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Discussion of the conditional-probability function for electric fields in a plasma
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The conditional-probability function plays a central role in the development of stochastic models
for spectral line shapes in plasmas. We discuss some of the physical properties of this function

using various analytic models as well as the results of a computer simulation.

I. INTRODUCTION

In the field of Stark broadening the class of theories
known as the model microfield method (MMM) is
currently of considerable interest to both theoreticians and
experimentalists. This is due in part to the fact that the
MMM has provided consistently better agreement with
experimental data than the conventional unified or impact
theories for cases where ion dynamic effects are known to
be important. Nonetheless, the MMM, as currently em-

ployed, ' does not produce complete agreement with ex-
perimental data. The MMM is especially intriguing be-
cause it differs radically from conventional theories, being
more abstractly mathematical. At the present time, the
reasons for the improved agreement with the experiment
are not clearly understood nor is it clear what should be
done to reduce the remaining discrepancies. A step in
that direction was taken in Ref. 3 which attempts to pro-
vide a physical understanding of the MMM. In Sec. 5 of
Ref. 3, it was argued that one problem with the MMM
may be found in the approximation used for the electric
field conditional probability function. In the present pa-
per we will study the physical properties of this function
using the computer simulation technique presented in Ref.
4 and compare these results with various analytic approxi-
mations.

Consider the electric field at some specific point in the
plasma, henceforth called the test point. The conditional
probability function P(e, t

~
ep, O) gives the probability

that, at the time t, this electric field will take the value e,
when it is known that the field was ep at the time t=O.

This conditional probability function must satisfy the
conditions

deP e, t ep 0 =1,

P ( Et~ E'p, 0 )~6( 6 ep ) as—t ~0

P(e, t
~

ep, O)~P,q(e) as t~ao

(1.2)

(1.3)

where P,q is the steady-state or equilibrium distribution;

P,q is related to the well-known electric microfield distri-
bution function P(e) by P,q(e)=4ire P(e) For the. pur-

pose of theoretical modeling, it will often be convenient to
consider the joint probability distribution function
which is related to P by

@(e t
~

ep, O)=P(e t
~

ep, O)P q(ep) (1.4)

Throughout this paper, we will consider the plasma to
be represented by a gas of N Debye shielded ions which

do not interact with one another. The electric field for
such a system may be expressed as

pe, (rl)= g(erj. jr& )(1+rj jAD)exp( rj. jAD), (1.5—)

J J

where AD +kT /4irne ——is the Debye shielding length for
a temperature T and an ion density n, , and rj denotes the
position of the jth ion. For a gas of noninteracting ions,
the ion trajectories will be linear so one may write

rJ ( t) = x1 + v 1 t, where x~ denotes the ion position at time
t=0 and vj is its velocity. In fact, for this model, it is

possible to write a simple theoretical expression for 4

T

N(E, t
~

6(),O)=V "fdx,-dxiv f dvi . dviv~(vi) . aviv)& ep —g e, (xj) & 6 —g E~(rj)
J J

where W(v) is a Maxwellian velocity distribution and
V= f 1xj is the volume of the system. This expression
will be developed further in the Appendix. For the mo-
ment we simply note that the computer simulation which

t

we have employed is equivalent to a numerical evaluation
of Eq. (1.6).

It must be emphasized that our model of Debye shield-
ed noninteracting ions has some clear limitations. These
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limitations include the lack of dynamic shielding effects '

which are known to be important for nonthermal plas-
mas but are negligible for an equilibrium plasma. Our
model also lacks three-body and higher-order ion correla-
tions (two-body correlations are of course represented by
the Debye shielding ) which again should be negligible for
an equilibrium plasma in the classical domain where the
number of ions in the Debye sphere exceeds one. Our
model is of course restricted to the "low-frequency" or
"ion component" of the electric microfield, consequently
the high-frequency electron contribution must be added
for many practical applications.

&,P(e, t
~

eo,O)= (e—)P(, t
~

eo, O)

+ d E'W E' E' P E' ', t E'p~O (2.1)

where v(e) and W(e
~

e') are isotropic functions (i.e., func-
tions of e= e and e'= e ') given by

v(e) = f d e'8'(e'
~

e),
W(e

~

e)=v(e)g(e ),
(2.2)

(2.3)

process. According to that model, P is the solution of the
differential Chapman-Kolmogorov equation

II. ANALYTIC MODELS

Q(e')= (ve')P„(e')/( v),

(v) = f d ev(e)P, q(e),

(2.4)

(2.5)

A. Strong diffusion models

In the MMM model originally proposed by Brissaud
and Frisch, ' P(e, t

~
ep, O) was determined from a Marko-

vian stochastic process which they called a "kangaroo"

with P,q(e) being the steady-state solution to Eq. (2.1), as
required by the boundary condition stated in Eq. (1.3).
Using Eqs. (2.2)—(2.5) and the boundary conditions of
Eqs. (1.1) and (1.2), it is possible to obtain an iterative
solution to Eq. (2.1) in the form

P(e, t
~

ep, O) =e "'"5(e—ep)+ dtpe ' W(e
~
ep)e

tf dt„. . . f dtp f d e„.f d e~e
'" '"'8 (e e„)e

n=1

(2.6)

For our purposes, it is convenient to rewrite this function
in the form

I

change in the electric field completely destroys all
memory of the initial field.

P(E, t
~
e, O) =»(e ep)f(eo, t)+g(e—eo, t), (2.7) B. Weak diffusion models

where g(e, ep t) is an isotropic function of e=
~

e
~

which
depends parametrically on ep and t and f(ep, t)
= exp[ v(ep)t] for—the MMM process.

A more general non-Markovian model has been pro-
posed by Seidel" in which he employs a class of stochas-
tic process known as a renewal process. ' Seidel's model,
which he calls a "theta process, " is derived in detail in pp.
84—93 of Ref. 13. For our purposes, we will simply note
that P(e, t

~

Ep 0) for the theta process is also given by Eq.
(2.7) with slightly different functions f and g.

The important point here is that P is given by the sum
of a delta function at e = ep and an isotropic function of e
centered at e=O. The "amplitude" of the delta function
decays exponentially with time while the isotropic part in-
creases from g=0 at t=0 and approaches P, ( q)eas
t~ ~. This behavior is illustrated qualitatively in Fig. 1

where the delta function is represented by a solid bar at
E = Ep. The z axis points in the direction e p and, since P
is cylindrically symmetric about the z axis, we have plot-
ted P as a function of e„and e, . This figure shows that
the distribution function P is a sum of two distributions,
one being the delta function at e = ep which decays away
with time, and the other is a symmetric distribution about
e =0 which increases with time and finally approaches
the equilibrium function P,„(e) as t~ ac. This behavior
is characteristic of a strong diffusion process in which any

(&) g (& &0&)

d(a —~)f(c,t)

FIG. l. Illustration of P(e, t
~

e&&, 0) for the strong diffusion
model. As t increases, the amplitude f(e, t) of the delta func-
tion increases while the amplitude g(6' E'ot) of the equilibrium
function P~ decreases. The direction of the initial field e de-
fines the z axis.

In Ref. 3 it was argued that a strong diffusion process
would not give a good representation of the fourth-order
and higher terms in a series expansion of the resolvent
operator M, (tp) used in spectral line broadening (Sec. 5 of
Ref. 3). Since these are known to be important for strong
collisions, it was argued that one might consider a weak
diffusion model similar to a Fokker-Planck process in
which the electric field would change through a series of
small displacements. An example of such a model is
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XPeq
~

& —&pr(&p t )
~

1 —r(e„t)

P(e, t
i ep, O)= 1

[1+r(ep, t )]'

(2.8)

I
/

/
/

/

where I (ep t ) may be any function which obeys the condi-
tions

I (ep, t)~1 as t~O, (2.9)

I (ep, t)~0 as t ~00,

f a'edr(e, t)P (e)=C(t),

(2.10)

(2.11)

and C(t) is the known' electric field autocorrelation
function [see Eq. (3.1) of Ref. 4]. Equations (2.9) and
(2.10) ensure that P will satisfy the boundary conditions
specified by Eqs. (1.1)—(1.3) while Eq. (2.11) ensures that
the electric field autocorrelation function will equal the
known result, C(t):

FIG. 2. Illustration of P(e, t
~

e0, 0) for the weak diffusion
model showing the monotonic decrease of the peak height and
the shift of the peak toward @=0 as t increases. The direction
of the initial field 6p defines the z axis.

(e(t).e(0)) = f d e f d epe. epP(e&t
~

e(),0)P,q(E')p

de' de 1 —I e'+le .e, e'P, e

de@I e, tP, e

=C(t) . (2.12)

Since C(t) is a monotonically decreasing function of t,
it may be expected that Eq. (2.11) will result in a function
r(ep, t) which also decreases monotonically. This being
the case, the function P(e, t

~
ep, O) given by Eq. (2.8) will

be isotropically peaked about the vector Epr(ep t). The
width of this peak, 1 —I, will increase monotonically and,
since P is normalized to unity, the peak height must de-
crease monotonically. This functional behavior is qualita-
tively plotted in Fig. 2 where again z points in the direc-
tion ep and we have plotted P as a function of e„and e,
due to cylindrical symmetry about the direction ep. In
this figure we have qualitatively sketched P for four dif-
ferent times ranging from t =0 where the solid bar is used
to represent the delta function at e=Ep to t=ao where
one obtains the equilibrium distribution P,q(e) centered at
e =0. This is meant to show that P is an isotropic singly
peaked function which broadens and shifts as time in-
creases, gradually changing from the delta function at
t=0 into the equilibrium distribution as t~~. This
behavior is characteristic of a weak diffusion process in
which changes in the electric field are small and do not
completely destroy memory of the initial field; note for
example that the peak is always located on the z axis or ep

direction and the location of the peak, epr(ep, t), is a
function of ep

C. Single-ion model

W(v) =(~rrvp) exp( —v /vp), (2.14)

where r=x+vt, the density n=1/V, and vp
=V'2kT/m. Using rt=x/v e and g=r/v e we readily
obtain

In this section we will consider the conditional proba-
bility function due to a single ion. This function will pro-
vide a useful approximation to P(e, t

~
ep, O) for small t

and large values of ep which tend to be dominated by a
single ion that is initially close to our test point (i.e., the
point where we are evaluating the electric field). To fur-
ther simplify the calculation we will use a Coulomb field
rather than the shielded field in Eq. (1.1); this simplifica-
tion will not produce serious errors for large e. For a
single ion producing a Coulomb field, Eq. (1.6) reduces to

4 i(e t
~

ep 0)=lt f (f'x f d v W(v)6(e er/r )—
&&5(ep —ex/x ), (2.13)

Cii(e, t
~

ep, O) = —,
' (e/ere vpt ) nP q(ep) exp

6 EQ

~3/2 ~3/2
Ep

e

(vpt)
(2.15)
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where P (eq 'Ep) is the asymptotic (i.e.
equilibrium distrib t'u ion unction

smar

HP q(ep)=e /2'Ep

Equation (2.15) could be im

(2.16)

p g

es

if h bo d P
en using Eq. (1.4. ,

'
n e(

e, Eqs. (1.1) and (1.2

e va id in the large-t

From the abov d'e iscussion we
ou provide a ood

e single-
goo PP

o t e conditional
' '

ri ua probability distribu
i we replace nPH-(e b

. We therefore use
,-q ep by P, (q E)pin Eq.
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All computer simulation data presented in this paper were
evaluated at a temperature of 10 K and an ion density
n =10' cm using 125 ions in a sphere of radius 5r0
where 4mr0/3=n. We have employed a diinensionless
time variable T=cozt, where co~ =+4nne . /m is the
ion plasma frequency, and a relative field vector

P = e/(e/r(') ) (3.1)

which employs the "normal field strength" e/r0. To
evaluate P(p, t

~ p0, 0) for a specific value of p0, 125 posi-
tion vectors x& are chosen at random and the ion field is
evaluated at the center of the sphere (i.e., the "test point")
using the shielded field given in Eq. (1.5). If this field
strength does not equal the specified value for p0 to
within +0.5, this configuration is rejected. When a con-
figuration is found which produces the desired initial field
strength, 125 velocity vectors vj are then chosen and po-
sition vectors rj(t) =xj+ vjt are evaluated for a specified
set of times t The. electric field is then evaluated for each
time again using Eq. (1.5). This process is repeated until
we have enough configurations to give a satisfactory noise
level for the analysis of P(p, T

~ p0, 0). All data presented
in this paper were obtained with 10000 configurations for
each value of p0. By using a typical main frame computer

(i.e., a CDC 6600 or a CYBER 750) 10000 configurations
and 14 values of time t required about 2000 sec for p0 up
to 8. Larger initial field strengths require slightly more
time because the probability of finding an appropriate ini-
tial configuration decreases.

We have evaluated much more data than can be practi-
cally presented in this paper. A considerable amount of
time was spent trying to find a simple analytic fit to the
numerical data in the hope that it could all be presented
by simply specifying a few coefficients for the fit. Thus
far it has not been possible to obtain a satisfactory fit. We
have therefore chosen to present those data which best il-
luminate the physical nature of the conditional probability
function.

In representing P(p, T
~
p0, 0), we first note that P

must be cylindrically symmetric about P„ the component
parallel to p0. We therefore employ cylindrical coordi-
nates in which pz is the component perpendicular to p0,
and p„ the component parallel to p0.

In Figs. 3 and 4 we have plotted the conditional proba-
bility as a function of P, with P~=O. Several plots were
made for various values of time T ranging from early
times when the distribution is still peaked near the initial
field strength p0 to late times where P approaches P,q.

1000
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700— 0 ——8

600—
4
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Peq)

0.398 0.

~ o

0
0

0.1585

.02512

n

4 5

FIG. 4. P(p, T
~ p0, 0) obtained by computer simulation for an initial field strength po ——8. Cylindrical coordinates are used for p

with the p, axis defined by the direction of the initial field; p~=O for all curves and P is independent of p~ (i.e., cylindrically sym-
metric). Each curve is labeled by the normalized time variable T=co~t which ranges from T=0.01 to T=6.3 where P=P~. The
solid curves are least-squares fits to the data.
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5000

4000—

3000—

2000—

o ——6.0
T = 0.01
A = 56.40

= 1.573

dominates the initial field moves away from the test point
at velocity v; for smaller x0, a given value of vt produces
a proportionally larger change in r(t) = xo+ vt hence the
peak decays more rapidly for larger values of Po. For
small values of f3O, the ions in the group which initially
dominates the electric field are slightly farther away hence
one or more of these ions may move closer to our test
point while others move away; the decay of the peak is
thus considerably slower when the initial field is dominat-
ed by several ions.

From Figs. 3 and 4 it appears that there are two rela-

tively independent physical processes which govern the
time development of the conditional probability function.
The first is the decay of the initial sharp peak near po due
to the ions which are near the test point at T=O. The
second feature is the rise of the equilibrium peak at late
times which is due to the inward diffusion of particles
that were initially far away from the test point. Each of
these processes will be examined separately.

1000—

B. Decay of the initial peak

In Figs. 5—12 we have used the modified single-particle
function 4i as given by Eq. (2.17) in order to fit the com-
puter simuiation data. We would expect the single-ion ap-
proximation to give a good fit for large values of po which
are known to be determined primarily by a single ion close
to the test point. We also expect this fit to break down as
time increases due to the increasing influence of other
ions. In Figs. 5—11, Pz

——0 and Eq. (2.17) reduces to

FIG. 5. P& fit to computer simulation data plotted as a func-

tion of p, with p~=O and p~ arbitrary.

Figure 3, which corresponds to an initial field strength
Po=2, looks rather similar to the weak diffusion behavior
shown in Fig. 2 in that the peak broadens and shifts to-
ward P=O as T increases. In Fig. 3 however, the peak
does not decrease monotonically with T but instead the
peak height reaches a minimum for values of T near
0.4—0.6; the peak height then increases as P approaches
P~. For the larger initial field strength, Po ——8, Fig. 4
shows a somewhat similar behavior but here the peak
height at its minimum is much lower than in Fig. 3. The
reason for this is that the peak is much broader for these
intermediate times, that is, there are many more possible
intermediate values of P when the initial field Po was
large. For even larger values of Po the peak becomes
broader and lower at the intermediate times and the situa-
tion begins to resemble the strong diffusion case illustrat-
ed in Fig. 1 except that the true peak near Po is not actual-
ly a delta function. It is also interesting to note that the
initial peak near Po decays much more rapidly for the
larger values of Po. This is due to the fact that large ini-
tial fields tend to be produced by a single ion which is
close to our test point whereas weak initial fields are dom-
inated by a small group of ions which are not initially
very close. For large Po, the peak decays as the ion which

P, (O,p„T;po)=(A/p, w T )

X exp[ —(1/~P,
—1/~P())'/(wT)'], (3.2)

150

Po ——6.0

T=O
A=5
w=1

oo

1 2
Pz

FIG. 6. P& fit to computer simulation data plotted as a func-
tion of P, with Pz

——0 and P~ arbitrary.

where A and w are treated as adjustable parameters.
Figures 5 and 6 illustrate the general behavior of the P I

fit. At early times and for a moderately large Po, e.g. , Fig.
5, the peak is very sharp, the maximum lies close to po
and the P& fit is quite good. As the peak broadens and
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4(E,r
~

E'o, 0)= f d6 f de pC' (&e
—&'~r

~
eo —&o 0)

(3 4)

A reasonable physical approximation to @& is shown to
be [see Eqs. (A15) and (A10)]:

4'&(e, t
~

eo,0) -=5(Eo)f (t)P,q(e/f i3(r)),

where

(3.5)

Po. This would seem to imply some correlation between
the "equilibrium" peak at large T and the initial peak at
Po. In order to understand this apparent correlation, we
must look more closely at the joint probability distribu-
tion 4 defined in Eq. (1.6). A more detailed mathemati-
cal analysis of this function is given in the Appendix and
we will only summarize the results of this analysis here.

In the Appendix, the function 4 is analyzed by separat-
ing the contributions from two groups of ions depending
on their initial distance from the test point where the
fields e are evaluated. Those ions initially within a dis-
tance A,D are in the first group, while those initially more
distant than A,D are in the second group. The probability
distribution which results from the distant ions is called
4& and the contribution from the close ions is called 4&.
The derivation leading to Eq. (A7) shows that 4, and
therefore also P, is given by the convolution of 4& and

70—

60—

40—

30—

20—

10—
~ ~

FIG. 14. Fit to computer simulation data for Po ——20 using
Eq. (3.7). Results are plotted as a function of P, for P~=O and
P~ arbitrary. Each curve is labeled by the normalized time vari-
able T.

monotonically with t. This means that a(t) will always
start from zero at t =0 and approach 1 as t~ oo. For
small values of eo we find that u increases monotonically
from 0 to 1 but for large 6o, u in'creases to values greater
than 1 for some range of t and then decreases to 1 as
tab ac. In this sense, Eq. (3.7) is very similar to the weak

f(r)= f x,d v W(U) . (3.6)

In the t~O limit [see Eq. (A16)], this function goes to
5( E )5o(e) and Eq. (3.5) gives 4& =4 &.

Now we already know that 4t, as given by Eq. (2.17), is
a good approximation to 4 for small t, hence it seems
reasonable to approximate N& by 4& for all times t. No-
tice that we are not attempting to represent the complete
distribution function 4 by 4&, this would be incorrect for
large t as already noted. We are only replacing the contri-
bution 4& by 4&.

We may thus analyze 4& for large times by using Eq.
(3.4) with 4&& given by Eq. (3.5) and 4& given by the
modified 4t of Eq. (2.17) or (2.18). In order to estimate
the affect of the convolution in Eq. (3.4) we note that
P,q(F/f (t)) is an approximately Gaussian function of
width f ~ (t) peaked about a=0 while 4& is also an ap-
proximately Gaussian function [see Eq. (2.18)], peaked
about e(t) having a width given by wte, (t)I~»n Eq.
(2.18). Since the convolution of two Gaussians is itself a
Gaussian, we expect that 4 for late times will have a form
given by

&b(e, t
~

eo, O)=a (t)P,q{[e e, (t)/a(t)]IP—,q(e) . (3.7)

If we wish to relate the width of this function, a, to the
widths of 4& and 4& we obtain

150

100

50

po
——2.0

a (t)=f i3(t)+w tV(t)IA . (3.8)

As t~ ao, e,(t)~ Owte, I~A ~0, and f(t)&1 and Eq.
(3.7) approaches P,q(e)P,q(eo) which is the correct limit.

It is interesting to note that wte, (t)I~A goes to zero in
both the t~O and tabac limits whereas f(t) increases

FIG. 15. Fit to computer simulation data for Po ——2 using Eq.
(3.7). Results are plotted as a function of P, for P~=O and Il~
arbitrary. Each curve is labeled by the normalized time variable
T.
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a fit is the lack of asymmetry in Eq. (3.7); this causes the
theoretical function to fall off too slowly in the Pz direc-
tion (not shown) while it falls too rapidly in the P, direc-
tion thus producing a profile which is too narrow in P,
and too wide in Pz. This problem, while observable, is
never really serious and if one is not interested in the
minor asymmetry effects, it is possible to obtain a reason-
able fit to all of the data using Eq. (3.7).

The above argument shows that 4 and P are given by a
convolution of functions 4& and 4& representing the ef-
fect of initially close and initially distant ions, respective-
ly. For early times, the effect of the contribution from in-
itially distant ions was well separated from the effect of
the initially close ions because the functions N& and N &

were sharply peaked about e =0 and e„respectively, and
these two peaks did not interfere with one another. At
late times, the peaks are broader and e, (t) is approaching
0 hence the convolution does mingle these two functions
to produce a result of the form given by Eq. (3.7).

IV. SUMMARY

In this paper we have used computer simulation and
analytic techniques to examine the conditional probability
function P(e, t

~

t p 0) for the ion component of the plas-
ma electric microfield.

At early times, t(1/co&, the function P is sharply
peaked about some field e, (t)=e, (t)Eo. As t increases
from 0 to t -=I/co&, the peak height decreases, the width
of the peak increases, and the location of the peak e, de-

creases monotonically from e, (t) = eo toward e, ( oo ) =0.
As t~ao, P(e, t

~
Ep 0)~P,~(e), where P,q

is the elec-
tric microfield distribution in three dimensions. If, during
the course of its broadening and shifting, the initial peak
height has fallen below its t= oo asymptotic value, i.e.,
P,~(0), then at late times, r & I/co~, the peak height will
start to increase and the width will decrease as t increases.
For small initial field strengths, the peak height decreases
monotonically to P,~(0); it is only for larger values of Eo

that one observes this initial decay of peak height fol-
lowed a monotonic increase to P,z(0).

An additional feature of this peak is that it is always
slightly asymmetric, falling off most rapidly in the direc-
tion perpendicular to e„ less rapidly for e&e, when
@=co, and least rapidly for e & e, when a=co. This asym-
metry is explained by the fact than an isotropic diffusion
of ions in position space does not produce an isotropic dif-
fusion of electric fields.

We found that the strong diffusion model proposed by
Brissaud and Frisch' does not give a good approximation
to the actual conditional probability function. This obser-
vati. on lends support to the argument that the MMM cal-
culations' based on the Brissaud-Frisch model work well
only when the details of the conditional probability func-
tion are not important, e.g., electron broadening, whereas
the MMM begins to break down when the conditional
probability becomes more important as in ion broadening.
The strong diffusion model based on the renewal process
proposed by Seidel" will probably give a poor approxima-
tion to the conditional probability function for the same
reason.

We also found that the simple weak diffusion model
proposed in Ref .3 is not a good approximation for P ei-
ther. The problem with this model is that the peak height
must decrease monotonically with time and the peak is
symmetric. The lack of asymmetry is not too serious but
the monotonic decrease in peak height would be seriously
wrong for moderate to large initial field strengths.

A simple analysis using a single-ion model with one ad-
justable parameter showed that the simulation data could
be fit quite well by such a model for early times t & 1/uz
and moderate to large initial field strengths (i.e., relative
field strengths P) 2). This simple model even produces
the asymmetry observed in the peak.

In order to get a better physical understanding of the
observed data, an analytic analysis of the joint probability
distribution function 4(e, t

~
eo, O) was performed. The

function 4 equals the conditional probability function P
multiplied by P,„(e )o, see Eq. (1.4). This analytic analysis
showed that 4, and therefore also P, is given by a convo-
lution of functions 4& and N& representing the effect of
ions initially close to and initially distant from the test
point where the electric field is evaluated [see Eq. (3.4)].
The diffusion of initially distant ions is statistically in-

dependent of the diffusion of the initially close ions; the
effects of these two independent physical processes can be
mingled by the convolution however. The function 4& is

peaked about a =0 [see Eq. (3.5)] whereas 4& is peaked
about e, (t) which shifts from eo to 0 as t goes from 0 to
ao. At early times, the peaks in 4& and 4& are well

separated and quite sharp so the convolution does not ap-
preciably mingle the two physical processes. For early
times, 4& is essentially just a delta function hence
4=-4& -—4~, where 4& is the result for the single-ion
model mentioned above; this result in fact suggests that
4& may be replaced by 4] for all times. At late times,
the two functions 4& and 4&& (or C&i) have become
broader and their peaks are now close together since

e, (t)~0 as taboo. The convolution now succeeds in

combining the effects of the initially distant ions with
those of the initially close ions resulting in a function of
the form [see Eq. (3.7)]

P(E, t
~

e'O, O)—:(I/a )P, [[E—e, (t)]/a] t) I/co

(4.1)

Treating e, and a as adjustable parameters, this function
provides a good fit to the simulation data although it
lacks asymmetry which, for late times, becomes very
small in any case.

The similarity between Eq. (4.1) and the weak diffusion
model, Eq. (2.8), is striking; the primary difference be-
tween the two is in the fact that the width a(t) in Eq. (4.1)

first increases with t for small t and then may decrease
with t when t becomes large whereas the width would in-

crease monotonically with t in the weak diffusion model.
These conclusions lead one to suspect that it will be

possible to construct an analytic model which is a hybrid
of Eq. (4.1) for late times and a weak diffusion model
such as Eq. (2.8) or possibly 4i(e, t

~
eo, 0) for early times.

The application of such a model will hopefully be the sub-
ject of a future paper.
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APPENDIX

It is possible to get a rough idea as to what the conditional probability function might look like by considering the
theoretical expression given in Eq. (1.6). Using a Fourier representation for the delta functions in Eq. (1.6) and defining
a function P by

P(k, 1,xi, ri):—exp[ik e, (ri)+i 1 e, (xl )]—1,

@(e,t
~
e,O)=(2ir) f dk f d 1 e '"''e ' 'V g f dxl f dvigu'(ul)[1+/(k, l, xj, r )]

J

=(2m. ) f dk f d 1 e '" 'e 'V +[V+/(k, 1 )]+,

(Al)

(A2)

where P( k, 1 ) denotes the single-ion average

P(k, 1 )= f dx f d v IV(u)P(k, l, x, r)

= f dx f dv W(u)I exp[ik E,(r)+i I 'E (x)]—1I (A3)

and we obtained a quantity raised to the Nth power in Eq. (A2) because all terms in the product over j are identical.
Equation (A2) may be further developed by introducing the ion density n =N/V and assuming that N is sufficiently
large to permit

[I+nP(k, 1 )/N] = V exp[nP(k, 1 )] .

We thus obtain

Ci(e, t
~

ep, O)=(2ir) f dk f d 1 exp( —ik e —i 1 ez)e"t'"

(A4)

(A5)

Equation (A5) is a very compact theoretical expression for the joint probability distribution and it is not beyond the
realm of possibility to perform a numerical evaluation of this expression.

For our purposes, we will use Eq. (A5) as a starting point for various approximations which are designed to improve
our physical insight concerning the conditional probability. We will start by simply writing P in the form

(A6)

where P & means x )A.ii while P & means x (A,D. Equation (A5) immediately becomes

4(e, t
~

Ep, O)= f dE f d&pIi&(eo —E', t
~

Ep —Ep, t)C &(e, t
~
60,0), '

where

(A7)

4&(e, t
~

e0,0)=(2n. ) f dk f dl exp( —ik e —i 1 ep)e (A8)

and similarly 4& is the Fourier transform of exp(nP & ).
The function 4& is the probability distribution that would describe a situation in which all ions are initially outside a

sphere whose radius is A,D, the Debye length; the center of this sphere is of course the test point at which we are evaluat-
ing the electric fields e and eo. The function P& may be evaluated as follows:

P&(k, 1)= f »i dx f dv IV(u)[ exp[ik E, (r) +il e, ( )x] —1I

—:f dx f dv IV(u)I exp[ik e, (r)]—1I

=t 3 f dx f dr IV [ exp[ik. e, (r)] —1I

=t f dx f dr+ f dr W [ exp[ik F, (r)]—1)
r (A. r )AD

=t dx W — dr exp ik. e, ~ —1

(A9)
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p,q(k) = f &
d r I exp[i k E, (r)] —1 j .

p (AD
(Al 1)

The function P,q is essentially just the kernel for the
equilibrium ion field distribution

P, q( E)=(2m.)= f dke '" ' expIng, q(k)j . (A12)

This may be verified by comparing our Eqs. (All) and
(A12) with Eqs. (1), (6), (7), and (10) of Ref. 15, noting
that the h2 and higher-order terms in the Mozer-Baranger
expansion provide a very small correction.

For a Coulomb field E, (r) =e r Ir, we could use
r '= r f '/ to write

In the first step we used e, (x)=-0 for x &A,D, we then
changed variables from v to r =x+ v t and the r integral
was divided into the regions r (A,D and r & kD,' again us-

ing E, (r)=0-for r &ED the latter contribution vanished.
Finally, we replaced x —r by x in 8'because x & A,D. In
the last line we simply defined two functions f(t) and P,q

by

f(t)=—
3 f „dx W(x/t)= f dv W(u), (A10)

1

f(t) J dr I exp[ik E, (r)]—1 j

= f dr I exp[ik ' E, (r')] —1 j, (A13)

where k '=k f (t). Since E, and E, do not differ too
radically for r (Ad, we will use

nP, (k, 1 )=n f(t)P„(k)=nP„(kf '"(t))

so that, using Eq. (A12), Eq. (A8) reduces to

P. q( Elf ' '(t))4 & ( E, t Ep0 ') =5(Ep)'f '(t)

(A14}

(A15)

5(E) as t~O
F 2P (EF2/3)

P,q(E) as t —+oo . (A16)

It is also useful to briefly investigate 4&. In the limit
of small t, we know that the single-ion model is a useful
approximation; this approximation is obtained by using a
series expansion in nP and setting X= 1

This is exactly the kind of contribution one might expect
for those ions which are initially outside the Debye
sphere; that is, since f(t)~0 as t~ao and f(t)~1 as
t~ oo [see Eq. (A10)) we must have

nP
e '=1+nP(+. . .

=1+n f „dx f dv W(u)t exp[ik E,(r)+i I E, (x)]—ljz (AD

-=n f dx f dv W(u) expIi k E,(r)+i 1 E,(x) j . (A17}

To obtain the last line, we extended the x integral to infinity (since the integrand is essentially zero for x & A,D ) and used

n fd x =X= 1. Substituting this result into Eq. (A10) gives

4&(E,t
~

Ep, 0)~n J dx f dv 8'(u)5(E —E,(r))5(E —E, (x)) as t~O

=nP, (E,t
~

Epo) . (A18)

If we were to replace E, by a Coulomb field this result would be identical to Eq. (2.13).
In the large-t limit, r becomes greater than AD and we may use E, (r) -=0 to obtain

4&(k, l)= f dx f dv W(u)t exp[ik E,(r)+i 1 E, (x)]—lj

-=f dx f dv W(u)t exp[i 1 E, (x)]—lj

=P,q(i) (A19)

and

4(( E tEP 0)~5(E)P q(E'P) as t~ co (A20)

4(E, t
i Ep, O) nPi(E, t

i Ep 0)P,q(Ep) as t~O (A21)

Finally, combining Eq. (A7) with Eqs. (A16) and (A18)
or with Eqs. (A15) and (A20) we obtain the limiting ex-
pressions for 4:

4( t
iEEp, 0)~ P,q

1

f '(t) ' f '"(t) P, ( q)Epas taboo .

(A22)
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