
PHYSICAL REVIEW A VOLUME 30, NUMBER 1 JULY 1984

Bose-Einstein condensation in finite noninteracting systems:
A relativistic gas with pair production

Surjit Singh and R. K. Pathria
Guelph Wa-terloo Program for Graduate Work in Physics, Waterloo Campus, University of Waterloo,

8"aterloo, Ontario, Canada M1.361
(Received 6 February 1984)

Taking into account the possibility of particle-antiparticle pair production, we have investigated
the onset of Bose-Einstein condensation in an ideal relativistic Bose gas confined to restricted
geometries. Through an extensive use of the Poisson summation formula, we have carried out an

explicit evaluation of the summations over states appearing in the problem, which enables us to
make a rigorous analysis of the temperature dependence of the thermogeometric parameter y of the

system in the case of a cubical enclosure under periodic boundary conditions. This, in turn, leads us

to determine the growth of the condensate fraction po/p as a smooth function of temperature from
T)T, down to T=0 K. Finite-size corrections to the standard bulk results are obtained in explicit
terms and are shown to be in complete agreement with the Fisher-Barber scaling theory for such ef-

fects. In the end, special geometries, such as narrow channels and thin films, are also examined.

I. INTRODUCTION

For one reason or another, the phenomenon of Bose-
Einstein condensation has continued to be of abiding in-

terest to theorists in different areas of condensed matter
physics. Initially, the interest in this phenomenon arose
from the role it plays in our understanding of the curious
behavior of superfluid helium and, to a lesser extent, that
of superconducting materials. Lately, it has caught the
imagination of field theorists, who find it particularly
relevant to problems such as pion condensation, gluon
condensation, and quark confinement in the high-energy
nuclear matter, and of theoretical astrophysicists who be-

lieve to have "encountered" it in the interior of the neu-

tron stars. More recently, Kuzmin and Shaposhnikov'
have discussed the cosmological consequences of the ex-
istence of a primordial massive photon gas, with Bose-
Einstein condensation playing a vital role during the early
epoch of the universe. The net result of these varied in-
terests in this phenomenon is that the emphasis has
gradually shifted from the study of nonrelativistic Bose
systems to that of relativistic ones. Consequently, a num-
ber of authors have carried out detailed analyses of the
ideal relativistic Bose gas in arbitrary dimensions and
have examined the onset of Bose-Einstein condensation in
a variety of limiting situations.

The foregoing studies seemed to have proceeded along a
satisfactory path until about three years ago when Haber
and Weldon pointed out that in the analysis of a relativis-
tic gas, composed of particles with nonzero rest mass m,
at temperatures such that ktiT =0(mc ) or greater, the
possibility of particle-antiparticle pair production cannot
be ignored. The inclusion of this possibility, they showed,
had a profound influence on the phenomenon of Bose-
Einstein condensation, both qualitatively and quantitative-
ly; in particular, the dependence of the "charge density" p
on T changed from the customary T to T, affecting
drastically the dependence of the critical temperature T,

on p. The repercussion of this on other physical quanti-
ties is somewhat indirect but not insignificant. Following
Haber and %eldon, Singh and Pandita carried out a de-

tailed examination of the critical behavior of the system in

the vicinity of T, and found that the onset of Bose-
Einstein condensation depended on the dimensionality d
of the system in very much the same way as in a nonrela-

tivistic gas rather than in a conventional relativistic gas,
viz. , the one without pair production. In particular, the
critical indices governing the nature of the singularities in

the various physical quantities pertaining to the system
turned out to be the same as in the case of a nonrelativis-

tic gas, though the critical amplitudes were different.
These investigations prompted us to carry out a theoret-

ical analysis of the onset of Bose-Einstein condensation in

a relativistic Bose gas confined to an enclosure of finite
physical dimensions (L, XLz XL3), including at the same
time the possibility of particle-antiparticle pair produc-
tion. Such an analysis is markedly different in nature
from the one customarily carried out for the bulk system
in which the summations over states are replaced by in-

tegrations, using an asymptotic expression for the density
of states in the given space (supposedly infinite in extent).
This yields effects only due to the normal fraction of the
particles, with the result that the effects due to the con-

densate, if any, have to be included additionally —and
somewhat artificially. Not only does this procedure pre-
clude the possibility of studying finite-size effects and the
influence of boundary conditions on the various physical
properties of the system but also drains away some of the
very basic subtleties of the condensation process. Using
techniques developed in a series of papers dealing with the
nonrelativistic Bose gas confined to restricted
geometries, ' we have now carried out a rigorous
analysis of the present problem and have investigated in
detail the joint influence of (i) the relativistic effects, (ii)

the pair production, and (iii) the finiteness of the enclo-

sure, on the nature of the phenomenon of Bose-Einstein
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condensation. Our procedure makes extensive use of the
Poisson summation formula which obviates the necessity
of using a density-of-states function D(e); it is, therefore,
immune to errors that can, and are known to, creep into
the analysis if one introduces approximations into the
form of the function D(e) ' . It provides instead a
rigorous means of studying the problem of Bose-Einstein
condensation in an unambiguous manner, without having
to resort to the unnatural act of extracting the condensate
term from the original sum over states and approximating
the remainder by a poor integral. We are thus able to un-
ravel a number of important aspects of the smoothed-out
transition in the ideal Bose gas which may, in the end, be
converted into a sharp one (accompanied by a singularity
in the thermodynamic behavior of the system) by letting
the dimensions of the system tend to infinity, keeping the
density constant.

During the course of this work we have derived an ex-
plicit expression for the growth of the condensate frac-
tion, pp/p, as a function of temperature which brings out
clearly the deviations from the standard bulk result ' and
their dependence on the size of the container to which the
system is confined. One remarkable result emerging here
is that, for m & 0, while the inclusion of the possibility of
particle-antiparticle pair production modifies the expres-
sion for T, and also affects several properties associated
with the transition, both qualitatively and quantitatively,
the condensate itself consists almost entirely of particles
alone; this contrasts sharply with the singular case of
massless bosons for which the condensate contains as
many antiparticles as particles.

Finally, wherever it has seemed desirable and feasible,
we have sorted out special cases of our problem in respect
of (i) the strength of the relativistic effects, i.e., k&T vs
mc, and (ii) the precise shape of the enclosure, i.e., L i vs

L2 vs L3.

II. FORMULATION OF THE PROBLEM

We consider an ideal Bose gas composed of N1 parti-
cles and N2 antiparticles, each of mass m, confined to a
cuboidal enclosure of sides L1, L2, and L3. Since parti-
cles and antiparticles are supposed to be created in pairs,
the system is governed by the conservation of the number

Q ( =N i N2 —), rather than of the numbers N i and N2
separately; the conserved quantity Q may be looked upon
as a kind of generalized "charge. " In equilibrium, the
chemical potentials of the two species will be equal and
opposite: p1 ———p2 ——p, say, with the result that

P(e )J, ) 1—)
—i

N = y(e~'+"' —1)

where P=1/T and e=(k +m )'~; for simplicity, we
shall use units such that A=c =k~ ——1. Note that both e
and p include the rest energy m of the particle (or the an-
tiparticle) and, for the mean occupation numbers in the
various states to be positive definite, we must have

~ p ~

(m. Assuming that, to begin with, )((, &0, it readily
follows that N» N2 and hence Q & 0. In view of the
conservation of Q, )u then stays positive under all cir-
cumstances. Without loss of generality, we shall assume
that this indeed is the case.

Under periodic boundary conditions, the eigenvalues k;
(i = 1,2,3) of the wave vector k are given by

k; =(2nIL;)n; (n;=0, +1 +2, . . .);

the expression for N1 may, therefore, be written as

8 ), ll 2, 1l 3
= —oo

1/2
4~

exp —jPm 1+ zm; 1L;
(3)

The summation over n; may be rendered into an expedient form by using the Poisson summation formula (PSF), name-
14

1l
J 7l2 Pl3 (X)

where

f(n), nz, n3) =
q &,q2, q3

———oo

~(q) f j(n)e2vri(q n)d3n

It is obvious that the term with q =0 on the right-hand side of (4) is precisely. the result one would obtain by replacing
the original summation over n by an integration over d n It follows tha.t the term a (0) would correspond to the bulk
situation (exclusive of the condensate) and, hence, terms ~ (q) with q&0 would contain the condensate as well as the
finite-size effects. An added benefit of using PSF is that, almost invariably, it converts a slowly convergent sum into a
rapidly convergent one. Applying the Poisson transformation to (3), we obtain

where V(= LL)L2)3is the volume of the container, y(q)=(q)L)+qzL2+q3L3)' while K2(z) is the modified Bessel
function. Note that the q =(0,0,0) term yields
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Vm
(N~)s ——

2 g j 'e ~14K&(j Pm),
2m pj.

in agreement with the standard bulk result for N, . Equation (6) may now be written as

jej~"K2(Pm[J' +P y (q)]'~ }
N) ——(N) )g+

q), g2, (J3 = — j = 1 J'+P 'y'(q)
(8)

where the primed summation over q implies that the
term with q =(0,0,0) is excluded.

Our next task is to carry out the summation over j. For
this we observe that, with y( q )&0, the sum in question is

g f(j)= g f(j)= g f &(x j)f(x)d—x
j=1 j=0 J = —ao

f e '"f(x)dx,
I = —ao

Z" ao 1 ZK„(z)= — exp ——t +
2 o 2 t

t-"-'dt,

whence (11}becomes

P'm ' Pmf f exp Pp'x — x xdx

For the modified Bessel function we employ the integral
representation'

where the last step follows from the identity

e ' = g 5(x —j),
J =—ao

where

1 m ( )'V

2
t 'dt,

which forms the backbone of the PSF. This converts the
summation over j appearing in (8) into a summation over
I, viz. ,

~e x (Pp, +2nil)

f K (P2m[x +P y (q)]'~ )dx .
0 x2+P—2y2(~q)

p'=p+2mi P '1 .

The integration over x yields

&2 I

exp + t D P t 1/2

Pm 4m m

where Dz (z) denotes the parabolic cylinder function.
Equation (8) now becomes

N, =(N, )~+ g g D 2
— t' ' exp

4~2R o m 2
q&, q2, q3

———ao I = —ao

p' m y(q)
2m 2

-t 2dt

The integration over t appearing here seems intractable. If, however, we include the antiparticles and make use of the re-
lation'

D 2(z) —D q( —z) = —V 2mz exp( ~ z ),
we obtain

Q =N) —N2

where

q&, q2, q3
———oo I = —oo

p' m y(q)
m2 t

Vm
Qg ——(N) )s —(N2)s = W(P,p),2~2

with

(13)

W(P,p) =2 g (jPm) 'sinh(jPp)K2(j13m) .
j=l

The integration over t appearing here is a tabulated Laplace transform, yielding'

(2n. )'
exp[ —(m —p' )'~ y(q)],

my(q }

(14)
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whence

V 00 00 I

Q = Qi)+ g g exp[ —(m' —p')'~'y(q)] .
e),e, ,e, = -t= —- r(q)

(15)

Equation (15) constitutes the most basic result of our
analysis; in the derivation of this result, we have made no
approximation whatsoever.

III. ONSET OF THE PHASE TRANSITION

First of all we shall demonstrate that the set of terms
other than Qi), in Eq. (15), contains the condensate as well

I

as the finite-size effects in the problem. To see this, the
summation over q may be replaced by an integration over
d q plus a correction term of the form
p'm b, (p' /m, mL(). The former leads to the result

2 g p
13 ( rn p'—

which may be written as, see (12),

00 1 1 = —,
'

{coth[ ,
'

13(m ——p)]—coth[ —,
'
P(m +)((,)] I .

13 t (m p) —2iri—P 'I (m +p)+2vriP 'l
(16)

(eP(m —P) 1)—I (et)(m+@) 1)—i

It follows that Eq. (15) may be written as

2

Q = Qi)+Qp+ F,P m, mL;
m

(17)

the last term denoting exclusively the finite-size effects, a
precise form for which will be derived in Sec. IV; see Eq.
(44).

According to Eq. (17), a macroscopically significant
amount of condensate cannot arise unless p~m. ' In the
bulk system, this limit defines the critical temperature,
T„atwhich Bose-Einstein condensation sets in. A refer-
ence to Eqs. (13) and (14) shows that this requires the fol-
lowing condition to be satisfied:

This is indeed identical with the expression for Qp one ob-

tains directly from the mean occupation numbers ( n ( k ) ),
viz. ,

Qp = (N() ) i
—(Np )2

W(g„m)=
2P, m'

whence

P, = [g( —,
' )/p]' '; (23)

here, g(s) denotes the Riemann zeta function. Equations
(21) and (22) then take the well-known form'

Note that the condensate part of the system can no longer
be determined from Eq. (17) as such; actually, Eqs. (17)
and (22) together now determine whatever little difference
is still left between the chemical potential )M and the rest
mass energy m. The analysis of the bulk system does not
care much about this "little difference"; for the analysis
of the finite system, however, this is of central impor-
tance, as will be seen in the following.

At this stage it seems worthwhile to place on record
two limiting cases of the problem.

(i) The nonrelativistic (NR) case (p«m ), which im-

plies that P,m »1. Equation (19) then reduces to
1/2

p-', )=' ',
m

W(P„m)=2 g (j P, m ) sinh(jP, m)K2(jP, m)
j=1
2' p
m

(19)

p„/p=(P, /P)' ', pp/p=1 —(P, /P)' '. (24)

(ii) The extreme relativistic (ER) case (p »m ), which
implies that P, m « 1. Equation (19) now reduces to

where p (= Q/V) is the "charge density" in the system.
At temperatures less than T„the density of the excited
(or so-called normal) component is given by

mp„= W(Pm) (P&P, ) (20)
2

W(P„m)=
3P, m m

whence

P, = (m /3p) '~ (25)

or, preferably, by the fraction

p„/p= W(P, m)/W(P„m) (P &)(3, ) .

The condensate fraction is then given by

pp/p =1—p. /p

=1—W(P, m)/W(P„m) (P&P, ) .

(21)

(22)

Equations (21) and (22) now take the form '

p„/p=(P, /P)', pp/p= 1 —(P, /P)', (26a)

provided that Pm, as well, «1. The situation in this case
changes significantly as the temperature of the system is
lowered. For instance, at sufficiently low temperatures,
Pm would become much greater than unity; Eq. (21)
would then give
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Pn
33/4g( 3

)
1/4

p
3/2

(2~)3/2 p P
(26b)

with a temperature dependence similar to the one encoun-
tered in the nonrelativistic case. This crossover, from a
typical extreme relativistic dependence on T to a typical
nonrelativistic one, irrespective of the overall relativistic
effects in the system, has already been noticed by Aragao
de Carvalho and Rosa; however, since in their analysis

I

the possibility of particle-antiparticle pair production was
not included, their crossover took place from a T depen-
dence, rather than a T dependence, to the standard T
dependence. In any case, the crossover phenomenon takes
place when the parameter pm passes through values of or-
der unity.

Going back to the finite system, which is governed by
Eq. (15), we observe that, as p —+m, the term with l=0
dominates heavily over terms with l&0. To see this, we
write the summation over 1 in the form, see also Eq. (12),

1
OO

p exp[ —(m —p )'/ y(q)]+ g (p+2mi p 'l)expI [(m— p, —)+4&p l 4m—ipp '1]' y(q) I . (27)
y(q) I = —oo

y; = —,(m p)'/ L; (i =—1,2, 3)

Eq. (15) may now be written as

V Vp( —p )

2 ~

where

(28)

(29)

S(y;)= g exp[ —2R(q)], (30)
R(q)

with R (q) =(qi yi+q2y2+q3y3)'
For a study of the critical behavior of the finite system,

we first of all consider the situation at P=P,—the
erstwhile critical temperature of the infinite system.
Here, the function [ W(P,p)]„~is finite, as seen in Eq.
(19); its derivative (BW/Bp)„,however, diverges. Fol-
lowing Singh and Pandita, we can show that

W(P, p)= W(P, m)— (
2 2)1/2+ O( 2 2)

Pl

(31)

Substituting (19) and (31) into (29), we obtain the remark-
able result that, to the desired order of magnitude,

Now, as p~m, so long as at least one of the three quanti-
ties (m —p )'/ L; is of order unity or less, the main term
in (27), summed over q, would make a rather significant
contribution to Q. The other terms, however, are at best

L /'Tof order exp[ —(m/P)'/L;], i.e., O(e ' ), where A, T
(=3/2mp/m ) denotes the mean thermal wavelength of
the particles. Assuming that, for all i, L; &~A, T, these
terms can be dropped with impunity. The important
thing to note is that no errors of order (A,T/L;)" are com-
mitted if we retain only the term with l=0. Introducing
the thermogeometric parameters y;, '

Tc L
=1+2 [2—S(y;)],

where

(34)

A=
pm

B W(P, m)

ap

[g( )]
—2/3p —1/3 (NR )

' 1/2
1 3m

4m. p
(ER) .

(35)

y =D+t,
where

(36)

3
[g(

3 )]2/3Q1/3 (NR)
D

2A ( /m 3)1/6Q1/3 (ER)
3

(37)

(b) The region with y « 1; this requires t to be negative
and again staying clear of the core region. Here,
S (y) =(ir/y ) » 1 and we obtain

Equations (34) and (35) enable us to determine y s as
functions of T in the close neighborhood of T, .

Specializing to a cubical geometry (Li L2 L3 L, ———— ——
say) we have to deal with a single y common to all the in-

dices i; see Eq. (28). Defining t =(T—T, )/T, and con-
fining ourselves to the domain

~

t
~

&&1, we obtain three
sets of results. First of all, we have the very "core" of the
transition region where y =O(1); this requires

~
t

~

to be
O(Q '/ ). The precise value of y in this region can be
determined only numerically. At t=0, y turns out to be
about 0.97. Two other regions may now be demarcated.

(a) The region with y »1; this requires t to be positive
but staying clear of the core region. Here, S(y) «1 and
Eq. (34) yields

[S(y;)]p=p, =2 (32)
~t

~

—1/2 (38)

[(m —p )'/
]t3 ti O(L &'), —— (33)

where L & denotes the shortest side of the container. For
T=T„weobtain

This shows that, at T = T, (of the bulk system), the ther-
mogeometric parameters of the problem, which determine
the numerical value of the sum (30), are O(1); accordingly,

where

1/2
mA

2'
3

1/2

[g(
3

)] 1/3Q 1/ (NR)

31/4
(/m) ''Q '/ (ER)

2

(39)
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Recalling that the amount of the condensate, Qo, is given
by the expression, see Eqs. (16) and (17),

2m mI. ' g'"
2 2

=
P(m —p ) 2Py y

the passage of y from values O(Q'/ ) to values O(Q '/
)

is clearly vital for the growth of the condensate in the sys-
tem. We shall now examine this question in some detail.

IV. GROWTH OF THE CONDENSATE

In view of the above findings —especially Eqs.
(36)—(40)—we conclude that in region (a), where

y =O(Q' ), Qo is of order unity and, hence, negligible.
In the core region (which includes the erstwhile critical
point t=0), y =O(1) and Qo is of order Q /3, which is
still submacroscopic in magnitude. In region (b), where

y =O(Q '/ ), Qo is finally of order Q and is given by,
see Eqs. (38)—(40),

—', i
t I Q (NR)

0
2~t ~g (ER);

note that in deriving these expressions for Qo we have
made use of Eqs. (23) and (25) as well. At this point it is
indeed heartening to find that expressions (41), obtained
here as a limiting case of our rigorous analysis of the fi
nite system, are fully consistent with the bulk formulas
(24) and (26a).

At this stage it seems worthwhile to point out that the
three regions demarcated above are not as divisive as
might appear at first sight; they can, in fact, be spanned
in an essentially continuous manner. To see this, we note
that for t &0 we may set y =O(Q~), with 0&(& —,'. In
view of Eqs. (36), (37), and (40), we then have

O(g —1/3+/) O(g( —1/3, 0))

and

—2yq

C3 ——1r lim
y —+0 g

q

—2y(IIt—f ' d'q
a11 q g

= —8.913633. . . . (43)

mL, , 1
2

+
2m. P q(y+1rq )

(44)

which may be compared with the formal result embodied
in Eq. (18). It will be noted that the singular term, con-
taining (m —

)M )', in the bulk function 8'(P, )M) is ex-
actly cancelled by the term linear in y in the identity (42)
for the sum S(y). This is important because the thermo-
dynamic functions pertaining to a finite system must be
physically smooth and mathematically analytic, which is
now guaranteed by the fact that our final expression for Q
contains only y . The other thing to note is that the
second term on the right-hand side of (44) is precisely the
quantity Qo, see Eq. (40), whose magnitude is determined
by the combination (Py ). Clearly, the last term in (44),
which is strictly O(Q / ), represents the finite-size effects
in the problem.

Equation (44) is now supposed to be solved for y as a
function of p, whereupon Qo will follow from (40). The
formal procedure for carrying out this calculation numeri-
cally has been laid down in Ref. 11 and need not be re-
peated here. Remarkably enough, a complete solution to
the problem, from T=O K right up to T &T„canbe
written down explicitly by observing that, throughout this
range of temperatures, y « l. Equation (44) then gives,
to an excellent degree of approximation,

It may be mentioned here that the constant C3 appearing
in (42) is directly related to the Madelung constant of a
simple cubic lattice. ' ' Equations (28), (31), and (42)
now enable us to write (29) as

3 L 2

Q = W(P, m)+
2n. 2Py

g O(g2/3 —2g) O(g(2/3, 0))

For t &0 we may set y =O(Q~), with ——,
' &/&0.

view of Eqs. (38), (39), and (40), we now have

Qo Qo I
C3

I m

Q Q, 2~' pN-
'

where

(45)

and

t
~
=O(g 1/3 2$)=O(Q( —1/3, 0))

Qo m'= 1 — 8'(P, m),
277 p

(46)

2
3'

m.q (y +1r q )

C3+ +2/
'lT

(42)

where

Q O(Q2/3 —2g) O(Q(2/3, 1)
)

Thus all the regions of interest can be covered essentially
continuously by letting g vary between the limiting values

and
For a fuller understanding of the problem, we need a

more complete knowledge of the sum S(y) appearing in
Eqs. (29) and (30). For this we make use of the identi-

10, 11

as we already have in Eq. (22). We thus find that, ir-
respective of the actual magnitude of the relativistic ef-
fects, the finite-size correction term in (45) is positive and
is directly proportional to (i) the temperature of the sys-
tem and (ii) the surface-to-volume ratio of the container.
The fact that we obtain an enhancement of the condensate
fraction over the bulk value is not surprising in the case of
periodic boundary conditions. Here, the ground-state en-
ergy in both the bulk and the finite systems is the same;
however, as we go from the bulk to the finite case, the ex-
cited states become discrete and are shifted upwards,
thereby reducing the mean occupation numbers for these
states and, consequently, enhancing the fraction of the
particles in the ground state. It is indeed expected that
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the situation will vary significantly from one set of
boundary conditions to another. The fact that the correc-
tion term is directly proportional to the surface-to-volume
ratio of the container, and hence to L ', is consistent
with the scaling theory for finite-size effects, as formulat-
ed by Fisher et al. As regards the linear dependence
on T, one can understand it heuristically by noting that,
since it is closely related to being a "surface effect, " the
finite-size correction must possess qualitative features
similar to the ones characteristic of a two-dimensional
bulk system.

Finally, we shall address ourselves to the question of
the relative importance of the particles and antiparticles
in the total condensate Qo. Assuming that both the
species are present in significant numbers, we have from
Eq. (17)

(No)1 —[P(m P)l (No)2 —[P(m +P) j

with

Qo—-2p [P(m ' —
i

') l '=[P(m —
i ) l

' .

mLiP&ci, ci ——O(1) .
pL2L, 3

' (48)

If Li~ ~, no condensate appears unless T~O K. Thus,
irrespective of the actual values of L2 and L3, so long as

( L 2 3 /L i )~0, the system behaves essentially as a one-

dimensional bulk system.
(ii) Thin film -geometry (L, 2»Li). Here, the sum

S (y; ) essentially reduces to a one-dimensional sum which,
for y3 «1, turns out to be —2yq 1n(2yi). Equation (29)
then becomes

mL )L2 1

~P (
2 2) 1/2L

(49)

Now one requires that

One can now show that the second term in (47), which is

supposed to contain the condensate, will be O(Q) only if
the temperature of the system is sufficiently low, so that

Apparently, (No )2 is negligible in comparison with (No ) i.
To be sure, we consider the ratio

m LiL2
Po

p 3
c2 ——O(1) . (50)

(No)2 m —p, m —p y
(No)i m+p (m+p) m L

In the whole region of interest, this ratio is at best
0 (A,, /L ), where k, denotes the Compton wavelength of
the particles, and hence it is negligible. We, therefore,
conclude that while the inclusion of the possibility of
particle-antiparticle pair production modifies the very ex-

pression for T, (p) and affects several important aspects of
the phenomenon of Bose-Einstein condensation, the con-
densate itself consists almost entirely of particles alone.
This contrasts sharply with the singular case of massless
bosons for which the condensate contains as many parti-
cles as antiparticles —essentially because the two species
in that case are indistinguishable. This situation may be
compared with the one arising in the Gibbs paradox '
where one encounters an "entropy of mixing" which is
positive definite when the diffusing molecules are dissimi-
lar but is zero when they are similar.

V. CONDENSATION IN PARTIALLY
INFINITE ASSEMBLIES

In the preceding section we examined the growth of the
condensate, as a function of temperature, in a cubical as-
sembly. Generally speaking, the results thus obtained,
especially Eq. (45), would be valid for noncubical assem-
blies as well, except for the fact that numerical factors,
such as C3, would now be shape dependent. The situa-
tion, however, changes qualitatively if, in one or two of its
dimensions, the system becomes infinite. In such cases we
obtain the following results.

(i) Narrow channel geome-try (L»&L2 3). Here, the
sum S(y;) essentially reduces to a two-dimensional sum
which, for y2 i «1, turns out to be m/(y2y3). Equation
(29) then takes the form

mLi
Q=Qii+ 2 2 in ' (47)

P(m' —p')'"

Again, if Li z~oo, no condensate appears unless T~O
K. Thus, irrespective of the actual value of L3, so long as
(L3/Li 2)~0, the system behaves essentially as a two-
dimensional bulk system; see also Ref. 25.

We, therefore, conclude that in partially infinite
geometries Bose-Einstein condensation does not set in at
any finite temperature; for this to happen, the system in
three dimensions must be either completely infinite or else

completely finite.

VI. CONCLUDING REMARKS

Ideal Bose gas is one of the few models in the theory of
phase transitions that can be solved exactly but gives re-
sults different from the ones obtained in the usual mean-
field approximation. In this paper we have carried out a
rigorous analysis of the relativistic version of this model,
inluding the effects of particle-antiparticle pair produc-
tion, in a finite cuboidal geometry (Li XL2XL3) under
periodic boundary conditions. We have shown that, as the
temperature of the system is lowered, phase transition sets
in smoothly and is marked by the growth of the conden-
sate Qo, from O(1) to O(Q), over a temperature range b, T
[=O(Q ' )] in the vicinity of the erstwhile critical tem-
perature T, of the bulk system. We have obtained explicit
expressions for the condensate fraction, Qo/Q, for a cubi-
cal geometry (L XL XL), which are valid throughout the
critical region down to 0 K. Further, in this study, we
have examined the manner in which the singularity, so
manifestly present in the bulk limit (L~ co ), disappears
when the dimension L of the container is kept finite.

Finally, we have examined the question of the onset of
phase transition in partially infinite geometries, such as
those of a narrow channel and a thin film. In both these
cases, we find that there is no buildup at all of the con-
densate Qo near T = T, . Even at lower temperatures, the
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condensate remains of an order lower than Q, so that
Qo/Q~O as Q~ac. However, when T becomes suffi-
ciently small to satisfy the inequality (48) or (50), as the
case may be, Qo/Q does become O(l) and ultimately, as
T approaches 0 K, Qo/Q approaches unity.
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