
PHYSICAL REVIEW A VOLUME 30, NUMBER 1

Collision of Feigenbaum cascades

JULY 1984

G. L. Oppo and A. Politi
Istituto Xazionale di Ottica, Largo Enrico Fermi 6, I-50125 Firenze, Italy

(Received 27 September 1983; revised manuscript received 19 March 1984)

The existence in dynamical systems of chaotic bands delimited on both sides by period-doubling
cascades is a general two-parameter phenomenon. Here we show evidence that, whenever these
chaotic regions disappear, the bifurcation convergence rate undergoes a slowing down and asymptot-
ically approaches the square root of the universal number 5=4.6692. . . . A simple
renormalization-group analysis is performed to explain this critical behavior and its scaling proper-
ties. In particular a theoretical universal function describing the evolution of the convergence rate
from 6' to 5 is given and numerically verified.

I. INTRODUCTION

A large variety of nonlinear dynamical systems shows a
chaotic behavior in given regions of the parameter space.
These regions are delimited by different critical phenome-
na: a sequence of period-doubling bifurcations, intermit-
tency, or crisis.

The existence of chaotic bands delimited on both sides
by period-doubling cascades is a quite general
phenomenon prevalently associated with the locking of
two different frequencies. For instance, Contopoulos
has recently shown that in one conservative system, a ro-
tating galaxy model, the two cascades may collapse to-
gether and reduce to only a finite number of bifurcations,
depending on the amplitude of the perturbation. The
same phenomenon can be observed in dissipative systems
as well: forced Brusselator equation, hydrodynamics,
magnetoconvection and optical bistability.

Finally, the existence of inverse cascades has been ex-
perimentally observed in an electronic forced oscillator
where, moreover, the measured values of the first and
second Feigenbaum ratios turned out to be consistently
smaller (2.11, 3.31) than the theoretical prediction.

The aim of this paper is to provide a detailed analysis
of the critical behavior when the chaotic window disap-
pears, the two cascades collapsing together. The under-
standing of the underlying physics is reached through a
two-parameter study of the phase diagram: the first one
to follow the period-doubling cascades, the second one to
control the width of the chaotic region. In particular, we
show that the collision of cascades is characterized by a
slowing down in the convergence rate, which approaches
the square root of the Feigenbaum value 5=4.6692. . . ,
thus explaining the discrepancy between the standard
theory and the experiment of Ref. 9.

More precisely, for any sufficiently small, but nonzero,
chaotic window, the first convergence rates 5„stay close
to 5', while at larger n, 's they asymptotically reach 6.
By changing the second parameter v until the chaotic re-
gion disappears (v=v, ), the number of bifurcations show-
ing a rate 5' diverges to infinity. Here we give the
theoretical expression for the universal function 5„(v—v, )

which describes the growth of the convergence rate from

5' to 6 versus n and v —v, . Finally, using a
renormalization-group technique with a continuous pa-
rameter dependence, we interpret the collision of cascades
as the simplest of the nonfundamental fixed points recent-
ly introduced by Daido. '

In Sec. II we perform a numerical analysis of a doubly
forced Duffing equation, which shows evidence of col-
lision of cascades. We also measure a critical convergence
rate which turns out to be different from the Feigenbaum
one. In Sec. III we introduce a cubic map associated in a
qualitative way to the differential equation and measure a
critical convergence rate equal to the square root of the
universal number 4.6692. . . . In Sec. IV we go through
simple renormalization group (RG) considerations to give
a theoretical interpretation of this behavior. In particular,
we show how the order of the crossover bifurcations n,
scales versus the difference v —v, and give a numerical
verification of such a scaling law. In Sec. V we follow a
slightly modified version of Daido's approach to study the
dependence of a recursive map on the first parameter p
for v= v

II. DOUBLY FORCED DUFFING EQUATION

The sequence of period-doubling bifurcations is perhaps
the most common route to chaotic behavior in dynamical
systems. A one-parameter study of such a critical
phenomenon leads to the discovery of one well-defined
transition value p„: the accumulation point of Feigen-
baum cascades. If we include in the study the dependence
of a second parameter v there will be, in general, a whole
line of critical points p (v) separating the ordered from
the chaotic phase (see Fig. 1).

Now, depending on the path followed in the phase dia-
gram, we may observe different phenomenologies: a sin-
gle transition order chaos (OC) (see curve a in Fig. 1), a
transition OC followed by a reverse one (curve b), only a
finite number of bifurcations (curve c), or, finally, a
pointlike chaotic region corresponding to a path tangent
to the critical line p„(v) (curve d).

In order to study this last critical behavior in a differen-
tial equation we have preferred to analyze a nonau-
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FIG. 1. Two-parameter phase diagram for a generic dynami-
cal system showing a transition to chaos via period-doubling bi-
furcations. Numbers indicate the periodicity of the solution.
Curves represent paths exhibiting different phenomenologies:
(a) a single transition order chaos; (b) a transition order chaos
followed by a reverse one; (c) no transition to chaotic states; (d)
an infinite period-doubling cascade immediately followed by a
reverse one (collision).

tonomous system because it offers the possibility of con-
structing a Poincare section and measuring the bifurcation
points in a very accurate way. Indeed, the return time T
to the Poincare section is preassigned and it is known with
a much better accuracy than the other, numerically in-
tegrated, variables.

Precisely, we have studied the following Duffing equa-
tion:

x = —1'x+x —4x +A cos(coir)+8 cos(cilpr),

with y=0.154 and co&
——1.17. If we choose A=0.09 and

8=0, the asymptotic solution of Eq. (1) is periodic with
the same frequency as the external force (cubi) and it is
close to the first period-doubling bifurcation (increasing A

by a small amount). " On the contrary, if we increase 8
from 0, for many different values of the winding number
F=co2/e&, we may observe period-doubling cascades im-
mediately followed by reverse ones. In particular, from
the data obtained for 8'= —, and reported in Table I, we
can see that the convergence rate remains considerably
different from the Feigenbaum ratio both for the direct
and reverse cascade.

In order to gain a better understanding of this
phenomenon, we have drawn in Fig. 2 a Poincare section
for a return time T& ——2~/co~ and 8 =0.002778 88, when
the solution is chaotic (the largest Lyapunov exponent be-
ing 3.3 & 10 ). Since the five different pieces making the
section lie on simple curves, it is possible to build one-
dimensional return maps for any of them. Indeed, once
we have chosen piece 1 of Fig. 2 and one of its coordi-
nates (e.g. , x axis), the x value of any point on 1, is plot-
ted versus the x value of its previous image, correspond-
ing to a time 5 T~ earlier, on the same piece.

The resulting map shows the following distincting
features: (a) an inflection point where the curvature
changes sign, and (b) increasing 8 essentially corresponds
to lower the map (see Fig. 3). We now directly introduce
a map sharing the same features of this recurrence numer-
ically built for the Duffing oscillator.

III. THE CUBIC MAP

Let us introduce the cubic map

3xn+ i
=fp(xn ) =xn —vxn p'

TABLE I. Bifurcation values B„and convergence rates 6„of the direct and inverse cascades for the
doubly forced Duffing equation (1) with y =0.154, co&

——1.17, ~2 ——0.468, and A =0.09.

Bifurcation

5-10

10-20

40-80

80-160

160-320

320-160

160-80

80-40

40-20

20-10

10 B„

0.248 512 687

0.265 623 623

0.272 842 557

0.275 782 043

0.277 010722

0.277 518 110

0.278 620 255

0.279 080 584

0.280 103 282

0.282 387 935

0.296 443 562

10'(B.+ i —B.)

0.017 110936

0.007 218 934

0.002 939487

0.001 228 679

0.000 507 388

0.000 460 329

0.001 022 698

0.002 284 653

0.014055 628

2.3703

2.4558

2.3924

2.4216

2.2217

2.2339

6.1522
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FIG. 2. A Poincare section for the doubly forced Duffing
equation with B =2.778 88)& 10 . The representative point
falls in the five regions according to the sequence 1-2-3-4-5-1-
2

FIG. 4. Phase diagram for the map of Eq. (2); the numbers
indicate the periodicity of the solution. Paths corresponding to
horizontal straight lines, may intersect the chaotic region de-
pending on v values.

to investigate in a simpler way the phenomena previously
observed for the Duffing equation. The role of the pa-
rameters A, B is essentially played now by v,p.

Since the recurrence (2) is symmetric under the
transformation (x,p)~( —x, —p), we will restrict our
analysis to the positive p's. Indeed for p smaller than 0
we get the same phenomenology but in inverse order, as
for p&0. If p&po ——(2/3v 3)(v+I) there exists only
one unstable fixed point xq. At p=po a pair of stable-
unstable fixed points (x2,x&) is created via a tangent bi-
furcation. On further decreasing p we can observe an en-
tire period-doubling cascade if v is sufficiently large, or
only a finite number of bifurcations if v is small (see Figs.
4 and 5). For v ranging between 1.74. . . and 2.3. . ., after
a chaotic band, an ordered behavior is restored in the re-
gion around p =0. We can easily understand this
phenomenon noticing that in this range of parameters

there exists an interval around the maximum of f„(x„)
mapped around the minimum and then back into itself.
Since the map, close to its extrema, is a contracting one, it
is not surprising to find some stable solutions. More im-
portantly, the ordered behavior is restored via a period-
doubling cascade, that is to say, the chaotic region is de-
limited on both sides by period doublings which, depend-
ing on v, may collide. A qualitative explanation of this
behavior can be found in the existence of an inflection
point of the map, indeed, by increasing the control param-
eter, the solution, instead of visiting less stable regions,
may fall into the more stable section on the right of the
inflection point.

Let us go now to study the convergence rate of bifurca-
tions around v= v, = 1.742 821 997 236. . . where the
chaotic region disappears and the two cascades collapse
together. In Fig. 6 we have plotted the ratio

& =(p 1 p)~(p ——p+1)— (3)

versus n, where p„ is the nth bifurcation point, for four

. 167

X n+1

.157

.147

.1 37

.137 .147 .157 X„.1 67

FIG. 3. One-dimensional recursive map built from the Poin-
care section for three different values of the control parameter
B: (a) B =2.47)& 10 ' corresponds to a fixed point, (b)
B =2.65)&10 to a cycle of period 2 and (c) B =2.77888
)& 10 ' to a chaotic regime.

~ 5

FIG. 5 Bifurcation diagrams for the cubic map (2). For
v=1.75 (a) the two opposite cascades are separated by a chaotic
region; for v=v, (b) the aperiodic region is reduced to a point-
like one.
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FIG. 6. Convergence rate 6„vs n for four different
v's: vi ——1.743, v2 ——1.742 823, v3 ——1.742 822, and v4
= 1.742 821 997 2361.

different v's close to v, . We see that if the width of the
chaotic region is around 10 (v=v3 in Fig. 6) then the
rate 5„reaches the Feigenbaum value after 17 bifurca-
tions. On the other hand, when such a width is less than
5&(10 the rate 5„remains very close to 2.1608. . .
through all the observed bifurcations, as shown in Table
II. In Sec. IV by means of RG considerations, we are able
to provide a detailed explanation of the whole subject.

IV. UNIVERSALITY

It is known that the occurrence of a period-doubling
cascade in a map is related to the existence of a fixed
point f* of a suitable RG transformation in the function-
al space of maps. ' In particular, if the one-parameter
family f& crosses the stable manifold W, of f', there is a
full infinite cascade with a chaotic transition. In order to
avoid artificial effects, we should require that the "veloci-
ty" Bf„/Bp in the functional space is everywhere dif-
ferent from zero. This point will, however, be discussed
in Sec. V. In Fig. 7 we have sketched the graphic Gf of
f„ for three different v's. If v= v„since the chaotic band
is reduced to a pointlike one, Gf is tangent to the stable
manifold O', . Those who are not familiar with such a
picture may refer to Fig. 1, where the path followed in the
parameter space is essentially equivalent to the graphic
Gf of Fig. 7.

Let us denote now with d„ the distance between Gf and
8', ; for v=v„ the generic relation linking d„and p„can

be written as

(4)

where the linear term vanishes according to the previous
considerations. If we substitute Eq. (4) into Eq. (3) and
recall that d„scales as 5 "," we obtain the following
asymptotic relation:

TABLE II. Bifurcation values p„and convergence rates 6„and 5„' of the direct and inverse cascades
for the cubic map (2) at v= v, .

1

2
3
4
5
6
7
8
9

10
11
12
13
14

1.241 622 759 639 4215
0.817487 591 789 4652
0.631 130576 254 6814
0.550 196310965 0756
0.514 241 799 142 3410
0.497 955 806 643 8148
0.490 497 398 529 6516
0.487 062 807 757 5132
0.485 477 005 611 3711
0.484 743 909 809 9063
0.484 404 813 660 6393
0.484 247 921 556 5850
0.484 175 322 231 3888
0.484 141 726 333 6452

2.275 928 0976
2.302 572 5243
2.251 018 3336
2.207 695 4674
2.183 574 8660
2.171 556 5576
2.165 838 1409
2.163 158 1342
2.161 9113135
2.161 333 4291
2.161068 3519
2.160958 0357

1.189 999
1.796 093
2.006 988
2.101 684
2.133732
2.149 472
2.157 561
2.180060
2.402 884

14
13
12
11
10
9
8
7
6
5
4
3
2

0.484 083 844 542 1932
0.484 050 252 509 4610
0.483 977 665 561 5804
0.483 820 835 918 8999
0.483 482 031 414 1753
0.482 750 297 355 3569
0.481 170 853 363 7093
0.477 765 947 9129495
0.470 446 101 789 1080
0.454 805 978 050 8920
0.421 845 791 793 7546
0.354 014951 225 1242
0.197693 979 391 0160

2.160744 1179
2.160 606 1126
2.160 334 6085
2.159753 0393
2.158 494 5686
2.155 762 0711
2.149 794 2394
2.136673 8417
2.107412 1157
2.057 962 9022
2.304 570 7604

1.967 344
2.142 027
2.163 922
2.171 284
2.184 020
2.198 520
2.230 246
1.689 893
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TABLE III. Comparison between the theoretical predictions
of 6„ from Eq. (11) and the numerical data evaluated on the cu-

bic map (2) at v=1.742822.

9
10
11
12
13
14
15
16
17

Theoretical 5„

2.161 25
2.162 77
2.169 83
2.201 90
2.335 55
2.764 58
3.575 75
4.284 31
4.572 38

Numerical 6„

2.166 25
2.165 10
2.17901
2.202 40
2.335 77
2.764 66
3.575 75
4.284 31
4.572 46

FIG. 7. Graphic G/ of the one-parameter family f„for three
different v's in the functional space of the renormalization-
group transformations. W„and W represent, respectively, the
unstable and stable manifold of the fixed point f . Xi, X2, and
X3 are the surfaces of the superstable maps of periods 2, 4, and
8. By changing p along curve 1, we can observe two opposite
cascades separated by a finite chaotic window. In case 2, the
chaotic band reduces to a pointlike one. In 3, the map does not
display any bifurcation beyond the second one.

that is to say,

lim 5„=5'/2,
n~00

in accordance with the data of Table II. Analogously, it
is possible to verify that the existence of a nonzero cubic
term in Eq. (4) implies that also

5i/2F(v5& i) F(v5")
5„(v)=

F(v5n) 5 1/2F(v5n+1)

where the dependence on a has been removed by using an
arbitrary scale for V. Once we have chosen a v small
enough, we can recognize two different regimes: small
and large n corresponding to x(=75")«1 and x ~~1,
respectively. In the former case 5„ is close to 5'/ because
F(x)-1; in the latter one 5„approaches 5 because
F(x)-x ' +x ' /2.

To test Eq. (11), let us first come back to Fig. 6 where
the curves look very much as shifted versions of the same
universal curve. This is indeed the case, as it is evidenced
in Eq. (11), where the dependence on V and n is entirely
contained in the product v5". Consequently, a simple
scaling law can be inferred: any change of V from a fixed
reference value can be naturally compensated by a shift in
the bifurcation order n

5„'= 5„)—5„
5„—5„+)

(6) —lnvn= +C,
ln5

(12)

d„=a (v+bp„) (7)

neglecting higher-order terms. In this way, the two accu-
mulation points turn out to be IJ, „=+(v/b)'/ . By shift-
ing the origin of p to the positive p „,Eq. (7) becomes

1/2

d„=(ab) p „+2 — p„ (8)

where p,„=p„—p„. Since the distance d„scales as 5
we obtain

p„=(ab)' [ (av)' +5 " —F(av5")], (9)

where

F(x)=v'I +x
The convergence rate is consequently given by

(10)

converges to 5', as is again verified in Table II.
Introducing V=v —v„we see that for V~0 the graphic

Gf intersects twice W, in the two different accumulation
points of the opposite cascades, while for v & 0 no one in-
tersection exists (see Fig. 7). Therefore, for suitable small
V&0 and large enough n, the distance d„can be written
as

where C is an unessential constant. Therefore, by fitting
the a priori unknown horizontal shift, it has been possible
to compare the theoretical predictions of Eq. (11) with the
numerical values gotten for v=1.742822. The data of
Table III show a good agreement (the first four figures
coincide) in the crossover region where 5„changes from
5' to 5. The larger discrepancy at small n's is due to the
neglected higher-order terms.

To verify now the scaling law (12), we choose at first an
intermediate value 5 between 5' and 5, and then associ-
ate to each v the corresponding bifurcation order n such
that 5„(V)=5. To do this, we interpolate the numerical
data through Eq. (11), giving formal meaning even to
noninteger n's. We report in Fig. 8 n versus lnv for a
choice of 5=3. The points are well aligned on a straight
line with a measured slope 0.650 very close to theoretical
prediction 1/ln5 =0.6489. . . .

So far we have discussed the case of infinite sequences
of bifurcations when a chaotic region still exists. Now, let
us turn our attention to the finite case. It is readily seen
that Eq. (11) holds even for v&0, i.e., beyond the col-
lision, and it is also possible to evaluate the number of
occurring bifurcations, by looking for the change of sign
in the argument of the square root in Eq. (10). Indeed, a
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(towards 1.3810. . . ) tendency can we reach a conclusion
in a definite way. In particular, coming back to the re-
sults gotten for the differential equation in Sec. II it is ap-
parent that the high-order terms [referring to the expan-
sion (4)] are still non-negligible at the last measured bifur-
cation, since the behavior of 5„cannot be described in
terms of the function (11). Anyway, we can reasonably
assume that, being 5„&5', a chaotic window exists. In
fact, we recall that for a suitable value of 8 (0.002 778 88),
the largest Lyapunov exponent is positive, thus yielding a
chaotic behavior.

FIG. 8. Numerical evidence of the scaling law (12) between
the order of the crossover bifurcation n and the distance
v=—v —v, . Points correspond to a measure performed on the cu-
bic map (2) for v=vl, v2, and v3 as in Fig. 6. Straight line
represents the theoretical curve.

negative sign in the square root corresponds to a nonreal
value of p„ for the respective bifurcation. Therefore, by
imposing

v5"= —1 (13)

5, =&5+I—1=1.3810. . . . (14)

We can now conclude that, until the measured rate
remains close to 5' it is not possible to decide whether
the cascade is finite or infinite. Only when we begin to
observe an increasing (towards 4.6692. . . ) or decreasing

and solving for n, we get the requested value for the last
bifurcation. Hence v&0 gives rise to a different class of
finite curves showing a rate 5„(v) always decreasing for
increasing n and less than 5' [see Fig. 9, where two
theoretical samples of the different classes ( v & 0 and
v& 0) have been plotted].

Finally, let us calculate the smallest measurable rate 5,
corresponding to the last bifurcation. By substituting
v5,"+'=—1 into Eq. (11), we obtain, after a few algebraic
calculations,

V. THE RENORMALIZATION-GROUP ANALYSIS

x„+i fq(x„)——
and rescale both the variable x and the parameter IM.

Namely, x is transformed according to

x —x„'(p)z—
x„'(p)—x„' i(p)

(16)

where x„* belongs to the 2"-periodic orbit and is chosen
with a fixed rule between the two points bifurcating from
x„ i at p=p„ i. On the other hand, differently from
Daido, let us rescale p as

P P~
Pn P~

(17)

thus allowing a clear-cut interpretation of the so-called
nonfundamental fixed points, as we will see in the follow-
ing.

We can now introduce the RG transformation

We now describe the collision of Feigenbaum cascades
in terms of a generalized version of the RG approach con-
tained in Ref. 1. Since we are not only interested in the
dependence on the dynamical variable x, but also in the
scaling respect to the parameter p, it is more convenient
to follow a slightly modified version of the RG scheme
introduced by Daido. '

Let us start with a one-parameter family of maps on
the interval (0,1)

f' (x (z,y)) —x„'(y)
G„(z,y) =

x.*(y)—x„* i(y)

whose fixed-point equations are

G(z,y) = G'(e(y)(1+z), 5 'y),1

e(y)

e(y) =G'(e'(y), 5 'y),

(18)

(19)

where e(y) is the asymptotic rescaling factor of the vari-
able x

10 20

x„'(y)—x„* i (y)
e'(y) = lim

x„* i(y) —x„* 2(y)
(20)

FIG. 9. Universal function 5„(V) vs n for two different v's:
v & 0 corresponding to an infinite cascade (curve a), and V & 0 to
a finite sequence of bifurcations.

analogous to the a=2.5029. . . of Ref. 1. By introducing
the Taylor expansion of G(z,y) with respect to the spatial
variable z,



30 COLLISION OF FEIGENBAUM CASCADES

we can formally rewrite Eqs. (19) as

A,(y)=L(A, (5 'y)} . (22)

The Feigenbaum theory shows the existence of a fixed
point A, (y) with a relevant eigenvalue 5=4.6692. . . . Let
us now introduce the following transformation on the pa-
rameter y:

r (y)—=y (23)

which leaves unchanged the accumulation point in ~ =0
and the first bifurcation (y = 1) in r = 1 in accordance
with the definition (17). By substituting y with r in Eq.
(22), we immediately see that k(r (y)) is again a fixed
point with relevant eigenvalue

4 y

FIG. 10. Stability coefficient A,
"' of a periodic orbit vs the

rescaled parameter y for a standard Feigenbaum sequence
(curve a) and for the collision of two cascades (curve b).

g 1 /m (24)

The nonfundamental fixed points (m ~ 1) have now a
direct interpretation: looking at Eq. (23), we can simply
notice that m corresponds to the multiplicity of the cross-
ing point between the graphic Gf and the stable manifold
W, (see, for instance, Fig. 7 or, for simplicity, Fig. 1

referring to a path in the parameter space instead of to
Gf ). Hence, the collision of cascades, being characterized
by a tangency, can be associated to a fixed point with
m =2 and eigenvalue 6'

It is worthwhile to notice that a trivial way to get an
eigenvalue 5', for any arbitrary choice of m, is to shift
the zero of p to p„and rescale P according to Eq. (23).
Therefore, in such cases, the graphic Gf is not distorted
from a transversal (with respect to W, ) into a tangent one,
but more simply, the "velocity" along the curve Gf is
modified. This is exactly the case mentioned in the previ-
ous section when, changing the parametrization, we ob-
tain Bf„-/BP=0 for P =0. This result is a purely artificial
one and it can be clearly evidenced by measuring the "rate
of the rates" 5'„[see Eq. (6)] which, different from 5„,
remains equal to 4.6692. . . . Indeed, if we transform
P~P in Eq. (4), we obtain a peculiar expansion where
only the powers which are multiples of m are present. In
particular, the absence of the (m+ 1)th power implies
that 5„'„asymptotically converges to 6. This is not the case
of the cubic map (2) for which the 5„' values turn out to be
very close to 5'~ (see Table II).

Still following the procedure of Ref. 10 it is possible to
evaluate the first terms of L(A,(y)) by suitably expanding

e(y) in the neighborhood of y =5. Thus, up to the second
order in (y —5), we obtain

m

A,"'{r (y)}=1+

2(5—4)(y —5)
(5—1)'(5+4)

(25)

ACKNOWLEDGMENTS

We wish to thank Dr. S. Ruffo and Professor J. P. Eck-
mann for helpful discussions and Professor F. T. Arecchi
for his kind interest in our work. This work was partially
supported by the contract CNR-INO.

We recall that, from the definition (21), A,
"' is the deriva-

tive of f„along the 2 -periodic orbit in the limit of large
n's; hence, Eq. (25) shows how the stability coefficient of
the solution evolves from 1, for y =51™,to the asymptot-
ic value at the accumulation point y=0. In Fig. 10 we

have reported the theoretical values of A, '"(y ) for m= 1

and 2. We have also performed a numerical calculation of
k'" for the cubic map at v=v, for which, in spite of the
approximations contained in Eq. (25), the difference be-
tween theory and direct calculations is always less than
0.5% and could not be appreciated in curve b of Fig. 10.
Finally, we conclude by again affirming the generality of
the phenomenon so far discussed that occurs in many
nonlinear dynamical systems where it is possible to con-
trol at least two external parameters.
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