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Solitary excitations in deoxyribonucleic acid (DNA) double helices
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Dynamical features of solitary excitations in deoxyribonucleic acid (DNA) double helices are
described by a revised theory in which the H-bonding energy between complementary base pairs has
a more reasonable form. Four modes of sine-Gordon solitons which predict the existence of the
open states in DNA double helices are found. By using the statistical-mechanical formalism which
has been established previously, the average soliton number density in DNA double helices is es-
timated as a function of temperature and compared with the experimental results.

I. INTRODUCTION g„=Z.P„'P„B„, g„' =Z.P„P„'B„', (2.1)

Recently the existence of an open state in deoxyribonu-
cleic acid (DNA) and synthetic polynucleotide double hel-
ices has been demonstrated by hydrogen-deuterium ex-
change measurements. ' Assuming a mobile open unit
diffusing along the double helix, Englander et al. sug-
gested that the open state in DNA may be described as a
solitary excitation. Previously, we proposed a soliton
theory in order to give a theoretical explanation of the
open states in DNA duplexes. Since our theory had a de-
fect in the expression of H-bonding energy between com-
plementary base pairs, we present here a revised analysis
in which the H-bonding energy has a more general and
reasonable form. We also adopt here the same simplified
model as in the previous paper that each nucleotide base
can rotate around an axis parallel to the helical axis of the
duplex, accompanying a rotation of the sugar and the
phosphate of the nucleotide to which the base belongs.

In Sec. II we formulate our Hamiltonian which gives
three types of sine-Gordon equations. Corresponding to
the different solvent conditions, four modes of solitary ex-
citations are found. In Sec. III the average soliton num-
ber density of our system is given by the use of earlier re-
sults " on the statistical mechanics of nonlinear fields,
assuming that the uncoupled 2m solitons only are excited
in the solvent condition under which the H-D exchange
measurements' was performed.

II. HAMILTONIAN AND SOLITON SOLUTIONS

The B form of DNA and polynucleotide double helices
is schematically represented in Fig. 1(a), where each arrow
shows the direction of the base attached to the strand, and
the conjugated base pairs are indicated by the pairs of ar-
rows arranged in horizontal parallel planes separated by a
distance of a =3.4 A. The z axis is a tenfold screw axis.
Figure 1(b) shows a projection of the nth complementary
base pair on the x-y plane, where B„denotes the nth base
belonging to one of the two strands and B„' denotes the
complementary base belonging to the other strand, and
these form an H-bonded base pair in an ordered state.
The directions of B„and B„' in the horizontal plane are
specified by the rotational angles of the directional vectors
P„B„and P„'B„' of the bases around the axes P„and P„',
respectively, which are denoted by

where the rotational axes of nth and n'th nucleotides, P„
and P„', respectively, are parallel to the z axis. The con-
formation and stability of DNA and polynucleotide dou-
ble helices are mainly determined by the energy of H
bonds between interstrand complementary base pairs and
the stacking energy between intrastrand adjacent bases
and the torsional energy of polynucleotide strands.

Considering that the H-bonding energy between the nth
base pair V„(g„,X„' ) is a periodic function of the rotation-
al angles X„and 7„' with the periods 2~, and assuming
that V„A'„,X„' ) is an even function with respect to X„and
X„', we expand V„(X„,g„' ) in the form of a double Fourier
series,

V„(X„,X„')= g Bg cos(pX„)cos(qX„'),
p, q =0

and approximate it by the first four terms:

BQQ +B$0 cosy +B0$ cosy +B$ l cosy cosy

(2.2)

(2.3)

Adopting mean parameter values for double and triple
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FIG. 1. (a) Schematic representation of the Watson-Crick
model, (b) horizontal projections of the complementary base
pairs.
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H-bonds in the A-T (adenine-thymine) and G-C
(guanine-cytosine) base pair B~ ——B~, considering the
symmetry relations Bo& ——B&o, and taking the B form
(X„=X„'=0)as the zero level of energy, the total energy
of H-bonds between complementary base pairs can be
represented by the following form without losing generali-
ty:

g [A (1—cosX„)+A (1—cosX'„)+B(1—cosX„cosX„' )],

(2.4)

where A and B are the constants.
By assuming that the stacking energy between intra-

strand adjacent bases and the torsional energy of the nu-
cleotide strand are both functions of the relative torsional
angles between adjacent bases and that these energies are
given in the same functional form, the sum of the stack-
ing and torsional energies may be written as

g [S[1—cos(X„—X„ i)]+S[1—cos(X„' —X„' i)]J,

(2.5)

where S is the constant, and here the B form is taken as
the zero level of the energy. The H-bonding energy and

+A (1—cosX„')+B(1—cosX„cosX'„)

+S[1—cos(X„—X„ i )]

+S[1—cos(X„' —X„' i)]], (2.6)

where the first term represents the kinetic energy of the
rotational motion of the nth nucleotide base accompanied
by the nth nucleotide sugar and phosphate around the
axis P„, in which I is the mean value of the moment of
inertia of the nucleotide around axis P„.

Introducing the fields of rotational angles in the contin-
uum approximation,

X„(t)~X(z,t), X„'(t)~X'(z,t), (2.7)

our Hamiltonian can be written alternatively as follows:

the sum of the stacking and torsional energies associated
with the nth base are obtained by setting P„=m and fix-
ing all other X (m&n) and X„' at zero in Eqs. (2.4) and
(2.5); these are represented by 2(A +B) and 4S, respec-
tively. Then the Hamiltonian of DNA and synthetic po-
lynucleotide double helices can be written as

~= g [ ,'I(X—„+X„')+ A(1 —cosX„)

[—,I(X +X' )+A(1 —cosX)+A(l —cosX')+B(1 cosX—cosX')+ —,Sa (X,+X,' )] (2.8)

—,I + +2A 1 —cos cos +B 1 ——, cos +cos + 4Sa, + (2.9)

where

/=X+X', /=X —X', (2.10)

respectively, we obtain the following six sets of solutions
of Eqs. (2.11). Two of these correspond to the ground-
state solutions,

and X„g„etc.denote M /Bz, Bg/Bz, etc. From the La-
grangians corresponding to Eqs. (2.8) and (2.9), we obtain
the following Euler-Lagrange equations, respectively:

7=2nm, 7'=2m',

X=(2n +1)~, X'=(2m +1)m;

(2.13a)

(2.13b)
I++A si~+B si~cosg' —Sa g =0,
Ig'+A si~'+B sing'cosg —Sa g' =0,

Ig+2A sin+c +os+B sing —Sa f =0,
2 2

If+ 2A si +nc so+ B+ sing —Sa P =0,
2 2

(2.1 la)

(2.11b)

(2.12a)

(2.12b)

A. The case A =0

where X, X, etc. denote r)X/dt, 8 X/Bz, etc. Assum-
ing that, by taking an adequate acidity and salt concentra-
tion, we can realize a solvent condition A =0 in which the
H-bonding energy between the base pair is almost equal to
that between the bases and water molecules of the solvent,
we study the dynamics of our system including the case
A =0.

others are the uncoupled 2m soliton solutions where the
motions of 7 and g' are not coupled,

X=/, (g —go), X'=2m'. ,

X =2nm, X'=P, (.g —go),

X=/, (g—go)+~ X'=(2m+1)~,

X=(2n+ l)n. , X'=P, (g go)+~, —

(2.14a)

(2.14b)

(2.14c}

(2.14d}

Ig+B si~ —Sa g =0,
X=/, (g—go) =4tan 'e

where

(2.15)

(2.16)

where n and m are integers and P, (g —go) is the soliton
solution of the following sine-Gordon equation:

Since the constant solutions which satisfy sinX=O and
sinX'=0 are the solutions of Eqs. (2.11a) and (2.11b),

g=z ut, 1=(S/B)'~ a, —y=(1 —u /vo)

vo (S/I)' a, u (uo . —— (2.17)
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FIG. 2. Kink and antikink soliton solutions of Eqs. (2.15)
and (2.23).
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FIG. 4. Horizontal projections of the directions of the bases
in uncoupled 2m P solitons which are obtained by setting y =1,
1=a in Eq. (2.16).

=n~, =me.

IV=A. (k 00» P=—iri~I

=nm,

s 0 ~
—s 0

(2.18a)

(2.18b)

(2.18c)

(2.18d)

Equation (2.18a) gives the ground-state solutions corre-
sponding to Eqs. (2.13a) and (2.13b), and Eqs. (2.18b) and
(2.18c) give the in-phase and out-of-phase coupled n. soli-
ton solutions, respectively, where the motions of X and X'

are coupled:

7=m'm+ —,
'
p, (g—go), X'= —m'~+ —,

'
p, (g—go),

(2.19a)

X=n'7r+ —,
'
y, (g—g' ), X'=&'K —,y, (g—go) —.

(2.19b)

(a) (b) (c) (d)

The numerical results of Eq. (2.16) are shown in Fig. 2.
On the other hand, Eqs. (2.12a) and (2.12b) are satisfied

by the constant solutions P=nm and /=ma, respectively,
and by the soliton solutions 1( =p, (g —go) and

P=P, (g —go), respectively. Then Eqs. (2.12) are satisfied
by the following sets of solutions:

Here the cases m odd, n odd are excluded because they
give unstable solutions; then we set m =2m', n =2n'.

Equation (2.18d) gives two coupled rr soliton solutions:

&= 2 0.(k —00)+ 2 0.(0—00)

&' =
g 4.(0—00) —~ 0.(0—0o)

(2.20)

These ground state and soliton solutions (2.13a), (2.13b),
(2.14a)—(2.14d), (2.19a), and (2.19b), are shown schemati-
cally in Figs. 3(a)—3(h), respectively, where in order to
show only the rotations of the bases, the double strands of
polynucleotide duplex are shown by the two vertical paral-
lel lines, neglecting the screw symmetry of the strands,
and the projections of the directional vectors P„B„ofthe
bases B„on the lines P„P„' are shown by the short hor-
izontal bars. We can easily see by the figures that the
lengths of these open configurations in the regions of soli-
tary excitations are about 5a —10a. The result of numeri-
cal calculation of the rotational angles X„and 7„' in the
region of solitary excitation is shown in Fig. 4 for case (c)
in Fig. 3 in a horizontal projection, where the numbers
0,1,2, . . . and 0' 1',2', . . . denote the bases belonging to the
complementary strands, respectively.

We wish to propose here the role which may be played
by a soliton in DNA. It may be supposed that if the con-
dition A =0 may be effectively realized by changing the
acidity and salt concentration of the solvent adequately,
then the coupled ~ soliton is the solitary excitation with
the lowest energy. As seen in Figs. 3(g) and 3(h), this soli-
ton is very interesting physiologically, because a closing or
an opening of the structure of DNA can easily be realized
by motion of this soliton. Thus a movement of a coupled
m soliton only is sufficient for an opening of the structure
of DNA in the duplication of DNA and the transcription
of mRNA (messenger ribonucleic acid); there is no need to
consider such an unlikely motion as a continuous rewind-
ing of the double strands of DNA, which has been sup-
posed so far.

(g)(~) (g)(~)

FIG. 3. Ground states and solitary excitations in the case
A =0 are schematically shown. (a) Eq. (2.13a); (b) Eq. (2.13b);
(c) Eq. (2.14a); (d) Eq (2.14b); (e) Eq. {2.14c); {fl Eq. (2.14d); (g)
Eq. (2.19a); (h) Eq. {2.19b).

B. The case A&0

Since Eqs. (2.11a) and (2.11b) are satisfied by the con-
stant solutions 7=n~ and 7'=mar, respectively, we ob-
tain sets of solutions of Eqs. (2.11) similar to those of the
case A=O. But, in this case, odd numbers of n and m

correspond to unstable solutions. We therefore obtain the
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g =2n 7T, g =2m 7T, (2.21)

and the others are the uncoupled 2m. soliton solutions,

following three sets of solutions of Eqs. (2.11). One corre-
sponds to the ground states:

Equation (2.26a) gives the ground-state solution
X=(n+m)m, X'=(n —m)m, when n +m is even and an
unstable solution when n+m is odd. Equation (2.26b)
gives the relations X—X'=2m', /=X+X'=2X 2—m~;
then Eq. (2.12a) becomes an extended sine-Gordon equa-
tion:

X=/, (g —gp), X'=2m+,

X=2nm. , X =Ps(g —gp)

(2.22a)

(2.22b)
IX+A sing+ —sin27 —Sa 2X =0

2
(2.27)

IX+(A + B)sinX —Sa X =0, (2.23)

where n and m are integers and P, (g —gp) is a solution of
the sine-Gordon equations,

The constant solution X =nm of this equation gives the
ground-state solution and unstable constant solution com-
bining with 7—J'=2m'. . In order to get a soliton solu-
tion we have rewritten Eq. (2.27) as

X=P, (g —gp) =4 tan 'e

where

(2.24) X= v pX —co pd V/d X,
where

(2.28)

1=[S/(A+B)]'~ a, v &up . (2.25) cop ——(A/I)'~, V(X)=(1—cosX)+ (1—cos2X) .
4A

The P, -versus-g/I curve, which is obtained from Eq.
(2.24), is similar to the P, -versus-g/I curve which is
shown in Fig. 2.

On the other hand, Eqs. (2.12a) and (2.12b) are satisfied
by the constant solutions g/2 =n n. and P/2 =m m, respec-
tively. Then the solutions of Eqs. (2.12) can be obtained
from the following sets of equations:

dX/dg=+~24[ V(X)]'
I

(2.30)

(2.29)

With the boundary conditions dX/d(=0, X=O at
g= + co, the first integral is obtained as

[$=2nn, /=2m'. ],
[Eq. (2.12a), /=2m'. I,
[$=2nm, Eq. (.2. 12b) J .

(2 26a) where

(2.26b)

(2.26c)

I=up/cop . (2.31)

This is integrated to yield the soliton solution
X=P, (g —gp) which is given by the equation

[1 Esin'(X/2) —] '~' —[cos'(X/2) ] '~'

Vl —K sin(X/2)

+(y/I )(g—go)

+(y/1 )(g—go)
7T (g (277

(2.32)

where

K =B/(A +B), v & up (2.33)

I

P, -vers us-g I/) curve in Fig. 2. Thus Eq. (2.26b) gives the
ground-state solution and in-phase coupled 2m soliton
solution

with the + corresponding to the kink and antikink solu-
tions.

The result of the numerical calculation of Eq. (2.32) for
the case A =B (IC =1/2) is shown in Fig. 5. The P, -

versus-g/I curve is quite similar to the P, -versus-g/I (or

X=X'+2m' =P, (g —gp) . (2.34)

Similarly, Eq. (2.26c) gives the ground-state solution and
out-of-phase coupled 2n. soliton solution

(2.35)

These solutions, (2.21), (2.22a), (2.22b), (2.34), and (2.35),
are shown schematically in Figs. 6(a)—6(e), respectively,

(a) (b)
I—6 —5 —4 —3 —2 —t 0 ] 2 3 4 5 6 Xk o),

FIG. 5. Kink and antikink soliton solutions of Eq. (2.32).

FIG. 6. Ground state and soliton solutions in the case 3&0
are schematically shown. (a) Eq. (2.21); (b) Eq. (2.22a); (c) Eq.
(2.22b); (d) Eq. (2.34); (e) Eq. (2.35).
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and these figures also show that the lengths of open con-
figurations are about 5a —10a.

The energies associated with the four modes of solitons
which we found can be calculated by using Eq. (2.8) and
the first integrals of Eqs. (2.15), (2.23), and (2.27), respec-
tively, which correspond to Eq. (2.30). We distinguish the
case A =0 from the case A&0, the case of the uncoupled
from that of the coupled, and the case of the vr soliton
from that of the 2n. soliton by the indices A =0, A &0, u,
c, m, and 2m. , respectively:

E„"2= —— —,I,+B 1 —cos, + —,Sa

=8v'BS y,
rEA0~ I 2+ 1cos+Sg

a

(2.40)

Then the rest masses of the four modes of solitons are
given by Eqs. (2.36) and (2.40) as follows:

M"= ' '=8(B/S)'/'(R/a)'M
M" ' '=4(B/S)' (R/ ) M

(2.41)
M„"2+~' '=8[(A+B)/S]' (R/a) M

M,"2+ ' '=16(A/S)' P(g)(R/a) M,
where M and R denote mean mass and mean radius of
gyration per nucleotide.

Here we mention that the phonon modes which corre-
late to the four modes of solitons can be obtained assum-
ing X is small in Eq. (2.15) for the case A=0 and in Eqs.
(2.23) and (2.27) for the case A&0. We obtain harmonic
solutions:

=4v'BS y,
(2.36)

Eup~ = 2I s+ A+B 1 —cos s + 2Sa sza

=8v'(A +B)Sy,

E, z+ = I,+2A 1 —cos,
a

+—(1—cos P, ) +Sa P„

g cc exp[i(kz ddt)] =—exp[ik (z —ut)],

J' o: exp[i(kz cot)] =e—xp[ik (z —ut)] .

For thecase A =0, kis givenby

k =(u /up —1) '/i

and for the case A &0

k =(U /vo —1) '/i

(2.42)

(2.43)

(2.44)

=16v'AS f(g)y,
where U & Uo. The dispersion relations for these cases are
obtained as

where

f(f)= ,' v'1+ f+ —In(vg+v'/+1), $=B/A.
and

cd =cop+upk (cop ——up/l)

cd =cop+Upk (cgp=up/1 )

(2.45)

(2.46)

(2.37)
respectively.

E(v) E(0)y (E(0) + 2U2)1/2
s = s 7= s JsUO (2.39)

where p, is the relativistic momentum and E,' ' is the rest
energy of the soliton,

Figure 7 shows that the ratio

E A~0/EM~0 2f(g)( I +g)
—1/2 (2.38)

approaches 1 with the increase of g, that is, E„"2+ and
E,"2 coincide with E„"z~ as g—+De.

Generally, the energy associated with a single soliton
with velocity U is given by the following form:

III. ESTIMATIONS OF THE
AVERAGE SOLITON NUMBER DENSITY

AND THE PARAMETER VALUES

The statistical mechanics of one-dimensional scalar
fields governed by nonlinear wave equations having soli-
ton solutions have already been developed by many au-
thors. " Using those results the average soliton number
density in our polynucleotide duplex is obtained as

n =(N k+N, k+N k +N, k)/L
pE(0)

=(2 )
' '(8/& )(PE' ')' ' (3.1)

2.0

1.0—

0 1 2 3 4 5 6 7 8 9 10

FIG. 7. g dependence of 1).

where N k, N, k, N k, and N, k denote the number of X
kinks, 7 antikinks, 7' kinks, and 7' antikinks of the un-

coupled 2~ solitons, respectively; L denotes the total
length of our system and E,' is the rest energy of the sol-
iton. In the above expression, we assume that the uncou-
pled 2~ solitons which have the lowest energy in the case
A &0 are only excited in the solvent condition where the
H-D exchange measurements' were performed.

By dividing the double helix with total length L into N
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segments having a length of open configuration M, and
denoting the number of segments in open configuration
and closed configuration by N, ~ and N, i, respectively, the
equilibrium constant K=N,~/N, i can be written as

K =N z /(N No—
& )=N» /N =nL /(L /M) = n M . (3.2)

Using Eqs. (3.1) and (3.2), logioK is given as

logioK=log, o[(2m. )
'~ (8M/l )]

+ —,logio(PE ) —PE logioe . (3.3)

0.40eV

Teitelbaum and Englander and Nakanishi and Tsuboi
postulated that the hydrogen-deuterium exchange reaction
of double helical polynucleotides takes place as

k k

closed ~~open —+ exchange,
kcl

where k,~ is the rate constant for conformational open-
ing, k,i is that for reverse reaction (closing), and k, is
equal to the hydrogen exchange rate constant of the base
residue that is completely exposed to the solvent. Postu-
lating that k,p+ k, & &&k„ they calculated the equilibrium
constant K from the observed H-D exchange rate constant
k through an equation,

togioK

3. 1

0.30eV

3.53.3

10 /T (K
—t)

3.7

or

OP' k,p+k, )
' K+1

(3.4)

K=k/(k, —k) .

The experimental data obtained by Nakanishi and Tsuboi
and Teitelbaum and Englander in the temperature region
lower than 47'C where double helical structure is kept as
a whole are plotted in Fig. 8 on a logarithmic scale of K
against reciprocal absolute temperature. By comparison
between the theoretical result and the experimental data,
we can estimate the energy of the soliton, the length of
open configuration, and the parameter values in our
theory as follows. The value of E,' ' can be determined as
that slope of the theoretical curve, which is obtained from
Eq. (3.3), reproduces that of the line (1 ) in Fig. 7; thus we
obtain (in eV)

E,' '=0.35 . (3.5)

The constant term of the right-hand side of Eq. (3.3) can
be determined by substituting the value of E,'o) into Eq.
(3.3) and the coordinates of one arbitrary point on the line
(1) (for example, logioK= —3.50 at I /T X 10 =3.22) into
Eq. (3.3). From this we get logic[(2ir) '~ (8M/1 )]= 1.60,
which corresponds to the entropy change ES=7.3 e.u. ;
we then have M/1=12. 5. This shows excellent agree-
ment with the length of open configuration M=101
which is estimated from the theoretical P, -versus-g/1
curve. If we assume 2(A +B)=4S, we can estimate the
H-bonding energy and the sum of the stacking and tor-
sional energies (in eV) by using the relations
E,' '=8[(A +B)S]'~ in Eqs. (2.36) and (3.5) as follows:

FIG. 8. Equilibrium constant of closed and open forms of
double-helical polynucleotide [poly(yI), poly(yC)] on a logarith-
mic scale (log~OX) plotted against reciprocal absolute tempera-
ture. ~, determined by stopped-flow ultraviolet spectroscopy by
Nakanishi and Tsuboi; 0, determined by Sephadex column
chromatography by Teitelbaum and Englander. Theoretical
curves obtained from Eq. (3.3) assuming M=12.51 are shown
by the dashed curves which correspond to Ek ' ——0.30, 0.35, and
0.40 eV, respectively.

2(A +B)=0.12, 4$=0. 12 . (3.6)

hz=12. 5l =8.9a,
vo-8. 3X10 cm/sec .

(3.7)

From the experimental data in Fig. 8, we can see that
I( =2)& 10 at 300 K; then we can estimate soliton num-
ber density as

n=K/M=2)& 10 /a (3.8)

at 300 K. The mean number density of bases in open
state is then about 5n =10 /a.

Though the H-bonding energy 2(A +B)=0.12 eV which
we estimate here seems too small, this value corresponds
to the difference between the H-bonding energy between
the base pair and that between the base and the water
molecules of the solvent. From Eqs. (2.25) and (3.6) we
obtain l=0.7a. Then we can estimate the length of open
configuration and the upper limit of soliton velocity as
follows, assuming an approximate mean value of the mo-
ment of inertia of nucleotide I =MR, M =308m&,
R=4 A:
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