-neutral cylindrical equilibrium
characterized by (general) electron density profile nb(r)
and self-consistent azimuthal velocity profile
Vea(r)=toa (r)r defined in terms of na(r) in Eq. (15).
Here, the cathode is located at r =a, and the anode at

Anode

FIG. 1. Cylindrical diode configuration with cathode at r =a
and anode at r =b, and applied axial magnetic field

Bo(x ) =Boe,. Equilibrium electron flow is in the 0 direction.
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r =b (Fig. 1). Moreover, co, =eBolmc is the (nonrela-
tivistic) eicos:tron cyclotron frequency, and co~b (r )
=4m.nb(r)e Im is the electron plasma frequency, squared.
For perturbations with complex oscillation frequency
co=co„+iy, axial wave number k„and azimuthal har-
monic number l [Eq. (28)], the linearized fluid-Poisson
equations (29)—(33) can be combined to give [Eq. (34)],

1 a
r 1—

r Br

Npb c)

~b Br

2
pb

gy
I

Vb

CO

(co —lcob )

lay' 1 a ~,'b
2cob —co,

(co —lcob ) cjr vb

Here, 5P'(k„r) is the perturbed electrostatic potential,
cozb(r)=4mnb(r)e Im, co, =eBolmc, and vb(r)=[co
—lcob (r) ] —[co, co~b (r)—2co, co@—(r) ], where coF (r)

cE, (r) /—Bor.
The eigenvalue equation (34) provides an exact cold-

fluid description of electrostatic stability properties, as-
suming nonrelativistic electron flow. For a moderate-
aspect-ratio diode with d «a (Fig. 1), it follows that
co+(r) «co, [Eq. (39)], and the eigenvalue equation (34)
further simplifies to give the approximate eigenvalue
equation in Eq. (43). In Secs. IV and VI, we analyze Eq.
(43) for the special case of low-frequency flute ~erturba-
tions with k, =O, and

~

co lcoF(r)
~

&&—co, cozb(r), as-—
suming that the electron densit~ is below the condition for
Brillouin flow, i.e., cozb(r) &co, . In this case, the eigen-
value equation (43) can be approximated by Eq. (47). In
Sec. IV A, we make direct use of the eigenvalue equation
(47) to show that dcozb(r)/dr &0 over the interval
a & r & b is a sufficient condition to assure electrostatic
stability [Eq. (55)]. That is, equilibrium density profiles
that decrease monotonically from the cathode to the
anode are electrostatically stable. For the special case of
weak resonant diocotron instability with growth rate
y =Imco «

~
co„~, a formal expression for the growth rate

y is derived in Eq. (60) of Sec. IVB, where co, =Reco is
determined from the dispersion relation (59). In Sec. V,
analytic solutions to the electrostatic eigenvalue equation
(47) are determined both for the stable surface modes on
an annular electron beam (Sec. V A), and for weak
resonant diocotron instability driven by a small density
bump with dco&b Idr

~
„„&0 (Sec VB). .

Because of the very general nature of the stability
theorem obtained directly from the eigenvalue equation
(47), we have also developed an indirect proof that
dnb /dr &0 is a sufficient condition for electrostatic stabil-
ity. The analysis in Ref. 25 is based on a cold-fluid
guiding-center model in which electron inertial effects are
neglected (m ~0 and Bo~ ao ) and the motion of an elec-
tron fluid element is determined from Vb

——( —cI
Bo)V/Xe, . Making use of exact global conservation
constraints, it is shown that Bnb /Br &0 over the interval
a & r & b is a sufficient condition for electrostatic stability
to small-amplitude perturbations.

Finally, in Sec. VI we solve numerically the exact elec-
trostatic eigenvalue equation (34) for k, =O and a wide
range of electron density profiles nb(r) leading to weak
and strong instability driven by velocity shear. In this re-
gard, it should be emphasized that the exact eigenvalue
equation (34) fully includes cylindrical effects and the in-

fluence of finite aspect ratio. Moreover, Eq. (34) allows
for arbitrary values of cozb(r)/co, consistent with the ex-
istence of radially confined equilibria. Therefore, in the
numerical analysis of Eq. (34) presented in Sec. VI, no
a priori restriction has been made to planar
geometry' ' ' or to low electron density with

2 2 15, 17, 18,20, 21,25

II. LAMINAR COLD-FLUID EQUILIBRIUM
FOR A CYLINDRICAL DIODE

A. Theoretical model and assumptions

V b( x ) = Veb(r )ee,

where r is the radial distance from the axis of symmetry,
and e~ and e, are unit vectors in the 0 and z directions,
respectively. The equilibrium continuity equation
V [nb(x)V b(x)] =0 is automatically satisfied for general
profiles nb(r) and Veb(r).

(iii) The azimuthal current Je(r)= enb(r)Veb—(r) will
generally induce an axial self-magnetic field B,'(r).
Throughout the present analysis, it is assumed that the az-
imuthal current is sufficiently weak that the axial self-
magnetic field is negligibly small in comparison with the
applied magnetic field, i.e.,

~

B,'(r)
~
«Bo .

(iv) The electron fluid is assumed to be sufficiently
cold that pressure gradients can be neglected in the equili-
brium force balance equation, i.e.,

Pb ——0.
Bx

It is convenient to introduce the notation

Veb(r) =cob(r)r,

(3)

(4)

We consider here the equilibrium properties (c)/c)t =0)
for a cold, non-neutral pure electron plasma confined in
the cylindrical diode configuration illustrated in Fig. 1.
The cathode is located at r =a and the anode at r =b,
where d =b —a is the anode-cathode spacing. In addi-
tion, the electron fluid is immersed in a uniform applied
magnetic field Boe, . The equilibrium analysis is based on
a macroscopic cold-fluid description with the following
simplifying assumptions:

(i) The electron fluid is uniform in the z direction, with

c)nb(x)/c)z=0 and c)Vb(x)/c)z=0, and there is no equili-

brium electric field parallel to Boe„i.e., E ( x ) e, =0.
(ii) The equilibrium radial density profile and the az-

imuthal flow velocity profile are assumed to be azimu-
thally symmetric, i.e.,

nb ( x ) = nb (r),
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Ep( x ) =E, (r )e„,

Bo( x ) =Boe, ,

(5)

where the electric field is determined from the steady-
state Poisson equation

in the subsequent analysis. Within the context of assump-
tions (i)—(iii), the equilibrium field components are

Note from Eq. (14) that there are two allowed equilibrium
rotation frequencies, with tabb+(r) corresponding to a fast
rotational equilibrium, and pub (r) corresponding to a
slow-rotational equilibrium. Note also from Eq. (14) that
cob (r =a)=0 at the cathode, whereas cob+(r =a)=pi, . In
the subsequent equilibrium and stability analysis, it is as-
sumed that

Veh(r) =tpb (r)r

[rE, (r)]= 4~e—nb(r),o o

r Br
(6) roc

2
1 — 1 — dr'r'co b(r')

2 2 ~ P
coc r

1/2

(15)

T

E„(r)= — dr'r nb(r'),
r

where space-charge-limited flow with

(7)

and —e is the electron charge. Integrating Eq. (6) gives
the equilibrium radial electric field

dr' r'co~b(r') && 1,
r co,

(16)

corresponding to a slow-rotational equilibrium. In the
special case where

E„(r=a) =0 Eq. (15) can be approximated
(8)

is assumed. We introduce the electrostatic potential Pp(r),
where E„= dP /Br, an—d impose the boundary condi-
tions

cE, (r)
Veb(r)= f dr'r'cozb(r')=-

co,r Bo
(17)

Pp(r =a)=0,

V=fp(b) =4me f „ f dr' r'nb(r') (10)

yo(r =b) = V.

The anode voltage V consistent with Eqs. (7) and (8) is
given by

corresponding to an Eo( x ) XBpe, equilibrium rotation of
a fluid element. In general, however, centrifugal effects
should also be retained in Eq. (11),which gives the expres-
sion for Veb(r) in Eq. (15).

From Eq. (15), aib (r) can be determined for a broad
class of equilibrium density profiles nb(r). By way of il-
lustration, consider the rectangular density profile [Fig.
2(a)] specified by

—m[VSb(r)] = —e E, (r)+ —Veb(r)Bpo 1

C

(v) Finally, for analytic simplicity, it is assumed in the
present analysis that the fluid motion is nonrelativistic.
In equilibrium, radial force balance on a fluid element can
therefore be expressed as

(a)

nb(r) '

Cathode

-- nb

Anode

B. Equilibrium flow properties

Substituting Eqs. (4) and (7) into Eq. (11) gives (for
a&r&b)

rb

1
cob(r) cob(r)co, + d—r'r'co~b(r') =0,

2
(12) (b)

where

ego 4~e 2nbo(r)
and co&~(r)=

mc Pl

Gab ( f)

I

~trb)

are the (nonrelativistic) cyclotron frequency and plasma
frequency, squared. Solving Eq. (12) for the angular velo-
city profile cob(r) gives'

~b(r)=to (r)

fb

1+ 1—
L

2

1/2
T

dr r cp~b(r )
~cr

(14)
FIG. 2. (a) Rectangular density profile nb(r) assumed in Eq.

(18). (b) Corresponding angular velocity profile cob (r) in Eq.
(19).
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nb ——const, a &r &rb
nb(r) = .

0 rb&r&b .

Substituting Eq. (18) into Eq. (15) gives [Fig. 2(b)]

(18) Bt
5Vb(x, t)+ Vgb(r)eg V5Vb(x, t)

+5Vb(x, t) V [Vgb(r)eg]

5Vb( x, t ) && Boe,—V 5$(x, t)+ (26)
toe

cob (r)= 1 — 1—
2

22' pb a1—
Qp r

(19)

V 5ctp(x, t)=4ne5n. b(x, t) . (27)

cob (r) =cob+(r) cob (r—) = + [2cob (r) —co, ] .

From Eq. (14), we find that

(20)

for a (r (rb H.ere co~b 4~——nbe /m =const. Note that
cob (r) assumes its maximum value at r =rb. For a =0, it
follows from Eq. (19) that cob ——const and c)cob /c)r=0.
For a &0, however, there is generally a shear in the angu-
lar velocity profile with dcob (r)/c)r&0.

Finally, an important frequency known as the Uortex

frequency cob, enters the subsequent stability analysis.
Here, cob„ is defined by

To determine the stability properties for perturbations
about equilibrium, a normal-mode approach is adopted.
It is assumed that the time variation of perturbed quanti-
ties is of the form exp( i cot), w—here the complex oscilla-
tion frequency co is determined consistently from Eqs.
(25)—(27). If Imco) 0, then the perturbations grow and
the equilibrium configuration is unstable In an. alyzing
Eqs. (25)—(27), the perturbations are assumed to be spa-
tially periodic in the z direction. The 0 and z dependences
of all perturbed quantities are Fourier decomposed ac-
cording to

(cob+ cob )2—~,' —dr r ~p'b(r ) .
2

(21) 5$(r, 8,z, t)= g g 5P'(r, k, )exp[i(18+k,z cot)] .—
1=—a) k = —a)z

~ b(r)= — [r (~b ~b ) ] .a
4r Br

(22)

III. ELECTROSTATIC EIGENVALUE EQUATION
FOR NONRELATIVISTIC FLOW

IN A CYLINDRICAL DIODE

Moreover, co~b(r) can be expressed directly in terms of
(cob cob ) —by

(28)

Substituting Eq. (28) into Eqs. (25)—(27), it can be shown
that the Fourier amplitudes 5nb(r, k, ), 5V'b(r, k, ), etc. ,
satisfy

0 1

0 i anb 5V~b
i (co lcob—)5nb—+— (rnb5V„b )+

r Br r

+ ik, nb 5 V,'b ——0, (29)

In this section we derive the eigenvalue equation for
small-amplitude electrostatic perturbations about the gen-
eral class of laminar cold-fluid equilibria described in Sec.
II. Assuming 5B(x,t)=0 and

—l (co lcob )5Vpb ——( —co, +2cob )5Vgb
j

5P, (30)
e

m Br

E(x,t)= —V P(x, t), (23)

nb(x, t) =nb(r)+5nb(x, t),
Vb(x, t) = Vgb(r)eg+5Vb(x, t),

E(x, t) =E, (r)e, —V 5$(x,t),
B(x,t) =Boe, ,

(24)

each quantity of physical interest is expressed as its equili-
brium value plus a perturbation. That is,

(31)
e i15$'

m r

—i(co lcob )5V,'b =—ik, 5$', —
m

(32)

$2
r 5y' , 5y' k,'5y'=—4~—e 5nb'

r Br Br r
(33)

—i(co lcob )5Vgb+——co, +— (r cob ) 5V,b
1 2

r Br

where e„e&, and e, are unit vectors in the r, 0, and z
directions, respectively. For small-amplitude perturba-
tions, the evolution of 5nb(x, t) 5Vb(x, t), and 5$(x, t) is
determined from the macroscopic cold-fluid-Poisson
equations

0= 5nb(x, t)+ V' [nb(r)5V—b(x, t)+5nb(x, t) Vgb(r)eg],
at

(25)

where —e is the electron charge, co, =e80/mc is the cy-
clotron frequency, and a slow-rotational equilibrium with
cob(r)=cob (r)=Vgb(r)/r is assumed in Eqs. (29)—(33).
The equilibrium angular velocity cob (r) in Eqs. (29)—(33)
is related to the equilibrium density profile nb(r) by Eq.
(15). The perturbations in density and mean fluid veloci-
ties in Eqs. (29)—(32) can be eliminated in favor of
5$ (r, k, ). Poisson's equation for the perturbed electrostat-
ic potential can then be expressed in the form'
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M CO1 B
1

b c)
~~

1
1

b

r 3r ~b2 3r r 2
~b2

cE„(r)
coE(r):——

pr

r
dr r co&b(r )

r co
(37)

2

(co l—cob )

a ~,'b,
2cob —co~

(co lcob—) &r vb

where cozb(r)=4nnb(r)e /m, and vb(r) is defined by

(34)

the quantity vb(r) in Eq. (36) can also be expressed exactly

vb(r) =(Co —lcob ) —[Co~ —Co&b(r) —2 Co~ Cog( r)]. (3&)

Thus far, the electrostatic eigenvalue equation (34) is
completely general. We now simplify Eq. (34) for the case
of a cylindrical diode with moderately large aspect ratio
(Ro &&d in Fig. 1). In particular, it is assumed that

vb(r) =(co—lcob ) (2cob——co, ) — (r cob ) —co,
1

r Br

r
cor, (r)= dr r copb(r ) «co,

co r
(39)

(35)

Equation (34) is valid for arbitrary cozb(r) and cob (r) con-
sistent with Eq. (15). Operationally the procedure is to
solve Eq. (34) for 5P (r, k, ) and co as an eigenvalue prob-
lem. The solution to Eq. (34) is accessible analytically for
certain simple density profiles.

Making use of the definition of cob (r) in Eq. (15), the
quantity vb(r) defined in Eq. (35) can be expressed in the
equivalent form

r
vb(r) =(co —Icob ) — co, cozb(r) — —dr' r'co&b(r')

over the radial extent of the electron plasma. Note that
Eq. (39) does not require that the electron density be low
with cozb(r) «co, . Rather, evaluating Eq. (39) at r =b,
the inequality in Eq. (39) is satisfied whenever

CO pb
1

Cue P

where cozb 4rcnbe ——Im, nb is the characteristic (average)
electron density, and b( «Ro) is the characteristic radial
width of the electron density profile. Making use of Eq.
(39), it follows from Eqs. (15) and (38) that cob (r) and
vb(r) can be approximated by

(36) cob ( r ) =co~ ( r ), (41)

It should be emphasized that the cozb(r) contributions in
Eq. (36) arise from equilibrium space-charge effects asso-
ciated with E„(r)&0. It should also be noted that for a
thin annulus of electrons (large-aspect-ratio diode) the fi-
nal term in Eq. (36) is typically small in comparison with

cozb(r). Defining

and

vb ( r ) = [co —IcoF ( r ) ] —[co~ —copb ( r ) ] (42)

Moreover, within the context of Eqs. (39), (41), and (42),
the electrostatic eigenvalue equation (34) can be approxi-
mated by

1 r 1—
r Br

2
cotpb c)

~ t l

(co IcoE ) —(co~ —copb ) c)r — r2 2 2 2
I

2
Q)pb

(co —lcoF ) —(co, coeb )—2 2 2

l5$' coo

r (co lcoE)—
2

, sy'
(co —lcoE )

2
a COpb

dr (co —lcoE ) —(co~ —co&b )
2 2 2 (43)

where cozb(r) =4m.rb (r)e Im, and coE(r) is defined in Eq. (37).

IU. STABILITY THEOREM
FOR LOW-FREQUENCY FLUTE PERTURBATIONS

In particular, it is assumed that the electron density is
below the condition for Brillouin flow

A. Sufficient condition for stability

The electrostatic eigenvalue equation (43) can be solved
numerically for the eigenfunction 5$' and the eigenfre-
quency co for a broad range of electron density profiles
nb(r), and specific numerical examples are presented in
Sec. VI. In this section, we make use of Eq. (43) to deter-
mine a sufficient condition for nb(r) to be stable for low-
frequency flute perturbations with

(44)

co —1coE(r)
I

«coo —co b(r) . (46)

Making use of Eqs. (44) and (46), the eigenvalue equation
(43) can be approximated by

copb (r ) & co~ (45)

[Note that cozb(r) «co, is not required for proof of the
stability theorem later in this section. ] The eigenvalue
equation (43) generally supports both high-frequency and
low-frequency solutions. For present purposes, we exam-
ined Eq. (43) for low-frequency perturbations satisfying



30 MACROSCOPIC ELECTROSTATIC STABILITY PROPERTIES OF. . . 493

1 8 Co b(") c) i 1 Co b(r)
r l+

c)r co —co b(r) c)r r co, —co&b(r)

In Eq. (47), note that

corb(r)
ei(r)= 1+

co~ —co&b ( r )

is the effective perpendicular dielectric function, and

CO=CO +lf

15$I coc c)
2

~.b( ).
r co Ic—oE(r) [co, co&—b(r)] c)r

(47)

(48)

(49)

is the complex eigenfrequency, with y = Imago & 0 corresponding to instability. Moreover, the boundary conditions used in
solving Eq. (47) are

5$ (r =a) =0=5/'(r =b), (50)

2
toe toe a 2

co —lcoE(r) [co —co b(r)] c)r
~rb(r)

corb(r)
+ 2 2

co corb(r)—

b
O=D(co)= J dr r

a

which assures that the tangential electric field 5Ee —— il5$—'Ir is equal to zero at the perfect conducting cathode ( r =a)
and anode (r =b)

The main objective here is to make use of the approximate eigenvalue equation (47) to extend to higher density the
classical stability theorem first derived by Briggs et al. ' for the case copb(r) «co, . To determine a sufficient condition
for stability, we multiply Eq. (47) by r5$ and integrate from r =a to r =b. This gives

~ 54' +1
Br r r

Expressing

(co, IcoE ) i—y-
co, —lcoE+iy (co„—lcoE) +y

condition D, =ReD(co) =0 gives

copb (r)
a 2

Br

whereas D; = IniD(co) =0 gives

2

O=IinD(co)=ly J dr ~5$'~ » & 2» corb(r)
[co, lcoE(r)] +y [co,—cozb(r)]—

we equate the real and imaginary parts of Eq. (51) separately to zero. The
2 2

O=ReD(co)= f dr r 5$' +—~5P'~ 1+ 2c)r r co, copb(r)—
co, [co„lcoE(—r)] co,

[co,—lcoE(r)] +y [co, co~b(r)]—

(51)

(52)

(53)

(54)

corb(r) &0a 2

Br
(55)

over the interval a & r & b, and that the system is unstable
with y=Imco&0. From Eq. (55), it follows that the in-
tegral in Eq. (54) is nonzero. Therefore, our assumption
of instability (y & 0) is incorrect for monotonic decreasing
density profiles, and it neccessarily follows that the sys-
tem is stable whenever Eq. (55) is satisfied over the inter-
val a &r &b That is, Eq. (5.5) corresponds to a sufficient
condition for stability. Expressed another way, for insta-
bility to exist it is necessary that dcozb ldr change sign in
the interval a &r &b, or equivalently that

1
[r coE(r)]

r Br

A sufficient condition for electrostatic stability follows
from Eq. (54). Let us assume that the density profile is
monotonic decreasing with

change sign in the interval a &r &b, corresponding to a
shear in the angular velocity profile.

We emphasize the powerful nature of the stability
theorem in Eq. (55). For low-frequency flute perturba-
tions satisfying Eqs. (44)—(46), all monotonic decreasing
density profiles with c)cozb Ic)r & 0 are electrostatically
stable. This stability condition has been derived without
specifying the functional form of nb(r) or solving explicit-
ly for the eigenfunction 5P'(r). Equation (55) represents
an important extension to higher density of the stability
theorem first derived by Briggs et al. ' for the case
copb(r) «co~, i.e., ei(r) = 1.

The stability theorem derived in this section represents
a direct calculation of the sufficient condition [Eq. (55)]
for the equilibrium density profile nb(r) to be stable for
low-frequency flute perturbations. The calculation is
direct in the sense that it makes explicit use of the eigen-
value equation (47). In a recent calculation, we give an
indirect proof of this stability condition, based on global
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conservation constraints satisfied by the fully nonlinear
macroscopic fluid equations in the guiding-center approx-
imation with co&b «cu, and m ~0.

Finally, for topb « io„ this important stability theorem
has its analog in relativistic planar geometry ' and can
be extended to include the (stabilizing) influence of finite
k, (Ref. 21) or magnetic shear. We reiterate that the
present analysis is restricted to low-frequency perturba-
tions [Eq. (46)] and large aspect ratio [Eq. (39]. There-
fore, the possibility of high-frequency (large I) instability
discussed by Buneman et al. ' for planar geometry is
necessarily excluded, as are the important cylindrical ef-
fects associated with finite aspect ratio which are con-
tained in the exact eigenvalue equation (34) analyzed in
Sec. VI.

B. Growth rate for weak resonant instability

From Eq. (51), it is straightforward to derive a formal
expression for the growth rate y in circumstances where

I

the instability growth rate y =Imago is weak with

(56)

In particular, for small y, we express

BD„
D(to„+iy)=D, (to„)+i D;(to, )+y + .

Bco„

(57)

and make use of

1 P
lim —l'tr5(co„—icoE(r )),

y 0+ N —lcoE+Ep co„—lcoE

(58)

where P denotes Cauchy principal value. Substituting
Eqs. (57) and (58) into Eq. (51) and setting real and ima-
ginary parts equal to zero gives

b
O=D, (to, )f dr r

and

,„~W' + —,
I

~W'I ' copb(r)
&+

to~ —copb (r)
1

I
&O'

I

'
p

2c COc a 2

to, lcoE(r—) [to, to b(r)]-copb(r)

(59)

—D;(~, )
y=

BD, /Boo,

b
t co,6(io„1cob (r—) ) ()

dr Icy'I' ', ", , ~,'b(r)
a ~pb(r)l

I
1COc ~c

&& f «
I

t'O'
I

'P
[co„lrop(r)] [co,——copb(r)]

(60)

Equation (59) determines the real frequency io, (assuming
that 6$' is known), whereas the growth rate y is given by
Eq. (60).

In circumstances where BD„/Bto, &0, it follows from
Eq. (60) that resonant instability exists whenever

(a)

STABLE

nb(r)

2
BCOpb )0,

Qp' r =r,

where the resonant radius r, satisfies

co„lcoF(r, ) =0 . —

(61)

(62)

(b)

UNSTABLE

nb (r)

Density profiles nb(r) with a gentle bump (Fig. 3) are
prime candidates for such a weak resonant instability. A
specific example is discussed in Sec. V.

V. ANALYTIC SOLUTIONS
TO ELECTROSTATIC EIGENVALUE EQUATION

A. Stable surface waves

0

(c) nt, (r )

UNSTABLE

r
0 a rs b

FIG. 3. Class of equilibrium density profiles nb(r) that are
(a) stable [Eq. (55)], (b) unstable [Eq. (61)],and (c) unstable [Eq.
(61)], for low-frequency flute perturbations satisfying Eqs.
(44)—(46).

(63)

In this section we make use of the approximate eigen-
value (47) to investigate stability properties for low-
frequency flute perturbations with

I
co 1toEI—

—copb(r) and topb(r) & co, [Eqs. (45) and (46)]. As a specif-
ic example that is analytically tractable, consider the rec-
tangular density profile (Fig. 2) specified by

n~ ——const, a & r & rb
nb(r) =

0, Tb &T($
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From Eqs. (37) and (63), cop(r) = c—E„(r)/rBO can be ex-
pressed as (for a & r & rb )

~Jb r —a
Q)E(r) =

2coe a
(64)

r 5pt 5pt ——0, a &r &rb
r iver 3r p2

(65)

where topb 4m——nbe. /m =const. Because copb(r) =topb
=const for a &r &rb (region I), the eigenvalue equation
(47) reduces to

for rb &r &b (region II), the eigenvalue equation (47) can
be expressed as

a ar 5ptt — 54„=0, rb &r &b (66)
r Br Br

a (~&&b

in the vacuum region between the anode and surface of
the electron annulus. The solutions to Eqs. (65) and (66)
that satisfy 5P', (r =a) =0=5/It(r =b) and are continuous
at r =rb are given by

I I

5/I(r) =A (67)
a

within the electron annulus. Moreover, because cab(r) =0
I

and

5yI, (r) =W
l 1

r b

b r
P'b

I'b

l'b

b

—1

b
rb&r&b .

l"b
(68)

The remaining boundary condition on (8/Br)5$ at r =rb is obtained by integrating the eigenvalue equation (47) across
the surface of the plasma at r =rb. Multiplying Eq. (47) by r and integrating from rb(1 —e) to rb(1+e), with e~O+,
gives

A.
br 5gn — 1+ r 5P,r P =Pb (Q)~ Q)pb ) r

where co&b ——4~n,be /m, and

~ 2 2 2
CO &b Tb —a

coE(rb )
2coc

my'(r =rb)~. 9 p'b

[to ltoE(rb)]—(to, trpb—)
(69)

(70)

Equation (69) relates the discontinuity in perturbed radial electric field to the perturbed surface charge density at r =rb.
It is useful to define

and

2
toe

(co~ —co pb )
2 ~ 2

CO pb
QD ——

2coc

A.
CO pbe =1+

(top ro pb)—
(71)

l
~b b+ Tb

b

—1

b
'

7"b

fb a+
a 7b

I"b

(72)

1 2QDe

gl &—lME(rb )
(73)

or equivalently,

co lcoF(rb) =(2gtej )QD—. (74)

Note that Eq. (69) has played the role of an effective
dispersion relation that determines the eigenfrequency co.
From Eq. (74), for the rectangular density profile in Eq.

where gt is an effective geometric factor. Substituting
Eqs. (67) and (68) into Eq. (69) then gives

I

(63) and Fig. 2, the system supports only stable oscilla-
tions (Imco=O). On the other hand, a completely analo-
gous analysis of the eigenvalue equation (47) can be car-
ried out for the hollow density profile illustrated in Fig. 4,
where the inner surface of the electron annulus is separat-
ed from the cathode. In this case, there are charge pertur-
bations on the inner surface (r =rb ) as well as the outer
surface ( r =rb+ ) of the annulus, and the interaction leads
to the familiar diocotron instability" ' modified to in-
clude plasma dielectric effects with ez —1 ~ 0.

To conclude this section, we simplify the expression for
the geometric factor gt in Eq. (72) for a moderate-aspect-
ratio diode with
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n
~ nb

~E(rb ) 2 +D
a

(81)

where QD ——co~b/2', . For b=a, we substitute the ap-
proximate expression (79) for gi into Eq. (74). This gives

Cathode Anode
co —

Icing�

( Pb ) =—
1+@id, /5,

2I QD, (82)

0 a rb

FIG. 4. Hollow electron density
diocotron instability (see Ref. 10).

r+ bb

profile that exhibits strong

where coF(rb) is defined in Eq. (81). Since Id/a «1 has
been assumed in Eq. (82), it follows that the low-

frequency assumption,
~

co —Ice~ ~
&& co, —co b in Eq.

(46), is readily satisfied for moderate values of
cozb /co, .2 2

B. Resonant diocotron instability
a ~~d =(b —a),

and for (low) harmonic numbers I satisfying

ld

a

(75)

(76)

To leading order, Eq. (72) gives the approximate expres-
sion for gi

1 a+d
gi 1[d (rb —a)]—

a1+
I (rb —a )

(77)

n =d (rb a)=—1 rb . — —
For Ib,, /a «1 and Ib,„/a «1, Eq. (77) can be approxi-
mated by

Ih„/b
g&=—

1+Ez(h~ /6, b )

(79)

For a thin annulus, it follows from Eq. (64) that pi+(r)
can be approximated by

COE(P) =20' r —a
(80)

and roE(rb) by

where I(rb —a)/a «1 is assumed, and d =b —a is the
anode-cathode spacing. We denote (Fig. 5) the thickness
of the annulus by b,, and the width of the vacuum region
by h„where

~a rb a

We now consider circumstances where the main density
region (a & r & rb) is seeded with a low-density component
of circulating electrons (Fig. 6). In the low-density re-

gime, it is well known that such a density profile can lead
to a resonant version' of the classical diocotron instabili-
ty. ' ' In the region a &r &rb ct)g(1')= —CE„(P')/Bp is
still given approximately by Eq. (80) because E„(r) is
determined primarily by the main density component (nb )

in Fig. 6. That is, coE(r) can be approximated by

coE(r) =2QD
r —a

a (r (ry (83)

in the region of the low-density bump in Fig. 6. More-
over, the analytic results in Sec. VIA represent excellent
approximations for the eigenfunctions in regions I and II
[Eqs. (67) and (68)], and for the real oscillation frequency
co, =Repi [Eq. (82)] in circumstances where the bump den-

sity is much less than nb. That is, ~„=Re&a is given ap-
proximately by

CO„—ICOE ( Ib) =—' 2l QD
1+eih, /6,

(84)

for a large-aspect-ratio diode with ld /a « l.
In Sec. IVB, we derived a formal expression [Eq. (60)]

for the growth rate y = Imago assuming (weak) resonant in-
stability driven by a gentle bump in the density profile
nb(r). From Eqs. (61) and (62), the condition for instabil-
ity is

0

no(r)
b

Cathode

II
I

I A

nb

rb

Anode

I 1 II
I

I

)g x ~ h-- nb

nb (r)
I

~+V
I

Cathode
I

I

I

Anode

r

FIG. 5. Rectangular density profile nb(r) assumed in stabili-

ty analysis in Sec. VA. A large-aspect-ratio diode with a &&6„
5„is assumed.

0 rsrb

FIG. 6. Density profile nb(r) with density bump that leads to
the resonant diocotron instability discussed in Sec. V B.
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c}nb
&0, (85)

I &PI I,'=,,
1

(1+e~5„/b., )
(92)

where r, solves the resonance condition

co„lco—E(r, ) =0 . (86)

Substituting Eqs. (83) and (84) into Eq. (86), and solving
for r, gives

Returning to Eq. (90), we normalize the growth rate y to
lcoF(rb)=21QDA, /a, where 6, =rb —a and coE(rb) is
given in Eq. (81). Making use of Eqs. (82) and (92), the
normalized growth rate y/leo@(rb) in Eq. (90) can be ex-
pressed as

T =Pb 1—
1 +eyk /Ag

(87)
y

lcoE(rb )
co~b(r)

(~ +Gib, )4&2b ar
(93)

which determines the resonant radius r, that satisfies Eq.
(86). For example, if ez ——1.5 and 6,/6, =—', , then

r, rb ———0.5b,, follows from Eq. (87).
The expression for growth rate y is given in Eq. (60).

Assuming that r, satisfies a & r, & rb [Eq. (87) and Fig. 6],
then D;(co, ) =ImD(co) is given by [Eq. (60)].

27TaE ~ I Q 2D;(co, ) = 5$t „„copb(r)
(2co, QD)

"=" c}r
(88)

where use has been made of cjcoF/dr
I
„„=2Qd/a [Eq.

(12)]. In Eq. (88), 5/I(r) is approximated by Eq. (67), i.e.,
by the eigenfunction in region I in the absence of density
bump. Similarly, c}D,/Bco„ is given by [Eq. (60)]

where cozb 2co,—Q—D 4~n——be /m is the plasma frequency,
squared of the main density component (nb) in Fig. 6.

Measured in units of leos(rb), the growth rate y in Eq.
(93) can be substantial. The resonant diocotron instability
discussed in this section may well be one of the most im-
portant instabilities characteristic of electron flow in
diodes. Although monotonic decreasing profiles with
c}nb/c}r &0 are stable [Figs. 3(a) or 5], the introduction of
a low-density circulating electron component [Figs. 3(b),
3(c), or 6] can lead to resonant instability.

VI. NUMERICAL SOLUTION
TO ELECTROSTATIC EIGENVALUE EQUATION

BDr I 2 2lADeg' = —
I &PI I,'=;' " [~, 1~E(r—b)]'

(89)

In this section we make use of the exact electrostatic
eigenvalue equation (34) to investigate numerically the
stability properties of a variety of equilibrium profiles
nb'(r)

where 5$t(r) is approximated by (67), e~ is defined in Eq.
(71), and QD ——co~b/2co, . Note from Eq. (60), Eq. (89),
and Fig. 6 that the main contribution to c}D,/c}co, comes
from the density discontinuity at the surface (r =rb) of
the electron annulus. Combining Eqs. (88) and (89), the
growth rate y = D; /(c}D„/c}co—„) is

A. Eigenvalue equation

For nonrelativistic, cold-fluid flow, the exact electro-
static eigenvalue equation in cylindrical geometry is given
by Eq. (34). It is convenient to introduce the dimension-
less radial coordinate

1 2
treJ [co lcob (rb )] I

~At I ='. a c}

41 Q2D
I gpI

I
„„co,c}r

rR=—,
a ' (94)

I &PI I '=;
I ~@II,'=,, rs

2
I

Tb

rb

—2

r —as

Tb —a

2

(91)

for a large-aspect-ratio diode with 1(r, —a), 1(rb —a ) «a.
Defining rb —a =5, (Fig. 6), and making use of
r, —a =rb —a —(rb r, ) =b,,(1+ z5„e/5, )

' [E—q. (87)],
the ratio in Eq. (91) can be approximated by

(90)

where co„Ico~(rb) is giv—en in Eq. (84). From Eqs. (67)
and (68),

where r =a is the location of the cathode (Fig. 1). More-
over, all frequencies are normalized to co, =eBO/mc with

coE(r) 1 r
2 cocoE(r)—: =

2 2 dr r copb(r ), co=
r co c

co b(r) 4mnb(r)e
co pb(r) =

COc m COc

(95)

cob (r)
cob (r)=

COc

= —,
'

I 1 —[1 4coE(r)]'—
Making use of Eqs. (94) and (95), the eigenvalue equation
(34) can be expressed in the equivalent form
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a R 1—
2CO pb c) ~i 1

(co —Ico b ) —(1 co—pb
—2co~) c)~ R

A
N pb 6 I

(co —Ico b ) —( 1 —co pb
—2co ~ )

(96)
a ~pb(1 4~—E)'"

(co —lco b ) c)+ (co —Ico b ) —(1—co b
—2cob )

$P'=0 at r =a and at r =b . (97)

Depending on the choice of equilibrium density profile
nb(r), the solutions to Eq. (96) correspond to weakly un-
stable oscillations (Sec VI 8) or to strong instability (Sec.
VI C).

B. Weakly unstable oscillations

As a first example of an equilibrium density profile that
gives weakly unstable oscillations, consider the rectangu-
lar density profile specified by (Fig. 2)

T

nb ——const, a &r &rb
nb(r) =0

(98)
0, rb&r&b .

TABLE I. Reco/co, and Imco/co, versus 1 [Eq. (96)] for
b/a =3, rb/a =2, and (a) s =0.5, and (b) s =0.2, for the rec-
tangular density profile in Eq. (98).

where k, =0 is assumed, and the dimensionless frequen-
cies co, copb(r), and coE(r) are defined in Eq. (95). The
equilibrium boundary condition assumed in Eq. (96) is
E„(r=a) =0 at the cathode, which corresponds to
coE(r =a) =0. Note also that the eigenvalue equation (96)
is exact within the context of the present electrostatic
model based on the nonrelativistic cold-fluid-Possion
equations. That is, unlike the approximate eigenvalue
equations analyzed in Secs. IV and V, there is no a priori
assumption in Eq. (96) that coE(r) «co, [as in Eq. (39)],
that the perturbation frequency is low [as in Eq. (46)], or
that the diode aspect ratio is large [as in Eq. (75)].

In Secs. VIB and VIC, Eq. (96) is solved numerically
for the real oscillation frequency co, =Reco, the growth
rate y=Imco, and the eigenfunction 5$'(r) subject to the
boundary conditions

nb(r)= '0

2 2
(r —a)

nb 1— a &r &rb
(rb —a)' (99)

0) rb &r &6

Note from Eq. (99) that nb(r) decreases monotonically
from nb at r =a to zero at r =rb The co.mplex eigenfre-
quency co=co„+i@ and eigenfunction 6$(r) has been
determined numerically from Eq. (96) for the choice of
density profile in Eq. (99). Typical results are illustrated
in Table II, where co, and y are tabulated versus
s =4rrnbmc /Bo copb(r =a)/co,——for mode number 1 =2,
and s in the range 0.48&s &1. For s &0.45, it is found
that the system is stable (y=Imco &0). For s =0.48, the
onset of instability occurs for I =2 (Table II). On the oth-
er hand, as s is increased to s =1 it is found that the in-
stability bandwidth increases to include I =2,3,4, and that
maximum growth for s = 1 occurs for 1 =2, where
Imcolco, =0.0977 and Reco/co, =0.248.

Equation (96) has been solved numerically for the com-
plex eigenfrequency co=co, +iy and eigenfunction 5P'(r)
assuming rb/a =2 and b/a =3. Typical results are illus-
trated in Table I, where co, =Redo and y=Imco are tabu-
lated versus azimuthal mode number 1 =1,2, 3,4, 5 for the
low-frequency branch that solves Eq. (96). The values
chosen for the dimensionless self-field parameter
s=4rrnbmc /Bo=copblco correspond to s =0.5 [Table
I(a)] and s =0.2 [Table I(b)]. Note from Table I(a) and
I(b) that the system is weakly unstable (y «

~
co„~ ) for the

choice of rectangular density profile in Eq. (98). More-
over, the collisionless growth is weakest for low values of
electron density (small values of s).

As a second example, we consider the bell-shaped densi-
ty profile specified by (Fig. 7).

Rico/cu,

(a) s =~p'b/co2=0. 5
0.066
0.209
0.417
0.658
0.867

Imago/co,

0 59X 10
1.32x 10-'
2.35x 10-'
2.44X10 '
0.26 x10-'

n'
b

Cathode Anode

(b) s ~pb /~g 0
0.028
0.077
0.143
0.219
0.298

1.65 X 10-4
2.79 x10-'
2.49x10-
1.76 X 10
1.22 X 10 FIG. 7. Plot of nb(r) versus r for the bell-shaped density pro-

file in Eq. (99).
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TABLE II. Redo/co, and Imago/co, versus s =4~nbmc /Bo

[Eq. (96)] for b/a =3, rb/a=2, and 1=2 for the bell-shaped

density profile in Eq. (99).
I.0

nb (r) /fib

0.48
0.5
0.6
0.7
0.8
0.9
1.0

l =2; b/a =3 rb/a=2
Rcco /co

0.074
0.077
0.089
0.101
0.117
0.156
0.248

Imago/~,

0.005 &&
10-'

0.012X 1Q

0.067)& 1Q

0.178)& 1Q

0.397~ 1Q- '

0.779)& 10
0.977 X 10-'

0.8—

0.6—

0.4—

0.2
mb (r)l~z

It is useful to define a resonant radius r, by the reso
nance condition r/Q

co„1coE—(r, )=0, (100)

where co„=Reco solves Eq. (96). It is readily shown for
the two nomerical examples analyzed in this section that
r, is located in the region where the electron density is
nonzero (Figs. 8 and 9), i.e.,

0.6

0.4

I I I I I I l I I
]

I I I I I I I I I

(b)

a (r (rb (101) 0.2

Unlike the simplified approximate eigenvalue equations
analyzed in Secs. IV and V, it is important to recognize
that the complete eigenvalue equation (96) provides col-
lisionless dissipation even when c)curb/dr ~

„,=0. This is
S

evident from Table I, where the modes are weakly grow-
ing for the choice of rectangular density profile in Eq. (98)
(where dco&s/dr

~

„„=0is trivially satisfied). The reason

for this (negative) dissipation is readily traced to driving
terms proportional to Bcob /c)r&0 on the right-hand side
of Eq. (96). It is precisely such terms that are neglected in
the approximate eigenvalue equation (47) either by virtue
of the assumptions coE (r) « co, [Eq. (39)] or

~

co lcoF(r)
~

&&co, c—o~&(r) [Eq—. (46)] used in obtaining
Eq. (47).

To conclude this section, numerical plots of ns(r),
cob (r), co„icos (r), Re5—$'(r), and lm5$'(r) versus r are
presented in Figs. 8 and 9 for the two cases analyzed in
Tables I and II, respectively. The parameters in Fig. 8
correspond to s =0.5 and 1 =4 (rectangular density pro-
file) and in Fig. 9 to s = 1.0 and l =2 (bell-shaped density
profile).

C. Strong diocotron instability
in a hollow electron beam

—0.2

—0.4—

—0.6—

—0.& —
I

I

1.0

u) 08
Z',

0.6

K
I—0.4
Q3

0.2

I

I

I

I

I

I

t 2
rs ~o f/Q

I I I I I I I

I I I I I I I I I
I

I I I I I I I I I

0 a&r&rb

nb(r) = nb —const, rb & r & rb
+

0~ l'b (1(b
(102)

where the electron density (nb ) is constant in the beam in-
terior. Heretofore, the diocotron instability corresponding

As an example in which Eq. (96) predicts strong diocot-
ron instability, we now consider the hollow electron densi-

ty profile specified by (Fig. 4)
I I I t I I I I I I I I I

r/Q

FIG. 8. (a) Plots of nb(r)/nb and cob (r)/co, versus r/a for
the rectangular density profile in Eq. (98) with rb/a =2, s =0.5,
and b /a =3 [case presented in Table I(a)]; (b) plot of
[co, lcob (r)]/co, versus r/a obtaine—d from Eq. (96) for 1=4
and s =0.5; (c) plots of Re5$' and Im5$' versus r/a obtained
from Eq. (96) for 1=4 and s =0.5.
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I

(0)
I.O—

I I I I I I I I I
I

I I I I I I I I I

(0)

0.8 0.8—
nb (r) nb

0.6

0.4 0.4—

0.2 0.2— u)b(r)/(u

I I I I I I I I I

0.2

—0.2

—Q4 , - g~b (r)~
~c

I

(b)
0

—Ol—
—02—
—0.3—

I

I

I

I

I i I

lk

r/0

—4 ~b(&)]
~c

(b)—

I

0.6— I

I

I

I

0.8 —
I

I

I

r, /0

l.4—

1.2

(c)

I.O

0.8

0.6

z 04

0.2
CC

0
I—
~ —0.2

Q4

I I I I & I I I
I

I I I I I I I I I

CA

I. O
z',

&- 0.8
0

Kg 0.6
Q3

~Q4

0.2

0
I

FIG. 9. (a) Plots of nq(r)/nq and ~I, (r)/co, versus r/a for
the bell-shaped density profile in Eq. (99) with ri, /a =2, s = 1.0,
and b /a =3 (case presented in Table II); (b) plot of
[co,—lcob (r)]/co, versus r/a obtained from Eq. (96) for 1=2
and s =1.0; (c) Plots of Re5$' and Im5$' versus r/a obtained
from Eq. (96) for I =2 and s = 1.0.

—0.6

—0.8

r/0
FIG. 10. (a) Plots of nq(r)/nI, and co~ (r)/cu, versus r!a for

the hollow density profile in Eq. (102) with rb /a =7/5,
rb+/a =2, b/a =3, and s =0.5 [case presented in Table III(a)];
(b) plot of [co, 1cob (r)]/co, versus —r/a obtained from Eq. (96)
for 1=2 and s =0.5; (c) plots of Re5$' and Im5$' versus rla
obtained from Eq. (96) for I =2 and s =0.5.

to the choice of density profile in Eq. (102) has been
analyzed only for the low-density case ( s =

caleb /ca,
=4rrnbmc /Bo «1) using a highly simplified (and ap-
proximate) form of the eigenvalue equation (96). In the
present analysis, the complete eigenvalue equation (96) is
solved numerically assuming rb /a =7/5, rb+/a =2, and
b la =3. Typical results are illustrated in Table III,
where co, =Redo and y=Imco are tabulated versus azimu-
thal mode number 1 for s =0.5 [Table III(a)] and s =0.2
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Rcco /co Imago/co,

TABLE III. Reco/co, and Imco/co, versus I [Eq. (96)] for
b/a =3, rb /a =2, rb /a =7/5, and (a) s =0.5, and (b) s =0.2,
for the hollow density profile in Eq. (102).

Buneman et al. ' (Sec. VID2). Finally, we also summa-
rize several conclusions on the qualitative influence of
profile shape and location of conducting wall on stability
behavior (Sec. VI D 3).

(a) s =4~nbmc /Bo ——0.5
0.069
0.144
0.221
0.301
0.400

0.25 X 10-'
0.59 &&

10-'
0.84 &&

10-'
0.86 X 10
0.45 ~ 10-'

1. Rectangular density profile extending to r =0

For the specific case of no internal conductor and a rec-
tangular density profile that extends to the origin [a =0
in Eq. (98)], the eigenvalue equation (96) can be solved
analytically. In this case, the angular rotation velocity

(b) s =4m.nbmc /Bo =0.2
0.025
0.051
0.079
0.107
0.151

0.095 &( 10
0.206 && 10
0.282 ~ 10-'
0.266 X 10
0.013~ 10-'

D. Summary of results and relationship to other work

To place the numerical results in Secs. VI B and VI C in
the appropriate context, we summarize here the relation-
ship to other work, including: exact analytic results for
the case of no internal conductor and a rectangular densi-
ty profile that extends to r =0 (Sec. VI D 1); and compar-
ison of the exact cylindrical eigenvalue equation (96) with
its planar analog, which has been extensively analyzed by

[Table III(b)] for the low-frequency branch that solves Eq.
(96). Note from Table III that the instability growth rate
y = Imago is strongest at high density. Moreover, the
growth rates in Table III (hollow density profile) are sub-
stantially larger than the growth rates in Table I (rec-
tangular density profile in contact with the cathode). It
should also be pointed out that the growth rate is reduced
if the outer or inner conductors are brought closer to the
surface of the electron plasma (i.e., smaller rb /a or larger
rb+/b). Finally, numerical plots of nb(r), cob (r),
co, Icob (r)—, Re5$ (r), and Im5$ (r) versus r are shown in
Fig. 10 for the case corresponding to I =2 and s =0.5 in
Table III.

We have also solved the exact eigenvalue equation (96)
numerically for the high-frequency branch. For all of the
profiles and parameter ranges considered earlier in Sec.
VI, it is found that the high-frequency branch is stable
(y = Imco (0).

cob — '
[1—(1—2s)'/ ]=const

2
(103)

is independent of r [see Eq. (19)], where s =co»b/co,
=4~nbmc /Bo. Moreover, the exact electrostatic disper-
sion relation for k, =0 is given by

co»b[1 (rb/b) ']—
(104)

2(co —Icob )[(co—Icob ) —(co, —2cob )]
0=1—

Equation (104) gives two stable solutions for co, both with
Imago=0. For example, in the limiting case b/rb ~ ao, the
solutions for the real frequency co are given by

and

CO —lCOb =CO —COb (105)

CO —lCOb = —COb (106)

In the low-density regime (s && 1), it follows that
cob -(s /2)co„and Eq. (105) corresponds to a high-
frequency branch with co lcob -co,—(1—s/2), whereas Eq.
(106) corresponds to a low-frequency branch with
co Icob — (s/—2)co, . O—n the other hand, in the high-
density limit corresponding to cylindrical Brillouin flow
(2s = 1), Eqs. (105) and (106) reduce to co —Ico, /2
=+(co, /2), both at relatively high frequencies.

To summarize, for a rectangular density profile extend-
ing to the origin (a =0), it follows that dcob /c3r =0 and
BcoE /c) r =0. Moreover, there are no solutions to
Reco Icob (r)=0 for—any radius r, within the electron
density profile. Therefore, the stable behavior in this case
is not surprising. Referring to the discussion and results
in Secs. VIB and VI C, the reader will recall that the ex-
istence of nonzero shear and an "internal" resonant radius
r, were important prerequisites for existence of instability.

2. Eigenvalue equation in planar geometry

The cylindrical eigenvalue equation (96) undergoes some simplification in the limit of a planar diode with infinitely
large aspect ratio, i.e., a/(b —a)~ oo. In this case, we replace (r, o) cylindrical coordinates by (x,y) Cartesian coordi-
nates, and make the identifications: r —a~x, I/r~k», cob (r)r~coF(r)r +V( »)=xcE„(x—)/Bo, Icob (r—)~k»V»(x),
and coE~0 In nondimen. sionless form, the planar limit of Eq. (96) [or Eq. (34) with k, =0] reduces to

co&b(x)
coZb

(x)
[co—k V„(x)] —[co, —co b(x)] c)x [ —k V ( )]~—[,— b( )]

k»5/co, co»b (x)
[co—k» V»(x)] Bx [co—k V (x)]2—[co —co b(x)]

(107)
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Equation (107) is in agreement with the planar eigenvalue
equation analyzed extensively by Buneman et al. '

Apart from the obvious difference between cylindrical
and planar geometry, there are other important differ-
ences between Eqs. (96) and (107) related to finite aspect
ratio. In particular, the gradient driving terms in Eq.
(107) involve only Bco~b/Bx and BV~/Bx. On the other
hand, it is clear from Eq. (96) that there are gradient
terms proportional to t)coE/r)r as well as dco~b/Br and
t)cob /dr. Indeed, as evident from Secs. VIB and VIC, for
moderate aspect ratio the t)co@/iver terms in Eq. (96) can
make important contributions to stability behavior even
when the density is uniform (Btii~b/iver =0) within the
electron layer.

For the numerical examples in Tables I and II and Figs.
7 —9 it should be noted that ( rb —a )/a = 1, and therefore,
cylindrical and finite-aspect-ratio effects are expected to
play an important role. Nonetheless, it is informative to
compare the growth rates in Table I with the short-
wavelength planar estimate, Imago —(s /2)co, exp( —2/s),
obtained by Buneman et al. ' for a uniform density beam.
For example, for s =0.2 [corresponding to Table I(b)],
this estimate of growth rate' gives Imcu-4. 6& 10 co„
which is about 2 orders of magnitude smaller than the
characteristic growth rate obtained numerically from Eq.
(96) [Table I(b)]. Furthermore, we estimate k~(rb —a)
-(1/r, )(rb —a)=la/r, for the case (rb —a)/a =1.
Therefore, because k~(rb —a) is of order unity or some-
what larger for the range of unstable l values in Table I, it
is not surprising that the short-wavelength (or long-
wavelength) estimates' of growth rate in planar geometry
do not apply to the circumstances analyzed in Secs. VIB
and VIC, where cylindrical and finite-aspect-ratio effects
are clearly important.

3. Influence ofprofile shape and location of conducting wall

The numerical results and analysis summarized in Secs.
VIB and VIC are significant in several respects. Most
important, the present work represents the first attempt to
analyze the exact electrostatic eigenvalue equation (96)
keeping the full complement of effects on stability
behavior, including: cylindrical geometry and finite as-
pect ratio; finite cab(r)/cu„depe dencenon profile shape;
arbitrary frequency range, etc. While it is important not
to make categorical generalizations based on the specific
examples analyzed in Secs. VI B and VI C, several
noteworthy tendencies and conclusions can be drawn from
this analysis.

(i) For constant electron density, a conducting wall in
contact with the plasma does not assure stability (Table I)
although growth rates tend to be reduced relative to the
case of a hollow annulus separated from the cathode
(Table III).

(ii) A decreasing (bell-shaped) density profile in contact
with the cathode [Eq. (99)] is more stable than a constant
density profile [Eq. (98)], at least at low density. In par-
ticular, the bell-shaped profile in Eq. (99) is stable for
s =4rtnbmc /Bo (0.48 (Table II), whereas the constant
density profile in Eq. (98) already exhibits (weak) instabili-
ty for s =0.2 (Table I).

(iii) Although the numerical analysis shows that de
creasing density profiles are qualitatively more stable than
flat density profiles or hollow density profiles, it is clear
that the stability theorem' ' discussed in Sec. IV is re-
stricted to modest values of co~b(r)/co, and to low fre-
quencies with

~

co —lcob
~

(&co, —cozb. Indeed, the nu-
merical analysis in Secs. VIB and VIC shows that the
latter inequality is especially difficult to satisfy as
co~b(r)/co, is increased.

(iv) Finally, we reiterate that nonzero shear in cob (r)
and coE(r), as well as the existence of an internal resonant
radius r„where Reco lcob —(r, ) =0 within the plasma, are
important prerequisites for the existence of instability for
the examples discussed in Secs. VI B and VI C.

VII. CONCLUSIONS

In the present analysis we have made use of a macro-
scopic cold-fluid model (Secs. II and III) to investigate
electrostatic stability properties of nonrelativistic sheared
electron flow in a cylindrical diode with strong applied
axial magnetic field Boez. After reviewing the cold-fluid
equilibrium properties, the linearized fluid-Poisson equa-
tion (25)—(27) were used in Sec. III to investigate stability
behavior for electrostatic perturbations about a non-
neutral cylindrical equilibrium characterized by (general)
electron density profile nb(r) and self-consistent azimu-
thal velocity profile defined by Vzb(r) =cob (r)r [Eq. (15)].
For perturbations with complex oscillation frequency
co=co, +iy, axial wave number k„and azimuthal har-
monic number l, the linearized fluid-Poisson equations
(29)—(33) were combined to give the eigenvalue equation
(34). In Secs. IV and V, we investigated analytically sta-
bility properties associated with the approximate eigen-
value equations (43) and (47), assuming low-frequency
flute perturbations with k, =0,

~

co !coE(r)~—
&&co, co~b(r), —and curb(r) &to, This an. alysis included
the derivation of a sufficient condition for stability (Sec.
IVA), and the growth rate for weak resonant diocotron
instability driven by a small density bump with
Bc@ b/Br

~
„,& 0 (Sec. VB).

Finally, in Sec. VI we solved numerically the exact elec-
trostatic eigenvalue equation (34) for k, =0 and a wide
range of electron density profiles nb(r) leading to weak
and strong instability driven by velocity shear. In the nu-
merical analysis of Eq. (34), no a priori restriction has
been made to planar geometry' or to low electron
density with co b «co, . ' ' ' ' ' ' Indeed, it is found
that cylindrical effects, finite aspect ratio, and the
strength of the equilibrium space-charge fields (as mea-
sured by co~b/co, ) can have a large influence on stability
behavior.
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