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In recent experimental investigations of the ionization of Rydberg atoms in low-frequency elec-
tromagnetic fields, ionization rates have been measured which depend strongly on the intensity of
the oscillating fields but only weakly on the frequency. In an attempt to understand this ionization
mechanism, an analogous, one-dimensional system is considered consisting of a surface-state elec-
tron bound to the surface of liquid helium by its image charge. A complete classical analysis of the
behavior of this nonlinear oscillator in a microwave field is presented which shows that above a crit-
ical field strength the electron dynamics become chaotic and the electron diffuses in energy until it
ionizes. Analytic estimates for the classical thresholds and rates for stochastic excitation and ioniza-
tion are determined as functions of the microwave-field amplitude and frequency. Since the mi-
crowave frequencies and field strengths required for stochastic ionization of this one-dimensional
“hydrogen” atom are readily available, this system provides an opportunity to thoroughly explore
the manifestations of classical chaos in a quantum system.

I. INTRODUCTION

Recently, deterministic classical systems with chaotic
dynamics have been the subject of extensive research;
however, little progress has been made on the question of
whether the chaotic dynamics persist in a quantum-
mechanical description of these systems. This question is
important in a variety of problems, such as the calculation
of the vibrational and rotational spectra of polyatomic
molecules and the determination of the response of atoms
and molecules to time-dependent electromagnetic fields.!
Both the n-body problems and the driven oscillators cor-
respond to nonintegrable, classical systems which exhibit
chaotic behavior. Investigations of the quantum dynam-
ics of these nonintegrable systems have significant appli-
cations in chemistry, laser isotope separation, and the
development of short wavelength lasers. Experimental
and theoretical studies of the time-dependent systems are
especially important for an understanding of the variety
of novel features exhibited by atomic and molecular phys-
ics in large-amplitude laser and microwave fields.

To date, the attempts to develop a quantum description
of these systems remain incomplete and controversial.?
These problems first arose in the early development of
quantum mechanics. In 1917 Einstein® remarked that the
semiclassical quantization procedure fails for noninte-
grable classical systems such as the three-body problem.
More recently, numerical investigations* of nonintegrable
systems which exhibit chaotic behavior in the classical
limit suggest that the quantum dynamics may also be sto-
chastic. However, theoretical studies of some time-
dependent Hamiltonians with discrete quasienergy spec-
tra’ indicate that the quantum dynamics of such systems
are always quasiperiodic and never chaotic.

The question of whether a quantum system can be
chaotic must, ultimately, be resolved by experimental in-
vestigations of real physical systems which are amenable
to theoretical analysis. In the last ten years some very
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suggestive experiments on the microwave ionization of
highly excited hydrogen atoms have been performed by
Bayfield and Koch and their co-workers.®~® These obser-
vations of excitation and ionization rates which depend
strongly on the intensity of the microwave fields and only
weakly on the frequency provide strong evidence for sto-
chastic behavior in a quantum system.

In their pioneering work Bayfield and Koch® measured
the ionization rate of a beam of neutral hydrogen atoms,
carefully prepared in highly excited Rydberg states (prin-
cipal quantum number n ~66), as they passed through a
microwave cavity. Although the microwave frequency
(9.9 GHz) was only ~40% of the resonant frequency for
single-photon excitation to the n=67 level and ~1% of
the photon frequency for excitation to the continuum,
they observed significant ionization above a critical mi-
crowave field of ~20 V/cm.

Thus far conventional quantum theory has been unable
to account for these experimental observations. Since the
microwave frequency is less than the classical orbital fre-
quency of the electron, Stark ionization at the peak elec-
tric field is a prime candidate for the ionization mecha-
nism. (The interaction with the magnetic field is much
weaker and can be neglected.) However, estimates of the
ionization due to tunneling in a static field, based on the
quantum-mechanical calculations of Damburg and Kolo-
sov’ and the experimental measurements of Koch and
Mariani,'° give rates which are too slow to explain the ex-
perimental results. The microwave field required for sig-
nificant tunneling during the beam transit time through
the cavity (r,~ 107" sec) is a factor of 2 larger than the
observed critical field.!! Another likely explanation of the
ionization at low-field strengths is multiphoton absorp-
tion. However, since nearly 100 photons must be ab-
sorbed to reach the continuum, the theoretical investiga-
tion of this mechanism has been intractable, requiring 100
orders of perturbation theory and complicated by the ef-
fects of intermediate resonances.
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The only successful theoretical analysis involved a clas-
sical treatment of the orbiting electron in a plane polar-
ized, oscillating electric field. This approximation is justi-
fied by the large quantum numbers, n ~ 66, in the experi-
ment. Leopold and Percival'? integrated the classical
equations of motion for this nonlinear oscillator in a
time-dependent field and demonstrated the possibility of
classical excitation and ionization of the electron for peak
electric field strengths below those required for significant
quantal tunneling. Furthermore, using a Monte Carlo
model of Bayfield and Koch’s experiment, they were able
to calculate ionization rates which agreed well with the
experimental measurements.'?

The physical ionization mechanism evoked by this clas-
sical calculation for a driven, nonlinear oscillator is sto-
chastic diffusion of the electrons in phase space. Ioniza-
tion results when the chaotic trajectories wander into the
continuum. Since the Kolmogorov-Arnol’d-Moser
theorem'> guarantees that for small microwave fields
most of the trajectories will remain regular, the mi-
crowave fields must exceed a critical level before the or-
bits become sufficiently chaotic to cause significant ioni-
zation. Unfortunately, because the electrons move around
in a six-dimensional phase space, detailed numerical in-
vestigations of the transition to global stochasticity are ex-
tremely time consuming. Moreover, analytical attempts
to describe the transition to global stochasticity'*~'® due
to resonance overlap!’ in the classical phase space of the
electron have proven difficult and remain incomplete.

In an attempt to understand this stochastic ionization
mechanism a simpler, one-dimensional quantum system
was proposed'® for theoretical and experimental study
consisting of surface-state electrons (SSE) which are
weakly bound to the surface of liquid helium by their im-
age charge.!”” Spectroscopic studies of the unperturbed
SSE by Grimes et al.!” and by Lambert and Richards®
found that the energy levels are given by the hydrogenic
formula

E,=—Z?#/n% n=123,..., (1)

where #Z=13.6 eV. These energy levels correspond to a
one-dimensional, quantum-mechanical description of the
SSE which assumes an attracting Ze?/x potential due to
the image charge and a repulsive barrier at the surface due
to Pauli exclusion. In the classical limit the electron
bounces back and forth between the helium surface and
the one-dimensional Coulomb potential.

The proposed experiment consists of an investigation of
the dynamics of this one-dimensional “hydrogen” atom in
the presence of an oscillating microwave field with polari-
zation normal to the helium surface. This driven, non-
linear oscillator provides an ideal system for the theoreti-
cal and experimental study of quantum chaos. First, the
classical, semiclassical, and quantum analyses of the
behavior of this one-dimensional system are much more
tractable than those for the full three-dimensional hydro-
gen atom. Second, since liquid helium is a poor dielectric,
the image charge is very small, Z~7.1X 1073, and the
binding energies and characteristic frequencies of the SSE

are four orders of magnitude smaller than those for real
hydrogen atoms. Therefore, available microwave sources
can be used to investigate the dynamics of the perturbed
SSE in both the classical (n >>1) and quantum (n~1)
limits. Consequently, this nonintegrable dynamical sys-
tem provides a unique opportunity to test the predictions
of the classical, semiclassical, and quantum theories with
a real experiment which should resolve much of the con-
troversy surrounding the problem of quantum chaos.

The goal of this paper is to present a complete classical
analysis of the dynamics of the SSE in a microwave field.
This classical treatment, which is based on the resonance
overlap criterion for the onset of a global stochasticity,
shows that ionization results from stochastic diffusion of
chaotic electron orbits and provides analytic estimates for
the microwave-field threshold for stochastic ionization as
well as an ionization rate.!® These results should be valid
for large quantum numbers, n >>1, corresponding to the
classical limit. In addition, this calculation predicts the
microwave powers and frequencies required for experi-
mental investigations of the manifestations of classical
chaos n the quantum limit (n ~1). A detailed description
of the electron dynamics in the quantum regime, which
requires the solution of a one-dimensional Schrodinger
equation with time-dependent potential, will be pursued in
future work. Although this partial differential equation
with variable coefficients does not appear to be amenable
to analytic solution, it can be studied, numerically, using
efficient algorithms for the solution of partial differential
equations. Some preliminary numerical results for bound
electrons in one and two dimensions?' indicate that the
quantum-mechanical description of these systems also ex-
hibits ionizing solutions.

In Sec. II the resonance overlap criterion is used to cal-
culate the critical-field strength for the onset of global
stochasticity. If the microwave frequency is greater than
or comparable to the classical bounce frequency of the
SSE, then the resonance overlap criterion gives a direct es-
timate for the critical field required for stochastic excita-
tion and ionization. However, if the driving frequency is
much less than the frequency of the nonlinear oscillator,
then an additional criterion must be satisfied. Analytical
and numerical calculations of the critical field for sto-
chastic ionization in this limit of quasistatic perturbations
are presented in Sec. III. Since most of the experiments
with real hydrogen atoms®~® have been performed in this
regime, these new results have direct bearing on the
theoretical interpretation of these experiments.

Once the electron motion becomes chaotic, the electrons
diffuse in energy until they reach the continuum. A sta-
tistical, random walk treatment of the electron dynamics
can then be used to estimate the stochastic diffusion rates.
In Sec. IV quasilinear calculations of the stochastic excita-
tion and ionization rates are presented and compared with
the results of numerical integrations of the classical equa-
tions of motion for this perturbed, nonlinear oscillator.
Finally, Sec. V concludes with a discussion of the feasabil-
ity of the proposed experiment and the possibility of ex-
tending the nonlinear classical analysis for the perturbed
SSE to the problem of microwave ionization of three-
dimensional Rydberg atoms.
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II. RESONANCE OVERLAP CRITERION FOR
THE PERTURBED SSE

Zaslavskii and Chirikov!” have developed a simple, ap-
proximate description of the effects of a periodic pertur-
bation on one-dimensional, nonlinear oscillators. For suf-
ficiently large perturbations these nonintegrable dynami-
cal systems exhibit a stochastic instability leading to
chaotic motion. By examining the trajectories in the
action-angle variables of the unperturbed oscillator, a res-
onance overlap criterion can be used to estimate the criti-
cal perturbation strength for the onset of global stochasti-
city. This prescription is easily applied to the classical
description of the SSE in an oscillating electric field.

A. Action-angle variables for the unperturbed Hamiltonian

First, we consider the integrable dynamics of a classical
electron in a one-dimensional 1/x potential with a repul-
sive barrier at the origin. The equations of motion in
atomic units®? are generated by the Hamiltonian

—Z/x, x>0

Hy(x,p,t)=p%/2+
w0, x<0.

(2)

(Note that in the dimensionless units used in Ref. 18

=+.) Then Hamilton’s equations for this nonlinear os-
cillator are easily integrated to show that a bound electron
with energy — E bounces back and forth in the potential
well between x =0 and x =a =Z /E (a.u.) with frequency
Qo=(8Z/a3)""? a.n.

Before considering the effects of the perturbation it is
convenient to make a canonical transformation to the
action-angle variables

I=vVZa/2, (3)

o 2[sin~(Vx/a )=V (x/a)(1—x/a)], p>0
2r—2[sin~'(Vx/a )—V(x /a)(1—x /a)], p <O

(4)

which reduce the unperturbed dynamics to straight-line
trajectories in action-angle space. The action, I, is simply
defined to be the constant area enclosed by a complete
phase-space orbit, (1/27) f pdx, and the angle © is the
position variable canonically conjugate to I. The new, un-
perturbed Hamiltonian is easily derived from Eq. (4) and
the definition of a,

HyI)=-2Z%/21%, (5
which gives a constant angular velocity
Qo(=dHy/dI=Z*/I" . (6)

The quantum-mechanical energy levels for the unper-
turbed oscillator can be determined using the Bohr-
Sommerfeld quantization rule. In atomic units this im-
plies that the discrete energy levels correspond to integer
values of the action I. The characteristic scale lengths,
frequencies, and electric field strengths for the unper-
turbed SSE’s with Z~7.1% 1073 can then be estimated
by considering the classical description of the SSE with
energies

—Eq=—2Z%/2I} a.u.
~—6.8X107%/I3 eV for Iy=1,2,3,.... (1)

The maximum excursion and oscillation frequency of the
corresponding classical electron are

ag=2I3/Z a.u.~1.5x10"%13 cm , (8)
vo=0/2r=(1/2m)Z*/1} a.u.~330/I3 GHz, (9)

and the binding electric field at maximum excursion is

Fo=(5)Z%/I} a.u.~450/I% V/cm . (10)

B. Effects of perturbing microwave fields

Since the standing wavelengths of the microwave radia-
tion are long compared with the maximum excursion, a,
of the SSE from the liquid-helium surface, the spatial
variation of the perturbing electric fields can be neglected.
In addition, for nonrelativistic electron velocities the in-
teraction with the oscillating magnetic field is also negli-
gible. We therefore consider a perturbation of the form

V(x,t)=xFcos({t) , (11)

where F and  are the electric field amplitude and angu-
lar frequency of the externally applied microwave fields.

For sufficiently small electric fields the Kolmogorov-
Arnol’d-Moser (KAM) theorem'® guarantees that most of
the straight-line trajectories in action-angle space will be
only slightly distorted by the perturbation. If we expand
the perturbation in a Fourer series!” in ©, the perturbed
Hamiltonian can be written as

HO,I,0)=H(D+F 3 Vn(DcosmO—Qt),

(12)

where the Fourier amplitudes of the perturbation are de-
fined by the integrals

1 m im©
VD=~ [ dOem®x(®,1) . (13)

The maximum distortion of the orbits in action-angle
space will occur at resonances where the phase, m0 — ¢,
is stationary.!” The resonant frequencies and actions are
therefore determined by the relation!’

mQo(I)—Q=0. (14)

Then using Eqgs. (6) and (14), the action resonant with the
mth subharmonic of the perturbation is

I,=(mZ*/Q)'\3 . (15)

For small perturbations the Hamiltonian can be ap-
proximated in the vicinity of each resonance by the Ham-
iltonian of a pendulum; and the electron trajectories near
the resonances are confined in narrow island chains in
action-angle space. Between the resonances the surviving
Komolgorov-Amol’d-Moser (KAM) surfaces prevent the
orbits from wandering from one resonance to another.
The electrons gain and lose energy as they ride the pertur-
bation but no net change in the energy occurs. The per-
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FIG. 1. Island chains for the m=1,2,3 resonances for a per-
turbation with Q=2Z? a.u. and F=0.0075Z> a.u. The m =3 is-
lands already exhibit large stochastic regions. Also shown is a
confining KAM surface between the m =1 and m =2 reso-
nances.

turbed trajectories in action-angle space can be graphically
displayed by numerically integrating the equations of
motion for x and p, then transforming to the action-angle
variables, I and ©, and plotting the location of the orbit
at integer multiples of the perturbation period. The island
chains corresponding to the three lowest resonances for a
periodic perturbation of the form V(x,t)=xFsin(Q¢) with
frequency Q=Z? au.~330 GHz and amplitude
F=0.0075Z3 a.u.~13.5 V/cm are shown in Fig. 1. The
island chains corresponding to the subharmonic reso-
nances with a perturbation of the form of Eq. (11) are
simply shifted in angle by 7/2. Figure 1 also shows a
typical KAM surface between the m=1 and m =2 is-
lands. For weak perturbations these smooth curves fill
the regions between the island chains and below the m =1
island confining the electron trajectories to narrow bands
in action and energy.

As the perturbation increases, the islands grow wider in
action. When the islands are sufficiently large the elec-
tron can diffuse in action (or energy) by wandering from
one island chain to another. These transitions occur when
the orbit of the electron is so distorted by one resonance
that its oscillation frequency becomes resonant with
another resonance corresponding to a subharmonic of the
oscillating microwave field. In Fig. 1 the m =3 island
chain is already beginning to break up due to its interac-
tion with the m =4 resonance. This qualitative picture
provides a means of estimating the size of the perturba-
tion required to make the transition from regular to sto-
chastic behavior. Roughly speaking, this occurs when the
islands generated at the resonances overlap.

C. Resonance overlap criterion

The widths of the islands are determined by the corre-
sponding Fourier amplitudes, V,,, of the perturbation.
Following Ref. 17, we estimate the island widths by ap-
proximating the Hamiltonian in the vicinity of the reso-
nance by the Hamiltonian for a pendulum. Near the mth

resonance we need only consider the mth Fourier com-
ponent of the perturbation. Then making a canonical
transformation to the new variables A=I-—1I,, and
£=0—(Q/m)t using the time-dependent generating func-
tion® F,(A,0,t)=(I,, +A)[©—(Q/m)t] and Taylor ex-
panding the new, approximate Hamiltonian in small A
and F, we get

K(&,0)~—(5)Q(I,,)A?
+FV,,(I,,)cos(m&)+const , (16)
where
Q| 1or, =dQo/dl | ;_; =3Z%/I, . (17

Except for an irrelevant constant and a difference in sign,
K is just the Hamiltonian of a simple pendulum; and the
island width in action-angle space corresponds to the
width of the trapping (libration) region®* of the pendulum

W =4FV,, /)| - - (18)

The Fourier components, V,,, of the oscillating mi-
crowave potential can be determined analytically by
evaluating the integrals in Eq. (13) using a trick suggested
by Landau and Lifschitz?® for the calculation of the
Fourier components of the dipole moment for a system of
two charged particles,

_L m im© —_ 7 2
ViD=~ fo dOe™mOx(0,I)=J.,(m)I*/Zm
~0.4111%/(Zm>"?) (19)

for large m, where J,, is the derivative of the ordinary
Bessel function of order m. In Refs. 11 and 18 these in-
tegrals were evaluated numerically and were found to
scale approximately as m ~3/2, However, a proper asymp-
totic analysis of the derivative of the Bessel function gives
a m ~3/? dependence as shown in Eq. (19).26

Combining Egs. (15) and (17)—(19), the width of the
mth resonance is

W, =4I [FJ,,(m)/3mZ3]'? (20)

and using Eq. (15), the separation of the m and m +1 res-
onances is

8m= m+1__Im=(ZZ/Q)l/3[(m 4 1)1/3_m1/3]
~1I,,/3m @1

for large m. Then the zeroth-order islands overlap when
the ratio of the island width to the separation is greater
than one,

1<0.5(Wp 41+ W) /8,, ~4.5F2m3/¢ /(Z21760273)
(22)

for large m. This inequality provides an approximate cri-
terion for the critical microwave field required to destroy
the KAM surfaces between the m and m +1 island
chains. Then the electron can wander from one classical
resonance to the other. This island overlap criterion for
the onset of global stochasticity requires that

F>F,~0.05Z'3Q%3 /m>/3 (23)
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in atomic units. Finally, using Egs. (10) and (15) the criti-
cal field can be expressed in terms of the initial action Iy,
and Coulomb binding field, F, for the unperturbed SSE
as

F,~0.05m ~'3Z3/I{~0.2m ~/3F, . 24)

This estimate for the critical field assumes that m is large.
A more precise calculation of the island widths, Eq. (20),
and separation, Eq. (21), for the m =1 and 2 resonances
gives a result which is ~40% lower.

If the SSE has an initial energy corresponding to an ac-
tion which lies between I,, and I, , ;, then the application
of microwave fields in excess of the threshold defined by
Eq. (24) will cause the electron to diffuse in action. More-
over, since the island overlap, Eq. (22), increases with m,
once the microwave field exceeds the threshold for sto-
chastic diffusion for electrons with action I,,, then the
confining KAM surfaces will also be destroyed for larger
actions. Since the stochastic region in phase space is
bounded below and unbounded above the electrons will
tend to diffuse to larger actions (or energies) until they
ionize.

The resonance overlap criterion has been the subject of
extensive numerical and analytical investigations®*2728
which indicate that it provides a good estimate (within a
factor of ~2) of the perturbation strength required for
global stochasticity. In actual fact secondary island
chains are generated by the nonlinear interaction of the
primary islands which accelerate the destruction of the
confining KAM surfaces. Consequently, this estimate
provides an upper bound on the critical-field strength for
the onset of stochastic excitation and ionization of the
electron.

III. QUASISTATIC IONIZATION CRITERION

If the frequencey of the perturbation is much less than
the oscillation frequency of the nonlinear oscillator or,
equivalently, if the electron has an initial action, I,
which is smaller than I, =(Z?/Q)'/3, then the overlap of
primary resonances, m =1,2,3,. . ., is not a sufficient con-
dition for the onset of stochastic diffusion since some con-
fining KAM surfaces always remain below the m =1
classical resonance. If I <I;, then the primary island in
action-angle space, centered at I;, must expand until it
reaches I, in addition to overlapping the m =2 island
chain before ionization can occur.

This limit of quasistatic perturbations is difficult to
analyze because the microwave field required to ionize the
electrons is usually large enough to cause strong interac-
tion of a number of resonances and the simple, two-
resonance perturbation theory fails. However, two cases
are analytically tractable. First, for very low-frequency
perturbations the classical adiabatic theory can be used to
calculate the critical perturbation strength for static-field
ionization.””3* Second, for perturbations nearly resonant
with the m =1 classical resonance, the critical field can
be determined from a calculation of the width of the
m =1 island alone. In the intermediate regime the other
Fourier components of the perturbation play an important
role in generating secondary island chains below the

m =1 primary island which extend the stochastic region
in action-angle space to lower actions. In this case we
resort to numerical integrations of the classical equations
of motion for the perturbed oscillator to connect the adia-
batic and near-resonance regimes.

A. Adiabatic theory, Q << Q

The potential energy of the combined Coulomb and mi-
crowave electric fields,

Vix,t)=—Z /x +xF cos(Qt) , (25)

is shown in Fig. 2 for Qt=2kw, (k+1/2)m, and
(2k 4+ 1) for kK =0,1,2,.... In the first case the electric
field is directed away from the surface and the electron is
pulled toward the surface by both fields, in the second the
perturbing field vanishes, and in the third the field is
pointed toward the surface and the two fields pull in op-
posite directions which lowers the top of the potential bar-
rier. In a static or slowly varying electric field, Q <<,
this lowering of the potential permits bound electrons
with sufficiently large energies or actions to escape from
the surface. The height, V;, and position, x,, of the top of
the potential are easily determined from Eq. (25),

V,=—2FZ)"?, (26)

x,=(Z/F)'7?. 27

If the electric field is turned on slowly, the classical adia-
batic theory can be used to calculate the critical-electric-
field strength to dissociate an electron with initial action
I, and energy — Eq=— Z?%/2I3. The analogous classical
calculation of the critical fields for Stark ionization of hy-
drogen atoms has been carried out by Banks and Leo-
pold. 230

If the perturbation is sufficiently slow, then the true ac-
tion of the perturbed oscillator will remain an adiabatic
invariant even though the electron energy, E, decreases as
the electric field becomes more negative. This invariant
action, J, is defined by

S Qi=(k+a)

A<V,
t
N Qu=(2kH)

3L

FIG. 2. The time-dependent potential for the SSE in an oscil-
lating electric field at times corresponding to the maximum and
minimum microwave fields is compared with the unperturbed
Coulomb potential.
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x_
J=2/m) [ T(Z/x+xF—E)dx , (28)
where x _ is the classical turning point,
x_=[E—(E*—4FZ)"?]/2F, (29)

which is one of the two roots of the integrand in Eq. (28).
When F =0, Eq. (28) reduces to the definition of the ac-
tion for the unperturbed oscillator. Since J is assumed to
be an adiabatic invariant, it is equal to the initial action I,
of the unperturbed SSE.

As the amplitude of the electric field is increased the
classical turning point for an electron with action J in-
creases until x_ =x,=(Z/F,)!/%. For larger fields the
electron escapes over the barrier. Since the two roots of
the integrand in Eq. (28) coalesce at x,, the critical field,
F,_, for classical dissociation can be determined as a func-
tion of J by evaluating the integral

X
0

J=(V2F . /m [ ~(x,—x)/Vx dx
=(4V2/3m)Z3/*/F}* . (30)

This exact calculation gives a critical electric field
strength for Stark ionization of the SSE of

F,=(4V2/3m)*Z3/1}
~0.130Z3/I4=0.52F, , (31)

expressed in terms of the initial action, Io=J, and the
binding Coulomb field, F,, of the unperturbed oscillator.
This threshold for classical ionization in adiabatically
varying electric fields, ()} << €, is considerably larger than
the critical field for island overlap predicted by Eq. (24).

B. Near-resonance theory, {1 ~Q,

If the initial frequency of the nonlinear oscillator is ap-
proximately resonant with the microwave frequency,
Q0 ~Q, then for small perturbations the electron will be
trapped in the resonance and the electron dynamics will
lie on one of the closed, librating trajectories of the m=1
island. Figure 1 shows one of these trapped orbits cen-
tered at I =1. Below the separatrix of the m =1 island
the electrons with Q,> Q correspond to untrapped (pass-
ing) particles. As the perturbation increases, the islands
grow wider in action and the m =1 Fourier component of
the microwave perturbation interacts more strongly with
the other components resulting in the breakup of the is-
land chains. The confining KAM surfaces between the
resonances are destroyed and the librating and passing or-
bits mix chaotically. However, since KAM surfaces per-
sist below the separatrix of the m =1 island, the near-
resonance, passing trajectories may remain confined
despite the onset of stochastic diffusion for electrons with
larger actions and energies.

The critical-field strength required to stochastically ex-
cite and ionize these near-resonance electrons can be es-
timated by computing the perturbation strength required
for the m =1 island centered at I, to trap an electron
with action, Iy <I;. As a first approximation we neglect
the effects of the Fourier components of the perturbation

with m=£1. Then the exact Hamiltonian in action-angle
space, Eq. (12), reduces to

H,(6,1,t)=—Z*/2I*>+FV(I)cos(© —Qt) (32)
where
Vi)=J(1)I*/Z~0.325. (33)

In addition we make a canonical transformation to a
frame moving with the angular velocity () using the
time-dependent generating function F,(1,0,t)
=1(©—Qt). This transformation to the new angle vari-
able, £=0—Qt, defines a new time-independent Hamil-
tonian

K(&1)=—Z?/2I*+el’cosE — QI , (34)

where €=0.325 F/Z. K, describes an integrable dynami-
cal system with closed (librating) orbits for resonant ac-
tions and untrapped (passing) trajectories away from the
resonance at ;. Figure 3 shows both trapped and passing
orbits which were calculated by numerically integrating
the equations of motion generated by K.

As the perturbation is increased the width of the trap-
ping region, defined by the location of the separatrix,
grows wider in action. Then the field, F,, required to trap
an electron with action I, in the m =1 island can be es-
timated by determining the field strength required for the
separatrix to reach down to I,. Since K, is independent
of time, the trajectories of the librating and passing parti-
cles lie on a family of curves defined by the equation

K\(&1)=k, (35)

where each orbit is labeled by the continuous parameter k.
The separatrix trajectory which separates the trapped and
untrapped orbits corresponds to a particular value of
k =k, which is a function of the perturbation frequency,
Q, and strength, F. Once k; is determined, then Eq. (35)

18 T T T

0.6 | | 1

m 2

FIG. 3. Both trapped and passing trajectories are shown for
the approximate Hamiltonian, Eq. (34), with /Q,=0.6 and
FI$/Z*=0.04. In this case the separatrix of the m =1 island
located at I;=1.19 has just succeeded in trapping some trajec-
tories with initial action I=1.0.
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can be solved to determine the width of the separatrix as a
function of  and F.

Although K can be approximated by the Hamiltonian
of a pendulum, Eq. (16), for small F, estimates of F,
based on the width of the trapping region for the pendu-
lum will tend to underestimate the critical field since the
pendulum Hamiltonian fails to account for the asym-
metry in the island growth which is illustrated by the
trapped trajectories in Fig. 3. A more accurate estimate
of the trapping field, F,, for larger perturbations requires
an explicit calculation of separatrix width for the Hamil-
tonian K.

Since the separatrix trajectory passes through the hy-
perbolic fixed point at £=r, the label for the separatrix
orbit, k;, can be calculated by evaluating the left-hand
sidle of Eq. (35 at the fixed point. Since
d&/dt=03K /3I=0 at the fixed point, the value of the ac-
tion, I, at the hyperbolic fixed point is determined by the
positive real root of the quartic equation

2el}+ QI —Z7%=0. (36)

Unfortunately, the exact expression for I in terms of the
field strength and frequency is too complex to be useful.
However, for near-resonance electrons we can approxi-
mate I;~I,=(Z%/Q)!/?. Then using the fact that the
separatrix reaches the lowest action at £=0, the
minimum-field strength required to trap an electron with
action I, is determined by

K1(0,10)=ks=K1(7T,Is) . (37

The solution of this equation for F, as a function of I,
and Q gives

F,=~3.08(Z3/13)[(+ +8—3823/2)/(148727%)] (38)

measured in atomic units, where §=Q/Q,=QI}/Z>.

This estimate for the field strength required to trap an
orbit with initial action I in the single m =1 resonance
should be valid for 6>0.25. In the opposite limit the
trapping field, F,, can be calculated by expanding the
equations for the separatrix width in small 8. In this case
we get

F,~(0.265—0.498)Z3/I¢ . (39)

The exact numerical evaluation of the single m =1 island
width confirms the validity of Eq. (38) for §>0.25 and
Eq. (39) for §<0.25. However, the low-frequency esti-
mate for F, exceeds the critical-field strength for static-
field ionization for 8 <0.28. Consequently, the neglected
Fourier components are expected to significantly modify
microwave-field threshold for stochastic ionization in this
limit.

C. Intermediate frequency regime

In the intermediate regime between the adiabatic and
near-resonance limits, numerical integrations of the exact
equations of motion for the perturbed SSE with a variety
of microwave-field strengths and frequencies were used to
estimate the critical field for the onset of stochastic
dynamics. If the electron orbits were observed to exhibit

stochastic behavior in a reasonable time (typically ~ 100
bounce periods), then the perturbation strength was as-
sumed to exceed the critical threshold. If the electron or-
bits appeared to lie on passing (KAM) trajectories in
action-angle space, then the field strength was assumed to
be below critical. The results of these numerical simula-
tions are shown in Fig. 4 along with a comparison of the
analytical predictions in the adiabatic and near-resonance
limits.

For 6> 0.7 the single-resonance theory provides an ex-
cellent description of the field, F,, required to trap an
electron in the m =1 resonance. However, in these cases
the field threshold for the overlap of the m =1 and 2 is-
land chains given by Eq. (24) is larger than F,. Conse-
quently, the critical field for stochastic excitation and ion-
ization is determined by the overlap criterion alone. For
8<0.7 the m =1 and 2 resonances overlap before the
m =1 island reaches down to I,. In this case the critical
field is determined by the extent of the stochastic region
in action-angle space. For § between 0.5 and 0.7 the loca-
tion of the m =1 separatrix predicted by the single-
resonance theory, Eq. (38), provides a good estimate of the
critical field for the onset of stochastic diffusion.

For microwave frequencies corresponding to 8 <0.5 the
strong interaction of the other Fourier components of the
perturbation generate secondary islands below the location
of the m=1 separatrix. Some of these island chains are
illustrated in Fig. 5 for a perturbation of the form
V(x,t)=xF sin({)t). These trajectories were calculated by
numerically integrating the equations of motion for
several initial conditions with action near /=1 in an os-
cillating electric field with a frequency corresponding to
6=0/Q,=0.55. As the perturbation strength is increased
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0.075- ~ m=1 TRAPPING THRESHOLD
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FIG. 4. Numerical calculations of the critical field for sto-
chastic ionization in the quasistatic regime, Q <), are com-
pared with the analytic predictions based on the resonance over-
lap criterion, Eq. (24), the m =1 trapping width, Egs. (38) and
(39), and the adiabatic theory, Eq. (31). The estimates for the
critical field based on the large and small § approximations for
the m=1 trapping width are connected by exact numerical cal-
culations indicated by the dashed curve.
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FIG. 5. Secondary islands generated by higher-order interac-
tions of the primary subharmonic resonances are shown for a
perturbation with 8=0Q/0Q=0.55 and FI{/Z>=0.06. Island
chains with 1, 2, and 8 islands as well as an apparent KAM sur-
face are clearly visible well below the m=1 primary island
which is located at 1, =1.22.

or 8 is decreased the overlap of these secondary reso-
nances causes the stochastic region in phase space to ex-
tend well below the location of the single, m =1 separa-
trix. Additional numerical studies of the equations of
motion, generated by approximate action-angle Hamil-
tonians with four resonances corresponding to the m =+1
and +2 Fourier components of the microwave perturba-
tion, reveal that the biggest distortion of the m =1
separatrix towards lower action is due to the influence of
the m=—1 Fourier component. The remaining reso-
nances serve primarily to break up any lingering islands
and KAM surfaces. As a consequence, the estimates of
the critical field for the onset of stochastic diffusion ob-
tained from the numerical simulations are significantly
lower than those predicted by the single-resonance theory.

Finally, as 8 is decreased further the numerical simula-
tions indicate that the critical field for stochastic excita-
tion and ionization connects smoothly onto the adiabatic
prediction for static-field ionization, Eq. (31). Both the
analytic and numerical estimates of the threshold fields
shown in Fig. 4 provide upper bounds for the microwave
fields required to ionize the classical SSE for quasistatic
perturbations, 8 < 1. These estimates should be useful in
designing experiments to study the microwave ionization
of SSE’s. Furthermore, since the microwave ionization
experiments with real hydrogen atoms®~8 have been per-
formed in this quasistatic regime, 6 <0.5, these new re-
sults can also be applied in the interpretation of these ex-
periments.

D. Comparison of the quasistatic
theory with experiment

In Refs. 6, 7, and 8, 9.9-GHz microwave fields were
used to ionize highly excited hydrogen atoms with princi-

pal quantum numbers ranging from n =26 to 66, corre-
sponding to frequency ratios of §=0.026 to 0.43. Al-
though all of these experiments lie in the quasistatic re-
gime significant differences were observed in the qualita-
tive dependence of the ionization rate on the peak mi-
crowave field.!! In the near-resonance limit, §~0.4, sub-
stantial ionization was observed for field amplitudes,
n*F~0.05 a.u., well below the classical threshold for
static-field ionization of n*F~0.13 a.u. predicted by Leo-
pold and Banks.?®3® Whereas, no ionization was observed
for field strengths below n*F~0.11 a.u. in the experi-
ments in the adiabatic limit with 6 ~0.03.

In an attempt to explain the experimental results and
the classical, Monte Carlo simulations,’> Meerson
et al.'»1> and Zaslavskii'® have developed a classical
description of the electron dynamics by approximating the
Hamiltonian for the highly excited hydrogen atom in a
microwave field with a Hamiltonian for a one-
dimensional perturbed oscillator which is very similar to
the one describing the perturbed SSE. However,
Zaslavskii'® used the resonance overlap criterion to esti-
mate the critical field for the onset of stochastic diffusion
which is not appropriate in this quasistatic regime. More-
over, in the absence of detailed numerical calculations
Meerson et al.'* used a heuristic estimate for the quasi-
static perturbation strength required for stochasticity
which gave a critical field of n*F,~1/27~0.037. Al-
though this prediction is only slightly lower than the
near-resonance n ~66 results, it significantly underesti-
mates the threshold field in the adiabatic limit.

The analytical and numerical calculations of the quasi-
static field thresholds for stochastic ionization, illustrated
in Fig. 4, provide a qualitative explanation for both exper-
imental limits. For §~0.4 the critical field for the onset
of stochastic diffusion in the oscillating perturbation is a
factor of 2 smaller than the static-field threshold, while
the critical field approaches the static-field threshold for
8 <0.1 If we identify the initial action I, with the princi-
pal quantum number n and set Z =1, then the results for
the perturbed SSE are also in quantitative agreement with
the measured ionization thresholds for the highly excited
hydrogen atoms.

IV. STOCHASTIC EXCITATION
AND IONIZATION RATES

Once the critical-field strength for the onset of stochas-
tic diffusion is exceeded, the motion of the perturbed SSE
appears to be governed by a random process. In addition,
the equations of motion exhibit “extreme sensitivity” to
initial conditions'” such that the orbits of classical elec-
trons with nearby initial conditions evolve very different-
ly. Since it is impossible in practice to specify the initial
position and momentum of an electron with infinite pre-
cision, either classically or quantum mechanically, this
chaotic or mixing®* system is most conveniently analyzed
using a statistical description. Simple random walk argu-
ments applied to the motion of test particles in fluctuating
fields can then be used to estimate the stochastic diffusion
rate. Since the stochastic region in action-angle space is
bounded from below, the electrons will tend to diffuse to



394 RODERICK V. JENSEN 30

larger actions and energies until they ionize.

A typical trace of the time history of the position of a
SSE in an ionizing microwave field with Q/Q,=0.6 and
FI$/Z*=0.1 is shown in Fig. 6(a). The electron bounces
with irregular amplitude and period until it succeeds in
escaping from the surface at ¢ ~240 which corresponds to
~23 microwave periods. Escape occurs after the electron
has diffused to sufficiently high energies that it can slip
over the peak of the potential barrier of height
V,=—2FZ)"* which is located at x,=(Z/F)!/?
=1.58a, with sufficient kinetic energy to escape the
Coulomb potential. Then the electron moves steadily
away from the surface while oscillating in the microwave
electric field with a mean velocity that is determined by
the kinetic energy that the electron carries over the poten-
tial barrier.

Since the total energy of the SSE in the oscillating mi-
crowave potential can become positive without dissociat-
ing the electron, the compensated energy,'? defined by

. t 2
E.=5 [p+f0(aV/ax)dt] —Z/x, (40)
must be used to determine whether the electron has gained

enough energy to ionize. This definition removes the os-
cillatory contribution to the energy due to the time-
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FIG. 6. (a) The excursion, x, in units of a, is shown as a
function of time for a classical SSE in the presence of an oscil-
lating electric field with Q/Q,=0.6 and FI{/Z>=0.1. (b) The
corresponding compensated energy, Eq. (40), is plotted as a
function of time. Ionization occurs at ¢ ~240.

dependent electric field. When E_, becomes positive and
remains positive the electron has been successfully dissoci-
ated from the liquid-helium surface. Figure 6(b) shows
the time history of the compensated energy for the ioniz-
ing trajectory illustrated in Fig. 6(a). At first the compen-
sated energy wanders over a range of negative values.
However, once E, becomes positive, it quickly approaches
a constant value corresponding to a free electron in the os-
cillating electric field.

Since the Coulomb field is dominated by the microwave
field for x >x,, electrons which slip over the potential
barrier will stop diffusing in action and energy. Conse-
quently, if the mean velocity past the barrier is too low to
ultimately escape from the Coulomb potential, then the
electron will eventually return to the liquid-helium surface
for another try. In Fig. 6(a) the electron is briefly trapped
outside for x >x, on three occasions (indicated by the
multiple peaks) before it finally escapes. In such cases the
compensated energy can remain at a nearly constant nega-
tive value for long periods. If the microwave field is
turned off while the electron is outside of the potential
barrier, these slowly escaping electrons will be left in
highly excited states. This stochastic excitation to ‘“‘ex-
tremely” highly excited states has also been observed in
numerical simulations of the three-dimensional hydrogen
atom in a microwave field.'?

Numerical integrations of the particle orbits for the
perturbed SSE also reveal that some electron trajectories,
for initial conditions near residual stable fixed points,
remain regular (bounded in action and energy) for mi-
crowave fields in excess of the ionization threshold. How-
ever, these exceptional orbits, corresponding to Percival’s
“invariant tori,”'? as well as the stable, extremely highly
excited, “EHE” (Ref. 12) states are rare except for
microwave-field strengths near threshold.

A. Quasilinear calculation of stochastic diffusion

When the critical field is exceeded and the islands over-
lap, most initial conditions lead to chaotic trajectories in
phase space. A quasilinear’!"3? treatment of the evolution
of the distribution of trajectories in action, F(I,t), leads to
a Fokker-Planck type diffusion equation,

oF 3 d

3 _a]D(I)aIF. (41)
This procedure is valid as long as the perturbation is not
too large. For very large microwave fields, F > F,, the
electron can be dissociated in one wave period. In this
case the electron ionizes in a single jump rather than a se-
quence of small, random steps.

The diffusion coefficient in action, D (I), can be calcu-
lated by considering the motion of a test particle in
action-angle space under the influence of the many
Fourier modes of the microwave perturbation. This test
particle diffusion coefficient is defined by

N B L L
D(D)= lim - [ dr’ [ dr(Heie) 42)
where I(t)=dl /dt is evaluated along the particle orbit
determined by the equations of motion in action-angle
space,
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av,
40 _afD+F 3 ZTcosmo—Qn, @43
dr W2 Tar
daIr
ar =F 2 mV,,sin(mO —Qt) , (44)
and the average,

(==t [(--de

Tor Jo 0>

is taken over an ensemble of initial angles (phases),
6,=06(0).

Using the approximate solution of Eq. (43),
O(1)~0(0)+Qyt, we can evaluate the integrand in Eq.
(42) along the free-streaming trajectories. Then the aver-
age over random phase, O, gives
(HEI))=F2/4 S m?| V|2 ™0

X 2[cos(Q27)+cos(2QT)] ,

(45)

where we have introduced 7=(t'—t"") and T=(t'41t")/2.
In terms of these new variables the test particle diffusion
coefficient can be written as

t_

D(I)—hm——f drf ZT/Z

t—»oo T/

dT{II)(r,T) . (46)

Since the integral over cos(227) remains bounded as
t— o these terms will not contribute to the diffusion
coefficient. The remaining terms are independent of T.
Therefore, the integral over T simply gives a factor of
t —7. Moreover, if we assume that the autocorrelation
function, {(IT)(r,T), decays to zero as 7— oo due to non-
linear mixing,3? then the 7 integral can also be performed
which reduces Eq. (46) to the standard quasilinear result’!

D()=F%/4 'Y m?|V, | 208(mQe—Q). (47
m=—o
Finally, if we approximate 2~m £, and replace the infi-
nite sum by an integral over m, then using Eq. (19) we get
a simple expression for the local diffusion coefficient for
I~1I,, in terms of the amplitude and frequency of the per-
turbing microwave field,

D(=~(7/2)F*m?| V,, | 2/(QZ?)
~0.271°F*/(QZ)*/3 (48)

measured in atomic units for large m.

B. Stochastic excitation rate

This local diffusion coefficient can be used to calculate
the characteristic time, 74=352,/2D(I,,), required for an
electron to diffuse a distance, A =6, =1, ;| —1,,, in ac-
tion. Since small excursions up and down occur with
equal probability, the characteristic time required for an
electron to be excited to larger actions, from the m to the
m +1 classical resonance, is 27,. Consequently, the exci-
tation rate from the m to the m + 1 resonance is given in
atomic units by

m=54 3
a
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FIG. 7. Theoretical, Eq. (49), and numerical excitation rates
from the m to m + 1 resonances are plotted as a function of the
electric field strength for the m=1—5 subharmonic resonances
with a microwave perturbation at Q=320 GHz. The five dif-
ferent symbols for the numerical data points correspond to the
different values of m. The error bars represent an estimate of
statistical errors in the Monte Carlo calculation. No excitations
were observed, numerically, for F < F,~0.2F, as predicted by
Eq. (24).

=D /8% ~2.4Fm"73 /(Q3/3Z%/3) (49)

measured in atomic units for large m. Since the local ex-
citation rate is a rapidly increasing function of m, the sto-
chastic diffusion to larger actions accelerates rapidly once
the electron has succeeded in diffusing past the m +1 res-
onance. It therefore provides a convenient order of mag-
nitude estimate for the stochastic ionization rate.

Our analytic estimates for the stochasticity threshold,
Eq. (24), and the excitation rate, Eq. (49), have been veri-
fied by numerical integrations of the perturbed equations
of motion. For small electric fields the electrons
remained confined near their initial action (see Fig. 1);
however, as the field was increased above the threshold,
the trajectories spanned several resonances indicating the
breakup of confining KAM (Ref. 13) surfaces. The nu-
merical results for both the stochastic threshold and exci-
tation rate are compared with the analytic predictions as
functions of microwave field in Fig. 7 for initial actions
near the first five classical resonances, m =1—5. Al-
though the resonance overlap criterion is only expected to
be accurate to within a factor of 2,%* the quasilinear dif-
fusion estimate is very reliable once the dynamics have be-
come fully chaotic. This is illustrated by the excellent
agreement between the theoretical and the numerical exci-
tation rates.

V. DISCUSSION

The classical description of the nonlinear dynamics of a
surface-state electron in a microwave electric field
predicts a transition from regular to stochastic behavior
when the electric field strength exceeds a critical thresh-
old. By combining numerical simulations with simple
analysis, we have derived convenient estimates for the
threshold field as a function of the initial action or energy
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of the SSE and the frequency of the perturbation. This
classical treatment of the perturbed SSE fills in the details
of a previous calculation'® of the critical field based on
the resonance overlap criterion for the onset of global sto-
chasticity!” and provides new results for the critical field
for ionization in quasistatic perturbations. When the
threshold field is exceeded, the SSE can diffuse to higher
energies until it ionizes. Using a statistical, random walk
description of the chaotic electron dynamics, we have also
calculated the stochastic excitation and ionization rates as
a function of the initial action of the SSE and the strength
and frequency of the perturbation.

The perturbed SSE promises to be an ideal system for
the investigation of quantum chaos. Since the system is
one dimensional the theoretical analysis of this nonlinear
oscillator is greatly simplified. In addition, the low bind-
ing energies and frequencies of the SSE permit experimen-
talists to probe the lowest quantum levels with available
microwave sources. Our classical calculations of field
thresholds and ionization rates then provide estimates for
the microwave frequencies and powers required to experi-
mentally explore the manifestations of classical chaos in
this quantum system. If the classical stochasticity of this
driven oscillator persists in the quantum regime, experi-
mentalists should observe both enhanced line widths for
the quantum levels and measurable ionization rates which
increase as functions of microwave power. Moreover,
since the quantum mechanical and semiclassical treat-
ments of this one-dimensional hydrogen atom may also
prove to be tractable, the predictions of these theories can
also be tested with real experiments.

The feasibility of the proposed experiment can be as-
sessed by calculating the critical field and ionization rate
for the stochastic ionization of the ground-state SSE with
initial action and quantum number /o=n=1. According
to Egs. (7)—(10) the ground-state SSE has a binding ener-
gy of Eq~—6.8%10~* eV, a natural oscillation frequen-
cy of vy=~330 GHz and a binding electric field at the max-
imum classical excursion of Fy~450 V/cm. If the fre-
quency of the applied microwave field is v~330 GHz,
then Iy~I, and stochastic diffusion occurs when the
m=1 and m=2 island chains overlap. In this case Egs.
(24) and (49) predict that a peak microwave electric field
of F~115 V/cm is sufficient to classically ionize the
ground-state SSE at a rate v,~14 GHz. This peak field
corresponds to a microwave intensity of I, ~35 W/cm?.

If the experiment is performed in a microwave cavity,
then the critical intensity is reduced by a factor equal to
the Q of the cavity. Moreover, Eq. (24) predicts that the
critical field decreases for higher-frequency perturbations
since the initial action of the SSE, I,, then corresponds to
a classical resonance with m > 1. However, according to
Fig. 4, the critical field increases for microwave frequen-
cies much less than v, and approaches the static field,
F,~230 V/cm, required to classically dissociate the elec-
tron in the adiabatic limit.

Although microwave sources which can deliver 330
GHz at intensities > 10 W/cm? are not yet readily avail-
able, the microwave intensity required to ionize the excit-
ed states of the SSE are significantly lower. Consider, for
example, an experimental configuration similar to that

used in Grimes’s!® original experimental studies of the

quantum levels of the SSE’s consisting of a microwave
cavity half filled with liquid helium at 1.2 K. The SSE’s
are created by charging up the liquid-helium surface. If
the cavity is designed to resonate with microwaves at a
frequency of v~120 GHz, corresponding to the frequency
for the single-photon excitation to the n =2 level, then
the application of low-intensity microwaves will populate
the first excited state. The classical binding field for the
n =2 level, Fy~28 V/cm, is n*=16 times smaller than
the binding field of the ground state. In addition, the
classical bounce frequency is vy~40 GHz which implies
that the initial action is resonant with the m =3 subhar-
monic of the microwave perturbation. Therefore, if the
microwave intensity is slowly increased, then the classical
theory, Eq. (24), predicts that the n =2 states will start to
ionize when the microwave fields exceed F.~2.7 V/cm.
This critical field corresponds to a microwave intensity of
only I,~2x10"2 W/cm? For high-Q cavities this
source intensity is further reduced by the cavity Q.

The classical treatment of this one-dimensional hydro-
gen atom in a microwave field gives ionization thresholds
and rates which are in qualitative agreement with the ex-
perimental measurements of the microwave ionization of
real hydrogen atoms performed by Bayfield and Koch.5—®
This suggests that the physical ionization mechanism in
the experiments®~® and the numerical simulations'? is also
stochastic diffusion due to overlap of classical resonances
in action-angle space. The same procedure used to
analyze the nonlinear classical dynamics of the SSE can
also be extended to the Hamiltonian,

H(T,P,t)=p*/2—Z /r +xF cos(Qt) (50)

measured in atomic units which describes the dynamics of
a classical electron orbiting the nucleus in the presence of
an oscillating electric field. Although the classical, six-
dimensional, action-angle phase space can be reduced to
four dimensions by exploiting the cylindrical symmetry
about the direction of the electric field, the analysis is
considerably more complicated than that for the per-
turbed SSE because of the interplay of the additional de-
grees of freedom. For example, in higher dimensions the
KAM surfaces no longer confine the phase-space trajec-
tories. So the electron can always wander to higher ac-
tions or energies by “going around” these two-dimensional
surfaces in the four-dimensional space. Consequently,
there is no well-defined threshold for the onset of stochas-
tic diffusion. However, this “Arnol’d diffusion,”?* is usu-
ally extremely slow and rapid ionization due to stochastic
diffusion will not occur until most of the KAM surfaces
between the classical resonances are destroyed.

Meerson et al.'*1> and Zaslavskii'® have attempted to
calculate the electric field threshold for the destruction of
KAM surfaces due to island overlap by transforming the
classical equations of motion to appropriate action-angle
variables and using a multiple time-scale analysis to
reduce the problem to one dimension. Although a num-
ber of details remain to be worked out, rough estimates of
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the stochasticity threshold when the microwave frequency
is close to the oscillator frequency are in good agreement
with the experimental results for hydrogen atoms in the
n ~66 level. However, these preliminary calculations are
not adequate to explain the experimental results for the
quasistatic experiments (n ~29). More extensive theoreti-
cal and experimental studies of Rydberg atoms in oscillat-
ing electric fields are currently being pursued to further
explore the dynamics of these perturbed, nonlinear oscilla-
tors.
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