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We have made molecular-dynamics computer simulations of dense krypton gas (10.6X 10%
atoms/m? and 296 K) using reasonably realistic pair potentials. Comparisons are made with the re-
cent experimental data [P. A. Egelstaff et al., Phys. Rev. A 27, 1106 (1983)] for the dynamic struc-
ture factor S(q,w) over the range 0.4 <q <3.0 A-!. For g<1.6 A~ the influence of the attractive
part of the potential is important and shorter-ranged many-body forces are found to play a role.
Additional (less significant on a relative scale) effects are found in the region g ~2.7 A~!. Some

suggestions for future work are made.

I. INTRODUCTION

A series of experiments on the dynamic structure factor
of dense krypton gas have been published,! and the data
compared to hard-sphere-fluid results. It was found that
if the momentum transfer (#ig) was greater than g =27/0
(where o is an equivalent hard-sphere diameter), the ex-
perimental and hard-sphere results were quite similar.
But for g <27 /0o there were significant differences, which
may have been due to the role played by the attractive
part of the potential in multiple collision processes. To
investigate these questions further and to study the role of
many-body forces in dynamic phenomena, we have made
molecular-dynamics (MD) calculations using a realistic
krypton pair potential,>® and compared them to the ex-
perimental krypton data.

In Sec. II we describe two series of MD calculations us-
ing 250 and 500 particles, and in Sec. III the comparisons
are made and discussed. Although a more precise and ex-
tensive set of MD calculations would be useful, we feel
that the initial comparisons made here are very informa-
tive and provide a good foundation for future work.

II. MOLECULAR-DYNAMICS CALCULATIONS

The Fourier transform of the microscopic number den-
sity of a system with N krypton atoms having positions
T;(1),j=1,...,N,is given by

1 N
()=—F7= expliq-T;(#)] . (1)
Pq vV'N E, J

To describe density fluctuations, the correlation function
I(q,t) (intermediate scattering function) is of interest:

I(g,0)={p_g(0)py(1)) . )

From this we obtain the coherent scattering law S(q,w)
by

1 © .
S (q,0)= . f_wl(q,t)exp(twt)a’t . (3)

For our model system the nonzero components are those

for which
azsz(ll>127l3) ) (4)

where I, [,, and /5 are positive and negative integers.

For a given wave vector  we can calculate I(q,?) on
the basis of the molecular-dynamically determined posi-
tions T;(¢) of the N atoms as a function of time. Then,
for a suitably chosen Ag, by adding the results for all ¢ in
a shell given by the magnitude g, g +dg, and dividing by
the number of vectors q in the shell, we get I(g,t). Clear-
ly, for small values of g this averaging will be statistically
less satisfactory than for large values of q.

Series I calculations were done at Cornell University on
a Floating Point Systems’ Array Processor, model 190L
with an IBM 370/168 computer used as a host machine.
The MD simulation was carried out for 256 particles in a
box with periodic boundary conditions and interacting via
an Aziz? pair potential with a diameter o and a well depth
€/k, of 3.591 A and 170 K, respectively (this is the same
o as the Barker’ potential and about 85% of its well
depth). A reduced density p*(=po?) of 0.4955 and a (re-
quired) reduced temperature T*(=kT /€) of 1.747 define
the state point of the simulation. Finally, the interaction
potential was modified by applying a cutoff distance of
2.50, and a time step (associated with the iterative solu-
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tion of the classical equations of motion) of 2.765x 10~
sec was used. Two simulations of equal length were actu-
ally carried out. The first, MDA, from O to 10000 time
steps was followed (continued) by MDB from 10000 to
20000 time steps. Essentially both simulations resulted in
an energy conservation of AE*/(E*)=0.0011, with E*
(=E /e€) being the total reduced kinetic energy of the sys-
tem and an average temperature {7%)=1.7485
+0.036: to achieve this velocity rescaling was used dur-
ing equilibration. The simulation ran at a rate of approxi-
mately 1900 time steps per hour, and the location or coor-
dinates of each of the 256 particles were saved every 5
time steps. The particle coordinates resulting from this
simulation were then processed to obtain the intermediate
scattering function, I(q,t), for g values of 1.047, 1.396,
1.745, 2.094, 2.443, 3.000, and 3.490 A1 It was found
that I(g,?) for g =2.443, 3.000, and 3.490 A~! was short
ranged. The coordinates produced by MDA were pro-
cessed to yield I(g,t) obtained from 600 estimates at a set
of 16 time points between O and 400 time steps
(~1.1X10"'2 sec) for this set of g values. For 1.047,
1.396, 1.745, and 2.094, I(q,t) is relatively long ranged.
The coordinates produced by MDA were processed to ob-
tain 480 estimates of I(g,?) at a set of 27 time points be-
tween 0 and 2800 time steps (~7.7 X 10712 sec). This was
repeated for the coordinates obtained from MDB, and the
two sets of estimates of I(q,t) were then averaged. The
result is I(g,t) obtained from 960 estimates ranging over a
20000 time-step simulation.

The series II calculations were performed at KFA,
Karlsruhe on an IBM3033. For the MD model, 500 kryp-
ton atoms were arranged in arbitrary positions in a cubical
box of side length L =36.13 A, thus providing a density
of 10.6x 10?7 atoms/m>. The initial distribution of the
velocities was chosen according to Maxwell’s distribution.
To avoid surface effects, periodic boundary conditions
were imposed on the system, and the classical Hamilton
equations were solved by iteration (time step of 10~ * sec).
For the pair interaction we chose the potential of Barker
et al.3 The cutoff radius 7. for the potential was chosen
to be 13.0 A (3.60). We varied r. and found that cutoff
effects are ruled out if r.,>13.0 A. The temperature
was 295 K. The g values chosen were 0.40, 0.60, 0.80,
105 1.30, 1.55, 1.80, 2.10, 2.40, 2.70, 3.00, 3.25, and 3.50
A-1. We checked whether the Axilrod-Teller form* of
the triplet potential u; is of importance at the density of
10.6 X 10%" atoms/m>. We found that effects due to u;
are distinctly less pronounced than in the case of lower
densities (see Refs. 5 and 6).

The series I simulations extended to ~7X 1012 sec for
g=1.05 A~' or to ~1.2x10""2 sec for g=3.5 A~
while the series II simulations extended to ~2.7 X 10!
sec for low ¢ and 0.7x 10™!? sec for high g. The func-
tion I(q,t) was set to zero for values higher than these
limits and transformed via Eq. (3). This was done by di-
viding the integrand into 11 intervals and using for each a
one-interval 16 point Gaussian integration. The experi-
mental data include a resolution function, which may be
approximated by a Gaussian in w, and which is folded
into the scattering function S(gq,w). This means that
I(g,t) should be multiplied by the transform of the resolu-

tion function, namely by R (z)=exp(—t2/6.6) where ¢ is
in 107!2 sec units. A second set of transforms were ob-
tained after multiplying by R (¢), and this set has the ad-
vantage of being smoother because of the damping in ¢
space as well as being directly comparable to the ex-
perimental data. For g =0.4 A~! resolution broadening
reduces the peak height of S(g,w) by ~20%, whlle for

qg~1 A~ the reduction is ~5% and for qg>2 A-litis
negligible In Figs. 4—7 the resolution broadened data are
shown, while Figs. 1—3 show unbroadened data.

III. COMPARISON OF MD RESULTS
AND EXPERIMENTAL DATA

The krypton potentials of Aziz?> and Barker et al.® are
the same for our purposes. In series I we used a lower
well depth (170 K in place of 200 K) than given in Refs. 2
and 3 which confirmed the insensitivity (Figs. 1 and 2) of
the results on small changes of well depth for ¢ > 1 A 1
Over the range of g in series I (1.05<¢g<3.5 A- )
the structure factors for the two calculations were in good
agreement, and from perturbation theory we expect the
differences to be significant only for g <1 A~!. For the
six g values which are common to the two series, the gen-
eral agreement of the I(q,t) functions was satisfactory.
The quality of this comparison may be illustrated by the
comparisons of S(g,w) for series I and II shown in Fig. 1.
In two of these cases (1.05 and 2.40 A~") Fourier oscilla-
tions due to truncation in ¢ space are large and limit the
usefulness of the comparison, and in the other two cases
(2.10 and 3.0 A~") the oscillations are small and the com-
parison is excellent. Truncation effects should become
smaller as g is increased because the reduced time range in
I(q,t) is easier to cover.

A simple, but informative, quantity is the full width at
half maximum (FWHM) amplitude of S(q,») as a func-
tion of g, and this is plotted in Fig. 2. We note that the
FWHM increases when 3S(g)/dq is negative and levels
off when 3S(q)/dq is positive. Where the Fourier oscilla-
tions in the MD data lead to large uncertainties in the
width there are discrepancies between either neighboring
points of the same series or common points of the two
series. The dashed line has been drawn through these data
to be the best representation of the half-width curve, mak-
ing allowance for the weighting of different points. A
comparison of the uncertainty of these data with that for
Fig. 5 of Ref. 1, suggests that similar curves for the hard-
sphere fluid and real krypton gas are better known. A
comparison of these three cases (the experimental data
have been corrected for resolution) is shown in Fig. 3. It
is evident that the use of a correct potential in place of the
hard- sphere potential improves agreement with experi-
ment in the range 0.4<g<1.6 Al while for 2.5<¢q
<3.5 A~! the agreement appears to worsen. Also we
note that the theoretical half-width curve of Bosse et al.’
is similar to our results. Any real differences between the
MD curve and the experimental curve should be attribut-
ed to the effects of many-body forces. There is some evi-
dence that the half-width of the MD S( °q, ) is larger than
the experimental one for g ~1 and ~3 A~", in which case
these forces would appear to “slow down the motions
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FIG. 1. Comparison of series I and II results for (a) 1.05, (b)

2.1, (c) 2.4, and (d) 3.0 A-!. The solid line is series II and the

dotted line series 1.

which contribute to these Fourier components.

The differences between the MD results and experimen-
tal data are relatively small, and direct comparisons of
S (g,w) are perhaps more significant than the summary in
Fig. 3. In Figs. 4, 5, and 6 we show this comparison first
as a function of o for fixed g (see Appendix) and then as a
function of g for fixed w. These figures should be com-
pared to Figs. 4 and 8 of Ref. 1. In all cases the resolu-
tion broadened data have been used. The lowest value of
q in series II (¢ =0.4 A s approximately 27 divided
by half the box size and consequently there may be a
larger uncertainty in that case. The overall agreement in

Figs. 4 and 5 is satisfactory: at ¢ =0.4 A1 the experi-
mental data have the same half-width but are wider in the
wings, at 0.8 A-! the MD data are apprec1ab1y wider,
they are a little wider at 1.05 A-'and in agreement at
1.35 A~! (which is taken as the average MD data at 1.30
and 1.40 in the two series, respectively). At ¢g=1.80 A1
(Fig. 5) there is excellent agreement, and at the higher ¢
values (2.40, 2.70, and 3.00) the MD data are slightly wid-
er than the experimental data. The central +0.5 meV of
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FIG. 2. Full width at half maximum (FWHM) amplitude of
S(g,w) for the MD calculations. The crosses are series I and
the circles are series II, while the dashed line is an approximate
curve drawn through the points taking into account their dif-
ferent weightings.
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FIG. 3. Comparison of FWHM curve from Fig. 2 and curves

for the hard-sphere fluid [dotted line (Ref. 1)] and real krypton
[full line (Ref. 1)].

the experimental data, for these last three cases, has been
spoiled by Bragg reflections from the pressure vessel and
they have been extrapolated to w=0. Since the area of
I(g,t) in the MD work is not well known the central por-
tion of S(g,w) is uncertain in the MD data as well. How-
ever, all the experimental data have been measured with
respect to an absolute scale, so that the comparison for
fiw >0.5 meV is reliable and, for example, the excellent
agreement for ¢ =1.78 A-lis striking. It can be seen
that the fit of the MD data is worse for 2.7 than 3.0 A~1,

which is due to the effect of Fourier oscillations. A more
satisfactory result would be obtained, for example, by
averaging these two data sets together.
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FIG. 4. S(q,0) vs o for fixed g, computer MD data com-
pared to expenmental data (Ref. 1): (a) g =0.4, (b) 0.8, (c) 1.05,
and (d) 1.35 A~!. The solid line is the experimental and the dot-
ted line is the MD result—(c) and (d) are the average of series I

and II. (See Appendix for derivation of experimental data.)
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FIG. 5. S(q,0) vs o for fixed g, computer MD data com-
pared to expenmental data (Ref. 1): (a) 1.78, (b) 2.4, (c) 2.7, and
(d) 3.0 A~l. The solid lines are experimental and the dotted
lines the average of the two MD results (except for 2.7 A-!
which is series II).

In Fig. 6 we show the same data plotted as a function
of g for =0, 1, 2, and 3 meV in the form S(q,0)/S(q).
All the MD data are included and the scatter, discussed
with respect to Fig. 1, is evident here also. For =0 the
MD data are lower for ¢ >2.4 A- ! confirming that the
widths are greater in this region [since S(g) for MD
agrees with the experiment for these ¢’s]. At lower g for
=0 and for ®=1 or 2 meV at all g there is broad agree-
ment within the scatter. However for w 3 meV, this
agreement although striking for ¢ > 1 A~ is seen to fail

for g <1 A~1. The lower intensity for 3 meV seen in Fig.
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FIG. 6. S(q,0)/S(q) vs q for fixed w, computer MD data
compared to experimental data (Ref. 1). The crosses are series I
and the circles are series II, and the solid line is a smooth curve
drawn through the data in Fig. 8 of Ref. 1 (the ¢’s are measured
directly in the constant w case).
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FIG. 7. Dynamic structure factor for an energy transfer of 3
meV. The solid line is the experimental result, and the crosses
are series I while the solid circles are series II MD results. Note
that a small diffraction peak appears even for =40 and that its
position is shifted upwards in g relative to the peak in S(q).

4 for ¢ =0.4 A~ is enhanced in the S(g,0)/S(q) repre-
sentation, due to the differences between MD and experi-
mental data for S(q). For this reason the difference ex-
tends to higher g. These broader wings may be due to
many-body forces, and might indicate that if the experi-
ments and MD calculations were extended to lower g
values the onset of side peaks would be more pronounced
in the experimental than the MD data. In this event it
would be possible to argue that the two effects due to
many-body forces (i.e., slowing down of motions observed
at high ¢ and intense wings at low ¢) may be related
through the processes which lead to damping or propaga-
tion of cooperative modes.

Finally in Fig. 7 we show S (q,w) for an energy transfer
of 3 meV. The MD data are in good overall agreement
with the expenmental results and also exhibit a diffrac-
tion maximum near 2 A~! [compared to 1.8 A1 for
S(g)]. It seems possible that the experimental and MD
peaks do not fit one another, but better data are required
to establish a definite result.

IV. CONCLUSIONS

While the MD results are neither as detailed nor as ac-
curate as the neutron scattering data some conclusions
may be drawn from these comparisons. First, the use of a
fairly realistic potential in place of the hard-sphere poten-
tial alters the half-width curve in a direction towards the
real curve, showing the importance of the attractive part
of the potential. For ¢ >1 A-la change in well depth by
15% did not produce an observable change, suggesting
sensitivity to major changes in the potential only. Some
differences with the experimental data remain, which are
probably outside the relatively large uncertainties in the
MD data (e.g., the greater width of the calculations shown
in Fig. 5 at high ¢ and in Fig. 4 for q of 1—-0.8 A=) and
so may be related to the many-body forces. We made a
test using the long-range triple-dipole term and found a
negligible result in agreement with earlier conclusions.
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This suggests that the shorter-ranged many-body terms
are producing the discrepancies in Figs. 4 and 5. Such
comparisons of S(q,) at fixed g or at fixed w were used
to try to show in detail those regions where a fit occurred
and the regions where discrepancies are found. It would
be worthwhile to improve and extend the MD data to test
these conclusions in greater detail.

The measurements of S(q) reported in Ref. 1 (Fig. 2)
showed discrepancies with a simulation using the Barker
et al.® pair potential over similar ranges of g. However,
the data did not extend beyond 3 A~! and it would be
worthwhile extending and improving the S(g) work so as
to improve this comparison. Meanwhile we conclude that
the pair potential approximation gives a good first ap-
proximation to S(g,w)—including S (gq)—for a dense gas,
but that modifications due to shorter-ranged many-body
effects can be observed in S(g) and probably in S(q,®)
over the same regions of g space. These effects appear to
increase the width of S(g,w) so suggesting a slowing
down of the motions leading to these Fourier components.
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APPENDIX: CONVERSION OF CONSTANT ANGLE
NEUTRON DATA TO CONSTANT g DATA

For heavy target atoms, such as krypton, there is a sim-
ple procedure for converting the constant angle results of
many neutron experiments (e.g., Ref. 1) into constant g re-
sults. It is shown in Ref. 1 [Eq. (3)] that for heavy ele-
ments the variation of ¢ for constant angle is given by

Aqw=qel_qw=_qelﬁw/4EO+ T, (A1)

where g and g, are the values of g for elastic scattering
(w=0) and for the energy transfer #w, respectively. The
Taylor expansion of S(q,,®) is

S(ga—Agy,0)= S(gq,0)—Ag, asgq,w) NI
9=9q

(A2)

for a given choice of w. Now the experimental data at
each angle are determined for positive and negative values
of w, and so if we average these values the term in Ag,
will vanish by virtue of (A1). Thus we obtain

S(qu; +0)+S(g,;—)

2 +
and this expression was used to obtain the experimental
data of Figs. 4 and 5. The ¢’s quoted in these figures are
qel-

To obtain constant w plots, the experimental data are
interpolated to the w required and g, is calculated for
that value of w. Each g, represents a different angle in
this case.

S(qel,a))——‘
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