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Interaction of chemical bonds: Strictly localized wave functions in orthogonal basis
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A second-quantized theory is presented with the aim to study the nature and interactions of well-

localizable chemical bonds in molecules. The basis set is partitioned by assigning each basis function

to a chemical bond possessing two electrons. The Schrodinger equation within each limited basis

subset is solved exactly for each bond, leading to correlated, strictly localized, intrabond wave func-

tions. The total many-electron wave function 4 is defined as the antisymmetrized product of these
A Pp A

strictly localized geminals. The second-quantized Hamiltonian H is partitioned as H=A + W,

where the zeroth-order Hamiltonian h contains all terms which contribute to the energy of the

strictly localized wave function 4, while the expectation value of 8', as calculated by 4, is zero.

Since h is not simply the sum of intrabond Hamiltonians, the strictly localized wave function ac-

counts for certain interbond interactions (inductive effects). The concept of bond creation and an-

nihilation operators is introduced which formally shows Bose-type behavior since they refer to a

two-electron composite system.

I. INTRODUCTION

The concept of two-electron binding is one of the most
useful tools in theoretical chemistry. In valence-bond
(VB) type methods one constructs the many-electron wave
function of a molecule in terms of two-electron —two-
orbital VB structures. ' Within the molecular orbital
(MO) scheme this feature is often lost when using canoni-
cal MO's, but the use of localized molecular orbitals
(LMO's) offers the possibility to deal with two-electron
bonds. ' These LMO's can be determined a posteriori by
a unitary transformation of the canonical self-consistent-
field (SCF) Hartree-Fock (HF) MO's, or they can be
constructed directly, by avoiding the computation of the
canonical SCF orbitals. Such a priori localized MO's can
be obtained either by introducing a localization potential
into the general form of the HF equations, ' or by im-
proving an initial approximate set of LMO's which can be
written down easily from the chemical formula Agood.
initial guess to LMO s in well-localizable systems can be
formed by the so-called strictly localized MO's
fSLMO's)" ' represeiitiiig the chemica] boiids (iniier
shells and lone pairs) of the molecule. The SLMO's usu-

ally possess two (one) atomic hybrid orbitals if a minimal
basis set is used. The Slater determinant of the occupied
SLMO's represents an approximation to the many-
electron HF wave function. The mutual interaction of the
chemical bonds in a molecule at the HF level results in (i)
a change in the polarities of the corresponding
SLMO's' ' and (ii) a small electron delocalization be-
tween different SLMO's' ' . Interactions of type (i) are
electrostatic in nature leading to a rearrangement of the
electron distribution in the bonds without producing
charge transfer between different bonds. Delocalization
corrections of type (ii) account for the intrabond charge
transfer effects. If the strictly localized character of the
LMO s is maintained, one can consider only interbond in-
teractions of type (i), also named inductive effects.

In going beyond the HF level, correlation effects can
also be classified according to their intra- or interbond
character. Simple physical arguments indicate that the
former should be much larger than the latter, since in the
intrabond case the two electrons are rather close to each
other and their motion is expected to be strongly correlat-
ed (left-right correlation for the two-center case). In the
PCILO method' ' (perturbative configuration interac-
tion using localized orbitals) one constructs the
configuration-interaction (CI) wave function in terms of
SLMO's. Calculations performed by the PCILO
method showed that the interbond correlation correc-
tions are usually less by an order of magnitude than intra-
bond ones. The perturbative treatment of large intrabond
effects clearly can cause an unfavorably slow convergence
of the perturbation series. Therefore, one expects that a
much better starting point for further calculations arises
if one takes into account all intrabond effects already at
the zeroth order, also including intrabond correlation.
Such formalisms are offered by the theory of separated
electron pairs and various other geminal methods '

which construct the many-electron wave function in terms
of two-electron functions (geminals). As it was discussed

by Hurley and recently by Luken, the geminals are lo-
calized in space to a high extent. This is quite natural be-

cause the localization of geminals maximizes the intrapair
correlation energy which is energetically favorable. In
this paper we utilize this fact by considering our approxi-
mate wave function as an antisymmetrized product of
strictly localized geminals. That is, both SCF and correla-
tion effects are accounted for as far as is possible in the
strictly localized model. In other words, the basis set of
the atomic (hybridized) orbitals is partitioned into several
subsets. Each subset represents a chemical bond (inner
shell or lone pair) of the molecule. The Schrodinger equa-
tion is exactly solved for each bond within the limited
basis set of the corresponding subsystem, taking into ac-
count the inductive interactions between different bonds
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which do not involve an electron transfer from one bond
to another. The antisymmetrized product of strictly lo-
calized geminals approximation, as compared to the fully
optimized geminal methods ' is expected to work well
to the same extent as the strictly localized MO model'
does in the HF theory.

On the other hand, the development of the present for-
malism was motiviated by realizing the fact that, al-
though interatomic interactions in a molecule are large,
interbond interactions are rather small. ' The former lead
to the formation of the molecule itself and should not be
approximated when dealing with the intrabond problems,
while the latter represent only minor effects which can be
treated with less rigor.

The formalism is based on second quantization which
was proven to be very useful to study many-body prob-
lems in a finite basis. ' " Since dealing with two-
electron bonds as primary entities, the concept of "bond
creation" (annihilation) operators is introduced which
create (annihilate) a two-electron bond structure acting on
vacuum state. The aim of this paper is to introduce the
formalism and to present an analysis of the second-
quantized Hamiltonian and the corresponding wave func-
tion. The results are illustrated by some sample calcula-
tions. The theory is formulated in the basis of orthogo-
nalized (s in) orbitals. Extensions to the nonorthogonal
case and t e consideration of interbond delocalization and
correlation effects, as well as more detailed numerical ap-
plications, will be reported in the forthcoming paper(s) of
this series. '

II. THE PARTITIONING OF THE HAMILTONIAN

hp
——P ——,

' 5— v (2)

and (pA,
~

vo) is the usual two-electron integral in the
(11~22) convention. All integrations, of course, also in-
volve a summation over spins. The creation (annihilation)

t

The Born-Oppenheimer Hamiltonian of a molecule in
the second quantized notation is written as

H =H +gh„a„a„+—, g (pA,
~

vo. )a„a~ aq
PV PVA CT

provided that the set of basis functions is orthogonalized.
In Eq. (1) H is a constant representing the nuclear repul-
sion, the p, v, k, and o indices refer to spin orbitals
(AO's), while

operators a„(a„)obey the usual anticommutation rules:

QpQv+Qvap =0
~

apav+avap =0
~ (4)

a pav+ava p
—&pv

H=H +gH;+g'H c~j+g'H i~p + g'H y,t, (7)
i,j,k i,j,k, l

where the primes indicate that the summations are to in-
clude all pairs, threesomes, and foursomes, of the bond in-
dices, respectively (i.e., i &j, etc.). For the different opera-
tors in Eq. (7), by simple algebraic manipulations, one gets

H,'= g h&aa+ —, g (pA, vo)aa a aq,
p, v, A., o Eip, vEi

The operator o& (a„) creates (annihilates) an electron on
the spin orbital p. The anticommutation of the creation
and annihilation operators is connected to the fermion na-
ture of electrons.

Let us note that the zero differential overlap (ZDO)
condition is not utilized in the general form of the Hamil-
tonian (1), which, therefore, is capable of describing the
different neglect-of-differential overlap (NDO) schemes
as well as it being able to refer to an explicitly orthogonal-
ized basis without any approximation in the integrals. We
do not restrict the discussion to one of these quantum
chemical models which can be defined by the list of one-
and two-electron integ rais appearing in the second-

quantized form of H.
Let us now suppose that the molecule under considera-

tion consists of several chemical bonds, each containing
two electrons (only closed-shell systems are considered for
the sake of simplicity). Lone pairs and inner-shell orbitals
are handled as "one-center bonds. " Each basis orbital is
assigned to one of the bonds (i) which may be denoted by
the symbol pEi. With this notation the Hamiltonian (1)
can be written as

H =H'+ g g gh„„ota„
i,j pEivEj

+ —,
' g g g g g (pA,

~
vcr)a~ta n a~ .

i,j,k, 1p Ei VEjA, E k cr E I

Different terms in Eq. (6) can be classified whether the
bond indices i, j, k, and I coincide or not. Accordingly,
the Hamiltonian can be partitioned as

H;, =g gh„„a„a„
pEi vEj

g (pX
~

vcr)a„o„a ag+ g (pv
~

Ao)a„ag a a„
pEi VEj A, , crEj A, ,o Ei

+ —,g Q I(pA,
~

vo)a„a a„ay+ [(po
~

vk) —(pk
~

vcr)]a„a aqa
crEiA, Ej

H, jk
———,g g g g [[(pA,

~

vcr) (pcr
~

vA)]—o&o, a~aq+(pv~ oA)a„a o~a I

p Ei vEjA. Ek cr Ei

+ g [(per
~

vX) —(pA,
~

vo )]a„a„ar,a + g (pA,
~

vcr)a&a a a~
O'Ej
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and

H,p, t ——g g g g (lz&
l

vo )a„a

where
l
vac) is the vacuum state. Let us now define the

operator

For the sake of simplicity, let us assume that a minimal
atomic basis set is used, that is, each bond is constructed
by at most two hybrid orbitals. The generalization to
larger basis sets is straightforward provided that each
basis function can be assigned to a given bond. The two
hybrids represent four spin orbitals which can be denoted
by the symbols X'~, X'~p, Xz~, and Xzp for the bond i. The
general form of the two-electron singlet wave function
(geminal) within the limited basis of the bond i reads

P, (1,2) =A I A, g~(1)gp(2)+ B;Xz~(1)Xzp(2)

+C;[gz (1)X')p(2)++~(1)gzp(2)] I, (12)

where the numbers in parentheses refer to electrons, A is
the antisymmetrizer, and 3;, B;, and C; are appropriate
coefficients obeying the normalization condition
A; +B; +2C; =1. As a consequence of the orthogonality
of the basis orbitals and the strictly localized character of
the geminals P;, the strong orthogonality condition is au-
tomatically fulfilled. The first two terms in (12) describe
the ionic configurations, while C; is the coefficient of the
covalent terms. If A;, B;, and C; are determined fully
variationally, the two-electron wave function P;(1,2)
represents an "exact solution" of the Schrodinger equation
within the subproblem of bond i (For .one-center
"bonds, " B;=C; =0 and A; = 1, naturally. ) In the
second-quantized notation, Eq. (12) can be rewritten as

g;(1,2)=[A;a;& a;~p+B;a;z~a;zp

+C;(a;z a;&p+a;& a;zp)] l
vac), (13)

I

pEi vEj k, &ko&j

The matrix elements of the one-electron Hamiltonian hz„,
A.

appear in H; and H;~. As for the two-electron integrals,

H; contains only integrals centered on bond i, H,j
possesses integrals centered on two different bonds, etc.
Integrals in H; and H,j, of course, can be "three center"
and "four center" referring to the center of basis orbitals,
since i and j are generally two-center bonds.

Obviously, H; is the Hamiltonian of bond i if this

bond is independent of the other bonds. Operator H,j de-
scribes direct pairwise interactions between bonds i and j,

A. A. 4while H;ik and H,jki account for the simultaneous in-
teraction of three and four bonds, respectively. Different
terms of the Hamiltonian will be analyzed below, whether
or not they result in interbond electron delocalization (Sec.
V). Before doing this, we discuss the form of the strictly
localized many-electron wave function.

III. STRICTLY LOCALIZED WAVE FUNCTIONS

g;=A;a;&~a;&p+B;a;z~a;zp+C;(a;z~a;~p+a;~ a;zp) (14)

and its adjoint

g; =A;a; &pa; ~p+B;a;zpa;z~+C;(a; &pa;z~+a;zpa;~~)

(15)

by means of which the wave function of the bond i, Eq.
(13), can be written simply as

P;(1,2) =g;
l
vac) .

One can say that operator g;, acting on the vacuum
state, "creates*' a two-electron state for the bond i, as de-
fined by the parameters A;, B;, and C;. If these parame-
ters were obtained by the Hartree-Fock-Roothaan pro-
cedure, P; l

vac) would correspond to a doubly filled
(strictly localized) MO. In the general case, when the
above coefficients are determined fully variationally, the
geminal P;(1,2) also contains intrabond correlation effects
(namely, the so-called left-right correlation for two-center
bonds) and P; creates a state which is a linear combina-
tion of several configurations.

The total many-electron wave function of the molecule
containing n two-electron bonds is clearly written as

$ 1$ 2
. q' l

vac & (17)

IV. THE ALGEBRA OF OPERATORS

g; and/;
A

The algebraic properties of operators p; and g; are de-

fined by their commutation relations. By evaluating the
commutators and utilizing Eqs. (3)—(5) one obtains direct-
ly

44k —Ikey =0 (18)

0 0k —Ikey =0

AgAAAgA
tl' 4k —4k% =Q &k

where the following notation is introduced:

(19)

(20)

This wave function is properly antisymmetric since,
through Eq. (14), it is constructed by the fermion opera-
tors a& fulfilling the anticommutation rules of Eqs.
(3)—(5). The 4 of Eq. (17) can be called the antisym
metrized product of strictly localized geminals It is no. th-

ing but a VB-type wave function where the ionic terms
are optimized for each structure. Properties of opera-
tors P;,P; are analyzed in Sec. IV.

2 f f f f 2
Q; =A; (n; & +n; &p

—1)+B; (n;z~+n;zp 1)+(A;+B;)C—(a; ~~;z~+a; ~pa;zp+a;q~a; ~~+a;gapa; ~p)+ C; (N; —2) . (21)

(22)

(23)

Here the particle number operators n&, N; are defined by

lip =apQp )

N;=gnp .
p6i

I

Equation (18) and (19) show that the operators p; and 1i;,
in contrast to a„and a„ in Eqs. (3) and (4), commuting
instead of anticommuting among themselves, showing
Bose-type behaviors. This is obvious since, though single
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electrons are fermions, P; creates a bond structure of a
pair of electrons with an integer spin. In this sense we can
say that 1'; creates a quasi Bose particle i in a state de-
fined by the parameters 3;, 8;, and C;; this particle is not
"elementary" but it is composed by the two electrons be-
longing to the bond i. It is to be emphasized however,
that such quasi Bose particles in a usual molecule can be
introduce only formally since the two electrons of a chem-
ical bond do not form a bound state physically. We note
that the well-known Cooper pairs, introduced phenomeno-
logically in the theory of superconductivity, represent a
completely different situation. We stress also that no ap-
proximation is used in our approach which would utilize
the properties of these bosons; their formal introduction is
to be considered as an appropriate notation. Anyway, it
will turn out that the introduction of operators g;, g;
offers a useful practical tool in studying the nature of the
chemical bond in multiatomic molecules.

The appearance of operators Q; in Eq. (20) is just a
consequence of the composite nature of the quasi Bose
particles describing the chemical bond i, since creation
and annihilation operators P;,P k of true elementary bo-
sons should obey the usual commutation rules

0k0 —4'0k= —&k

instead of Eq. (20). Thus the deviation of Q; from the
unity operator indicates the composite nature of the quasi
particles. It may be worthwhile to give the actual form of
Q; in some special cases.

(a) If the bond i is neutral, the two ionic terms in Eq.
(12) have an equal weight: A; =B;. Then, using the defi-
nition (23) of the particle number operator, we have

Q;=(A; +C; )(N; —2)

P;a„—a„P;=0, (27)

g;a„a—„p;=R;„5;k (iMEk) (28)

where R;& is given by

R;„=A;(5„,a;,p 6„1p—a;,p)+B;(5„2aa;2p 5—„2pai2a)

+ Ci(f1p2a , i 1P ~p, 1Pai2a+5@, la i2P 5p, 2Paila)

(29)

V. THE INDUCTIVE INTERACTION

Let us introduce the following partition of the total
Hamiltonian H of Eq. (1):

Again, the bond creation (annihilation) opera-
tors gati;(p;) commute the creation (annihilation) operators
a„(a„)of atomic orbitals. This is also quite natural since

and P; are linear combinations, each term containing
a product of two operators, a„a, and a„a„,respectively.

It should be noted at this point that the second-
quantized theory of composite particles was outlined by
several authors in another context. The recent pa-
pers by Girardeau and Kvasnicka are also worth men-
tioning. In the latter, e.g., a system of hydrogen atoms,
free protons, and electrons was studied Via second quanti-
zation.

The above commutation properties of the bond creation
and annihilation operators allow calculation of any expec-
tation value or matrix element by the multideterminant
molecular wave function of Eq. (17) in a straightforward
manner. We are therefore in a position to undertake fur-
ther analyses on the Hamiltonian (7).

+2A; Ci (ai laai 2a+ ai2p ai la H=h'+8', (30)

+a; lp a;2p+a;2pa; lp) (24)

(25)

Note that for a single-determinant HF wave function
A;=C;= —,

' for the neutral (A;=B;) case.
(b) In the simple Heitler-London VB scheme one drops

both ionic terms in Eq. (12), i.e., one has A; =B;=0 and
C,. = 1/v 2. Then one finds simply

where the terms h and W are defined by requiring that
the expectation value of 8' as calculated by strictly local-
ized geminal wave function (17) be zero:

(4~8 ~%)=0. (31)

That is, we define a model Hamiltonian h whose expec-
tation value is just the energy of the approximate wave
function 4:

Note that (4'~ Q; ~

lIi) =0 and (vac Q;
~

vac) = —1 for
the Heitler-London wave function.

Let us now study the commutational properties between
the operators g; (f; ) and the original single-electron
creation (annihilation) operators. The explicit evaluation
of the commutators yields

g;a„—a„lti; =0, (26)

(32)

The operator h can be called the strictly localized Ham-
iltonian. It will be constructed as follows.

Expectation values of operators expressed by a&,a can
easily be calculated by the commutation properties
(18)—(20) and (26)—(28). For example, simple algebraic
manipulations lead to the following result:

('li
~

H;.ki ~

%') = g (iMX
~

vcr)(vac
~ P,g2

. . a„a"„a ax& 11(iz
. . 1ti„~ vac) =0 .

pEi,
v6j,

A, ek,
oEl

(33)
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And, similarly,

g P„' P,~f(po
~

v)j, ) —(pA, vo)],
p, oui v, A, Ej

(35)

where P„' is defined by

P„' =(vac
~
P;a&a g; ~

vac), (36)

i.e., P„ is the representation of the first-order density
matrix for the bond i. Note that Pp is not idempotent in
general since it corresponds to a multiconfiguration wave
function f; ~

vac). The total molecular density matrix
corresponding to the wave function 4 is given by the
direct product of the P' matrices:

(34)

4In the above equations the operators H;Jk and H,zkI were
defined in Eqs. (10) and (11). These results show that

4operators H;Jk and H,zkl are to be included into 8' since
they do not contribute to the energy as far as the "antisym-
metrized product of strictly localized geminals" wave
function is used. The same does not hold for the operator
H,J representing the pairwise interbond interaction, for
which we obtain

That is, utilizing Eqs. (33) and (34), we have

&e~H~e&=(@ XH @).
l

(42)

Accordingly, the operator h can be identified with

g H1 eff
E

1 ffThe operator H," can be considered as the effective
Hamiltonian for the bond i. It no longer describes an in-
dependent bond but takes into account the electrostatic in-
fluence of all other bonds through the effective core h„',.
This inductive interaction describes the polarization of the
bonds, but it does not affect the strict localization, i.e., it
does not produce any charge transfer between different
bonds. Since each bond is in the electrostatic field of oth-
er bonds, the wave-function coefficients A;, 8;, and C;
(i = 1,2, . . . , n ) can be obtained by an iterative procedure.
Such procedures are often used for calculating the optimal
bond polarities at the Hartree-Fock level. ' ' ' ' '
Another possibility to solve such a nonlinear problem is
the application of special perturbation theories developed
for nonlinear Schrodinger equations, " where the system
under consideration (here a chemical bond) is perturbed
by an operator which depends on the wave function itself.

The energy of the strictly localized geminal wave func-
tion is expressed as [cf. Eq. (42)]

E =E„„,i++ g h„'~gq„

P=P'e P2e . . - e P" . (37)
i p, vEi

That is, no interbond density elements occur, which is a
consequence of the strict localization. The trace of the
matrix P, as usual, gives the total number of electrons in
the molecule:

p, v, A, ,oui
(pA, vo )I „'

where E„„,1 is the nuclear repulsion and

I &,x =(vac '0;a„a„a a~%;
~

vac)

(43)

TrP=QTrP'=g g (a&a„)=g(N;) =2n,
i pEi

where n is the total number of bonds.
A.

Now, let us modify the operators H; and H;1 intro-
duced in Eqs. (7)—(9) in the following manner:

pEivEi

+ —, g g (pA, vo)a„a„a a~,
p, vEi A, , o Ei

(38)

is the element of the second-order density matrix of the
bond i. The first- and second-order density matrix ele-
ments can easily be expressed by the coefficients A;, B;,
and C;, using the commutation rules of Eqs. (18)—(20)
and (26)—(28). For example, in order to illustrate the
worth of using operators P;,P; we give here the ex-
plicit formula for P„'„(p,vEi ):

P„'„=(vac
~ P;a„a„P; i

vac)

= (vac
~
R;„R;, vac), (45)

where

hp =hp„+ —, y y P'x[(IJV OA) —(pA.
~

vo)] .
j (&i) A, ,oEj

Furthermore,

(39)

where use was made of Eqs. (26)—(29) and the operator

R;„is defined as the adjoint of R; in Eq. (29). The sub-
A

stitution of R;& and R;„into (45) immediately gives

P'1~ 1~ ——P'1p 1p
——A; +C (46)

A.

H,j—+K gj

=H; ——,
' g g Pi~g[(pv

i
oA) (pA

~

v,o.—)]a„a„.
p, v&io, kEj

i i 2 2
2a, 2a 2P 2P ~i + i

l l l1,2a 1P,2P 2a, la 2P, 1P

=(A, +B,)C;,

(47)

(48)

(40)

As is easy to see, this repartitioning of the Hamiltonian
leads to the result that

(41)
(49)

while other P„'„elements are zero. That is, the spinless
density matrix D'=P'(a)+P'(P) reads

A +C,' (A, +B, )C,
D'=2

(A;+B;)C, B,'+C,'
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Similary, the second-order density matrix can be ex-
pressed by using Eq. (28) as

I „'„«——(vac R&a a~R&
~

vac)

which can easily be evaluated for every given foursome of
the indices p, v, A., and cr.

The form of the effective one-electron Hamiltonian
h', as given in Eq. (39), is the same as that usual at the
Hartree-Fock level, ' but it is calculated by the exact
intrabond density matrix elements P„' taking into ac-
count some correlation effects as well. By means of Eq.
(39) the total ground-state energy, E of Eq. (43), can be
rewritten as

The density matrix of the present wave function is
block diagonal as a consequence of the strict localization.
That is, we have taken into account all types of interbond
interactions which maintain the block diagonality of the
density matrix. Such interactions do not produce electron
transfer between different bonds. The weakness of the in-

terbond charge transfer is the condition for the applicabil-
ity of the strictly localized geminal wave function. This
condition is fulfilled for the majority of saturated mole-
cules, for which all the effects neglected in this work are
expected to be sufficiently small to be handled by means
of a fast convergent perturbational treatment. '
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E;~= g g P„'Qf [(pv Ao) , (p—X vcr)t (52)
p, vEi A, , crEj

is the interaction energy of bonds i and j. Note that even

E; depends on the other bonds implicitly, through the pa-
rameters A;, B;, and C; if they are optimized with the

strictly localized effective Hamiltonian h

VI. CONCLUSIONS

In this paper a formalism is developed for analyzing the
second-quantized form of the Hamiltonian and to discuss
the form of approximate wave functions in an orthogonal-
ized basis. Correspondence is established between the
chemical bonds of a molecule and formally bounded elec-
tron pairs which can be handled as quasiparticles showing
Bose-type behaviors. Accordingly, the bond creation and
annihilation Bose operators are introduced for which
commutation rules are derived reflecting also the compos-
ite nature of the formal Bose quasiparticles.

The physical reality of these formal bosons is the same
as those of two-electron chemical bonds; the latter is cer-
tainly approximate but it represents obviously one of the
most fruitful interpretative tools in chemistry.

In the present approach it is possible to solve the
relevant Schrodinger equation exactly for each bond, in
the subset of basis functions assigned to the bond in ques-
tion. The wave function is constructed in terms of the
strictly localized geminals. This wave function corre-

sponds to a strictly localized Hamiltonian h possessing
only integrals centered on one and two bonds. The strict-
ly localized Hamiltonian can be written as a sum of the

ffeffective intrabond Hamiltonians H,' .
The antisymmetrized product of strictly localized gemi-

nals wave function is expected to give a rather satisfactory
approximation for a wide class of molecules since (a) it ac-
counts for the inductive interactions of the chemical
bonds and (b) it is highly correlated since it describes
properly the left-right correlation effect within each
chemical bond. Feature (a) ensures a proper electrostatics
of the bonds, while feature (b) results in obtaining correct
dissociation properties of the molecule (which is not the
case, e.g., in the Hartree-Fock method). We note also that
the discussed wave function is size extensive and size con-
sistent.

APPENDIX: NUMERICAL ILLUSTRATIONS

1. Chain of hydrogen atoms

Table I presents total energies of a few short H„chains
(n =2, 4, 6, 8, and 10) in the approximation using (i)
strictly localized molecular orbitals, (ii) standard
CNDO/2 wave functions at the closed-shell restricted
HF level (SCF), and (iii) the present strictly localized gem-
inals (SLG's), respectively. For the positions of the hy-

drogen atoms, a linear alternating geometry is assumed
with r ( ——0.74 A and r &

——1.0 A.
In the case of the hydrogen molecule (n =2), one has

only a single two-center bond, thus there is no interbond
delocalization effect. Consequently, EsLMQ —EscF in this
case. A significant improvement of energy is obtained,
however, when the SLG approximation is used which

TABLE I. Total energies (a.u. ) of alternating chains of n hy-

drogen atoms for several n in different approximations (see

text).

Chain SLMO SCF SLG

H2
H4

H6
H8

Hip

—1.4746
—2.8864
—4.2980
—5.7097
—7.1213

—1.4746
—2.9212
—4.3682
—5.8152
—7.2621

—1.4846
—2.9063
—4.3279
—5.7495
—7.1711

In this appendix some test calculations are presented
using Pople's CNDO/2 Hamiltonian, with the aim to il-

lustrate the effectivity of the present scheme. Though the
CNDO/2 was introduced as an all-valence-electron SCF
method working at the HF level, the popular PCILO
method' ' accounts for some correlation effects as well,
within the CNDO/2 scheme and using the original semi-
empirical parameter set. In the present (preliminary) ap-
plications we follow the same approach. Since the CNDO
makes use of the ZDO condition, the underlying basis set
is orthonormal so the present scheme can be applied. (For
a closely related approach, using the HF spinorbitals as a
basis set, see Ref. 49.)
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FIG. 1. Potential curve of the Hlo~H9+H dissociation.

represents now the exact solution ("full CI") in this
minimal basis. The correlation energy obtained (0.001
a.u. =0.27 eV) is in agreement with the analytical result
serving as a test of the procedure.

For the H„( n & 2) chains the calculated delocalization
energy Esc„—EsLMo

~

ts higher than the correlation en-

ergy contribution which can be obtained by the SLG wave
function ( ~EsLo —EsLMo ~, see Table I). This is not
surprising because this hydrogenic chain is far from being
well localizable. ' ' ' However, the superiority of the SLG
wave function becomes evident if one studies the dissocia-
tion process of the H&0 chain

H)0—+H9+H .

The corresponding potential curves are depicted in Fig. 1.
At the SLG level the H&0 supermolecule dissociates prop-
erly, while the SCF method possesses the well known
"dissociation catastrophe. "

2. Methane

For the next example methane (CH4) is chosen, which
is a typically well-localizable system. The calculated ener-

gies are presented in Table II. The standard geometry was
assumed. The PCILO values, given for comparison, are
obtained by using the perturbation energy corrections
given in Ref. 55. As it is seen, the SLG model in CHq
represents a really good approximation: EsLG is better
than EscF. This is connected to the good localizability of

TABLE II. Total energy of methane (a.u. ) in different ap-
proximations. MP and EN refer to the Moiler-Plesset (Ref. 52)
and Epstein-Nesbet (Ref. 53 and 54) partitions of the Hamiltoni-
an, respectively.

-o.I-

R [A]

FIG. 2. Potential curve of the CH4~CH3 +.H dissociation.

this molecule, since Ed,&«
——

~
EscF —EsLMo

~

=0.038 eV,
wh'le E o«=

l
EsLG EsLMO I

= l.009 eV.
and third-order PCILO results in the Moiler-Plesset parti-
tioning, though they contain also some delocalization con-
tributions, are worse than EsLG, which does not. The
PCILO values corresponding to the Epstein-Nesbet parti-
tion of the Hamiltonian are seemingly deeper, but it is to
be realized that the PCILO being a perturbative method,
its energy predictions do not serve as upper bounds to the
exact (full CI) energy, while EsLo is obtained as an expec-
tation value, thus it is a strict upper bound. Moreover, we
note that the third-order PCILO computations are much
more expensive than the calculation of SLG's and their
energies.

To illustrate the attributes of the SLG approximation,
we have studied also the dissociation of methane to a
methyl radical and a H atom:

CH4 —+CH3 + H .

Figure 2 shows that, again, a proper dissociation is ob-
tained by the SLG wave function, while the SCF method
is unable to give, even qualitatively, a correct potential
curve.

3. Rotation around double bonds: The ethylene barrier

The examples given in Figs. 1 and 2 show that the SLG
approximation is capable of describing molecular process-

TABLE III. Contributions to the ethylene barrier (kcal/mol).

SLMO
SCF
SLG
PCILO-MP

Second order
Third order

PCILO-EN
Second order
Third order

—10.1122
—10.1136
—10.1493

—10.1372
—10.1456

—10.1518
—10.1510

Change in EsLMo
Change in Ed,~

Change in E„„
Sum of contributions
Ab initio SCF+ CI

barrier (Ref. 57)
Experimental barrier

(Ref. 56)

261.1

—118.9
—60.3

81.8
83.0

65.0
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es when a two-electron chemical bond is broken. A relat-
ed important application concerns the treatment of bar-
riers to internal rotations around double bonds. The SCF
theories at the closed-shell restricted Hartree-Fock level
cannot give reliable estimations to such barriers, since the
change in the correlation energy in the process is signifi-
cant. For instance, the barrier of ethylene, HzC=CH2, by
the standard CNDO/2 SCF method was found to be 142
kcal/mol at standard bond lengths and angles. This is ex-
tremely large as compared to the experimental value of 65
kcal/mol, though the CNDO/2 method predicts rather
correct barriers to rotations around single bonds. Ab ini-
tio SCF calculations predict similarly incorrect barriers
for ethylene.

The correlation energy change during the ethylene rota-
tion from the planar to the perpendicular conformer, as
calculated by the difference of the SLG and SLMO ener-
gies, is 60.3 kcal/mol. If we correct the SCF barrier of
142 kcal/mol by this change, we obtain 81.8 kcal/mol
which is a more reliable estimation. Ab initio SCF+ CI
results predict, e.g., 83 kcal/mol. Accordingly, we can
say that the SLG wave function accounts for the dom-
inant part of the correlation energy change in calculating
barriers to rotations around double bonds. We note, how-
ever, that delocalization effects are never negligible when
calculating barriers within orthogonal basis sets. ' ' '

Our conclusions are summarized in Table III.
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