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Transport phenomena in a completely ionized gas with large temperature gradients
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A solution to the Boltzmann equation is found that extends to large gradients and fields the clas-
sical Chapman-Enskog approximation developed by Spitzer and collaborators for electron transport
in a fully ionized gas. The extended solution is used to calculate correction factors to the classical
transport coefficients of a nonuniform plasma that depend on the temperature-gradient scale length
as a parameter. These factors lead to inherently flux-limited heat flow with values in close agree-
ment with Monte Carlo and numerical Fokker-Planck calculations.

I. INTRODUCTION

The Boltzmann equation with a Fokker-Planck col-
lision term was solved in the first-order Chapman-Enskog
approximation' by Spitzer and collaborators to obtain the
electrical and thermal transport coefficients of a com-
pletely ionized gas. The data from recent laser plasma ex-
periments, however, can be reproduced in simulations
only if a large reduction of the classical value of thermal
conductivity is assumed. Since thermal energy is
transported through a region of large temperature and
density gradients in these experiments, it is likely that the
conditions for validity of the Chapman-Enskog method
are violated. In this paper, a technique for extending
Spitzer's calculation to large gradients and strong fields is
developed. This technique is then used to calculate
correction factors for the classical transport coefficients
that depend on the temperature-gradient scale length as a
parameter.

The correction factors are based on a solution to the
Boltzmann equation that contains both diffusion and
streaming components and thus yields inherently fiux-
limited transport. It is a universal practice in numerical
computations to impose an external flux limit such as
q (f,qo, where qo nkT(kTlm ——)', so that in large gra-
dients the diffusion flux does not exceed the value for
streaming particles in a neutral gas. The correct choice of
the parameter f, in a plasma has never been precisely de-
fined, but heuristic arguments suggest values in the range

I

0.2 (f, & 1. The technique described in this paper leads
to naturally flux-limited transport and avoids the need for
an ad hoc flux limiter.

The correction factors derived from the transport solu-
tion yield results in close agreement with numerical
Fokker-Planck and Monte Carlo calculations. The tech-
nique described here allows diffusion expressions correct-
ed for large gradients to be used in place of these more
computationally difficult procedures, and the method can
be extended to a multigroup treatment where required.

II. FORMULATION OF THE PROBLEM

The transport of electrons mediated by electron-electron
and electron-ion collisions will be considered in one space
dimension of a fully ionized gas. The electron distribu-
tion function f (t, r, u, p) obeys the Boltzman equation

df df E Bf
( )

df
at ar mv av a~

= —K(f f) —K(ff, ), (1)

where t is the time, r the spatial coordinate, v the magni-
tude of the electron velocity, p the direction cosine with
respect to the r axis, E the magnitude of the electric field
in the r direction, and e and m are the charge and mass of
the electron. Magnetic fields are assumed absent.

The Fokker-Planck collision term for electron-electron
scattering is

K(f f)= 2 u f (A~)+ —(b„)— 2 (v (b~)) + . f sin8 (5 ) — (6 )v2 Bv v " 2u2 dv
]

usin8 B8 " 2u B8

1 8 2(~2) df
2v2 av

'
4 av

1 8 . 8(~2) df
v'sing

1 f sin8(b~b, „)+ (fu sin8(h~b, „))
v~sin9 BO Bv

and for electrons scattered by stationary ions of charge Z,

1 8 . i &fK(f,f, )= —
z sin8(b„, )

2u sin8 &8

These expressions are based on spherical coordinates in

velocity space oriented along the direction of E. The rec-
tangular velocity shifts averaged over all collisions, (br),
(b,v), (b,~), (b.z), and (b.&b,v), are determined from
Chandrasekhar's analysis of binary encounters as extended
by Spitzer and others. ' '

Once the Boltzmann equation (1) is solved for f, the
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electrical current j and heat flux q in the r direction are
found from

J= e Pvd U

f=fp 1 —A,,x +(x —2.5)— p4 eE' 2 5
1 QT

(9)

q= f tv'd'v .
(4)

III. FIRST-ORDER CHAPMAN-ENSKOG
APPROXIMATION

The first-order Chapman-Enskog method can be ap-
plied to Eq. (1) in the case of slow time variations, small
gradients, and weak fields by assuming a solution of the
form f=fp(1+Dp) and evaluating the small terms on
the left-hand side with the equilibrium distribution fp.
Since K (ff)=K (fp,fi ) +K(fi,fp ) Eq. (1) can then be
solved for f, =fpDp.

In the steady state Eq. (1) becomes

eE' 2 1 BT
kT T Br

+(x —2.5)— fppv = K(f f) —K(f f, )—,

(5)

The problem is to obtain the distribution function f as a
solution to Eq. (1) in terms of the temperature and density
gradients and electric fields that may be present in the
plasma.

K (f f)= — (D"+PD'+ QiD —Si )fpp
X,x4 2Z

where

(10)

P (x)= —2x ——+ 4'(x),1 2x
x A

1 4(x) —2x 4'(x)
x

x A

16Si(x) = [xIp(x) —1.2xI&(x)

The form of Eq. (9) reveals the limitations of the
Chapman-Enskog solution. As long as the gradients and
fields are small, f goes negative (unphysically) at veloci-
ties beyond the range of physical interest. For gradients
such that the scale length L =T(dT/r)r) ' is smaller
than the scattering mean free path k,x over a significant
portion of the distribution function, the approximation
fails completely. The method also fails for fields strong
enough that an electron gains energy on the order of kT
over one scattering length.

For a distribution function of the form f=fp(1+Dp, ),
the electron scattering term given by Eq. (2) becomes

where
3/2

—x Ip(x)(1 —1.2x )]
m

2 kT
—Z 2

e

mU 2

2kT

In this expression, the pressure-gradient term has been ab-
sorbed into E' and is carried through as a field com-
ponent,

aP,E'=E+
en, Br

where T is the electron temperature, n, the electron num-
ber density, and P, =n, kT. For a distribution function of
the form f =fp(1+ DE), the ion scattering term given by
Eq. (3) becomes

——
A,,x —(1—1.2x2),2 4 eE'

A ' kT

I„(x)=f y"D(y)e ~ dy,
Z

ill(x)= f e ~ dy,

A =4(x) —x 4&'(x),

and the primes on D and N indicate derivatives with
respect to x. When the scattering terms given by Eqs. (7)
and (10) are added to Eq. (5), a differential equation for D
is obtained,

2ZD"+PD'+ Q, — D =R, +S, ,
A

~D V«f f.)=,fpDV= &(f—fp» (7)
where

Ri(x) =A,,x +(x —2.5)—4 eE' 2 5
1 BT 2Z

where AD ——8' Zn, m lnA, and A, =A,,x is the mean
free path for momentum-exchanging collisions, with

(kT)
me Zn, lnA

Equation (11) was solved numerically in Ref. 2 with D
expressed in terms of two factors (ZD~/A) and (ZDT/B)
which represent the effects on the distribution function of
the electric field and the temperature gradient. The solu-
tion to Eq. (5) becomes

An important special case of Eq. (5) is that of the
Lorentz plasma where electrons scatter off of fixed ions
and electron-electron interactions are neglected. With Eq.
(7) for the scattering term, Eq. (5) can be solved immedi-
ately to give

f =fp '1 —1,,
ZDE eE' ZDT 1 BT

kT B T Br

(12)
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where (ZDE/A) and (ZDT/B) are tabulated as functions
of x in Ref. 2. When Z —+ co, ( ZDE /A )~x,
2(ZDT/B)~x (2.5 —x ), and Eq. (12) reduces to the
form for a Lorentz plasma. Equation (12) fails as a solu-
tion in the same way as Eq. (9) in the presence of large
gradients and strong fields.

A property of the first-order Chapman-Enskog solution
that will be important in what follows is that the right-
hand side of Eq. (5) is a homogeneous function of degree
1 in fi. This means that the Fokker-Planck collision
terms reduce to a relaxation form, X = (f f—o)/—r. In
the Lorentz plasma, the scatterers are defined indepen-
dently of D, and r is given explicitly by Eq. (7). When
electron scattering is added, the relaxation time depends
on D which must be found from Eq. (11). In this case the
right-hand side of Eq. (5) can be written

the scattering term given by Eq. (7):

Bf r)f E Bf df
at ar mu au a~

v= ——(f —fo) .

(14)

The right-hand side is the Fokker-Planck collision term in
the short mean-free-path limit where f=fo(1+Dp) and
is also correct in the long mean-free-path limit where it
approaches zero. The assumption is made that the relaxa-
tion form of the collision term with the relaxation time
defined in terms of the scattering length holds approxi-
mately between these two limits.

The second major assumption, which is also the key as-

sumption in the method of Ref. 12, is that the angular
dependence is weak, and the distribution function can be
expressed in the separable form

&(ff—) &(ff,—)=
4 (f —fo),Xx4 2Z D

(13) f =I(t, r, v)P(t, r, u, p), (15)

where the effective scattering length is absorbed in the
form of D. It is apparent from Eq. (13) that the Fokker-
Planck collision term, although rewritten in relaxation
form, differs from the relaxation approximations con-
sidered by Krook. "

IV. EXTENSION TO LARGE GRADIENTS
AND FIELDS

As observed in Sec. III, the Chapman-Enskog method
is effective in conditions where the scattering mean free
paths are short and transport proceeds by diffusion.
However, in a region L =T(dT/dr) ' where the tem-
perature gradient is large, there will be a significant num-
ber of long mean-free-path particles that are freely
streaming. In this section, a method originally developed
for radiation transport' is adapted to a solution of the
Boltzmann equation that goes over from the classical
Chapman-Enskog form at low particle energies to the
streaming form at energies for which the electron mean
free path exceeds either the temperature-gradient scale
length or the distance over which an electron gains energy
kT from the electric field. The electric fields are assumed
smaller than the critical value for electron runaway. '

A. Lorentz plasma

To more clearly illustrate the principles involved, the
method is developed first for the Lorentz plasma and then
extended to the more complex problem considered by
Spitzer. The basic equation follows from Eq. (1), with

I

(Ia)+-a aJ
Bt Br

eE 0 v
(vJ) = — (Ia Io),— —

mv
(17)

where Io 4mfo. It will be ——convenient also to define a
normalized particle flux F, where J=uiaF, with

1

aF =2' f /@dan . (18)

It will be apparent below that the definition Eq. (15) leads
to a separation of the p variable with a as the associated
integration constant. For convenience of notation the pa-
rameter cz, which is determined by the boundary condition
on the particle flux J, will be absorbed into the function I
(i.e., Ia~I).

When the function f given by Eq. (15) is substituted
into Eq. (14) one obtains

where P is a slowly varying function normalized accord-
ing to

1

2n. Pdp=a(t, r, u) .—1

This approximation is valid in the limiting cases of long
and short scattering mean free paths (unidirectional and
isotropic distributions, respectively) and, like the first ma-

jor assumption, is assumed to b. sufficient inbetween.
The reduced distribution function I and particle flux den-

sity J, defined by
1

aI(t, r, v) =2' f f (t, r, v, p)dp,
1

J(t, r, t)=2mu f f(t, r, v, p)pdp,

obey the equation

+ I+vp — u—
rM +I +up

ai u ai eE ar ay ay
at Br mv Bu dt Br

E up +(1—p)
mv Bv Bp

(19)

1 BI li F BI eE ai+—I+F
u Bt A, Br muBv

1 Io
A, 4m

Since f is assumed to be a slowly varying function, the
derivatives of g in Eq. (19) can be neglected compared to
the other terms. Integration of Eq. (19) over the complete
solid angle then gives

g (+—p)
Io

ai+'Eai +1 =1
a kTa 4

With the definition

I

which can be used to evaluate the first two terms in Eq.
(19) to yield
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BI eE BI
I0 Br kT Bv

(20)
(a)

1( can be written

1 1

4~ G —pR
where the function G = 1+FR is required by the normali-
zation condition Eq. (16) to be G =R cothR. This gives
for the distribution function

= 0.1
. L

I 1

4m R(cothR —p)

and associated particle flux J=uIF, where

F=(R cothR —1)R

(21)

(22)

'' @=+0.99
1O'=-

10
The parameter a must be determined by the boundary

condition on the flux J. In the long mean-free-path limit,
R —+ oo, cothR ~1, and the particle flux is J=vI, corre-
sponding to streaming from a distant point source I. For
streaming from an infinite planar isotropic source at tem-
perature Tp, the particle flux is J =UIp/2. For large gra-
dients and fields, A, »L, R~ao, and the distribution
function Eq. (21) becomes f=(I/4~)[

~

R (1—p)]
where the direction of the particle flow (p= 1) is deter-
mined by the sign of R. This distribution has the proper-
ties of a 6 function which properly describes streaming
from a point source. At a position r ((A, from an infinite
planar isotropic source, the boundary dominates, and k
must be replaced by r for p)0. Under these conditions
R ~0 for p )0, R ~ ae for p (0, and Eq. (21) reduces to
a half-isotropic distribution.

For small gradients and fields, A, ~&L, R~O, and the
distribution function becomes f=(I/4vr)(1+pR). In this
limit it is clear both physically and from Eq. (17) that
I~I0 and R ~R0, where

Rp ———A,,x + (x —2.5)—4 eE' 2 1 BT
(23)kT T Br

which leads to the Chapman-Enskog solution Eq. (9).
The distribution function Eq. (21) is positive definite

for all particle energies and scale lengths and extends the
basic Chapman-Enskog approximation to situations where
both streaming and diffusion components are present.
Figure 1(a) shows the distribution function for positive
values of p in a temperature gradient for which
k, /2 =0.l with the electric field determined by quasineu-
trality. Figure 1(b) shows the velocity profile for
@=+0.99. For small velocities, the distribution is dif-
fusive and exhibits the familiar properties of the
Chapman-Enskog solution: a velocity distribution skewed
in relation to fp by the temperature gradient and field to
produce a flow of heat with zero net particle flow. For
large positive velocities the distribution shows the pres-
ence of hot, long mean-free-path electrons streaming
through the region L from the hot side. The distribution
for large negative velocities is depopulated with respect tofp, since it represents long mean- free-path electrons
originating from the cold side of the gradient region.

-2 -1 0 1 2 3

FIG. 1. Distribution function in a large temperature gra-
dient. (a) Function for positive values of p showing the stream-
ing component along p=1. (b) Velocity profile for p=+0.99
compared with the local Maxwellian fp.

B. Scattering by electrons and fixed ions

For the problem considered by Spitzer, the basic equa-
tion follows from Eq. (1), with the scattering term given
by Eq. (13):

The derivation proceeds in the same way as before to yield

2Z D 1 BI eE dI
A R& Ip Br mv BU

1

4' '

which for

2Z R
A R,

ZDE eE' ZDT 1 gT—2
kT B T Br

(25)

leads to the solution

4m D~(cothD& —p)
(26)

df df eE "df
( 2) df

Bt Br mv Bv Bp

Ri (f—fp) . (24)
X,X4 2Z D
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The factors (ZDE/A) and (ZDT/B) in Eq. (25) are tabu-
lated as functions of x in Ref. 2.

From small gradients and fields, the distribution given
by Eq. (26) reduces to the Chapman-Enskog result, Eq.
(12). For large gradients and fields, the long mean-free-
path component is described either by a 5 function in p or
a half-isotropic distribution, depending on the flux boun-
dary condition. In between these two limits the solution is
based on an approximate form of the fundamental equa-
tion that smoothly connects the two limits where it is
strictly correct. The approximations inherent in the inter-
mediate region are that (1) the Fokker-Planck collision
term is represented by a relaxation form with a velocity-
dependent relaxation time defined in terms of the scatter-
ing length, and (2) the distribution function is separable
with the angular distribution represented by a slowly
varying function.

The formulation is applicable to nonuniform plasmas.
It follows from Eqs. (20) and (23) that the density gra-
dient affects transport in the same way as the quasineutral
field. It is convenient, therefore, to carry the pressure- or
density-gradient term as a field component in E' as was
done in Sec. III.

V. TRANSPORT COEFFICIENTS

The flow of electrical current and heat which is induced
in the plasma by the presence of temperature gradients
and electric fields is determined by Eq. (4). Since the dis-
tribution function given by Eqs. (25) and (26) properly ac-
counts for strong gradients and fields, the resulting trans-
port should be inherently flux limited.

Equation (4) can be written in terms of the particle flux

j=—e f Jvdv,

q= f "Ju'du,

where J =uION I D, with 1 (Di) =(DicothDi —1)Di
These expressions follow from Eq. (25) and D, =ND,
where N =I/ID, a relation that will be justified below.

The electric current and heat flux become
1/2

4 e 2kT
J

ZDE
PE= f IN

2
x e dx

ZDT 3 —x'
PT ——— IN —2 x e "dx,

3 0 B

ZDE
5 x~PE=

0 A
xe "dx,

(28)

ZDT
QT ———„ IN —2 x e "dx.

B

For small values of D (small gradients and fields), the ex-
pressions (28) should approach the Spitzer values: '

PE~YE PTER] T OE~6E and WT~8T
The problem of thermal transport under the condition

of quasineutrality is of special interest owing to the
anomalous results of the laser plasma experiments. '
The quasineutrality condition J=O determines the electric
field,

eE' 4T 1 aT
~

1 aT
kT 'Pz T ar T ar

(29)

where 5 measures the deviation of the field from the value
in a classical Lorentz plasma. Under quasineutrality, D
can be expressed in terms of the temperature-gradient
scale length by

r~$3D= (5——, )1.
ZDE ZDT

A B+ —2

and the heat flux becomes

which, with E'=E+(aP, /ar)/en„can be put into the
simpler form

aT
J=&LEQE+ pz+aL,

en, Br Br
(27)

aT
&L,—EPE — PE I:1.— itT

en, Br Br

where oL, aL, PL, and El. are the transport coefficients
in the Lorentz plasma, ' and the correction factors are

&&
f"rN' ZDE E'

A

k ZDT aT+——2 x e dx
e B ar

aT
QT 06PE I—Lfz ar

aT= —g Z, ICL
ar

(30)

' 3/2
2

&
em 2kT

n At

ZDE
X r~' — E'

r

ZDT BT+——2 xe "dx,
e B Br

The integrals in Eq. (28) can be evaluated numerically for
different values of Z and A,, /L to obtain correction fac-
tors for the classical transport coefficients which depend
on the temperature gradient.

Although the quasineutral field is of significant magni-
tude only over the region of the gradient L, it is instruc-
tive to compare its value to the critical field for electron
runaway, ' Ec ——Ze A, log A. This expression can be
rewritten to yield
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VI. COMPARISON WITH NUMERICAL SOLUTIONS

The solution represented by Eqs. (25) and (26) is strictly
correct only in the short and long mean-free-path limits.
In the intermediate region it is subject to two approxima-
tions as described at the end of Sec. IV. In particular, it is
known that the relaxation form of the collision integral,
Eq. (13), does not insure conservation of number of parti-
cles, momentum, and energy except in the limits. In order
to check the validity of the method in the intermediate re-
gion, comparison is made to numerical solutions of Eq. (1)
available in the literature. These solutions are generally of
two types: numerical solutions of the multigroup
Fokker-Planck equation' ' and Monte Carlo solu-
tions. ' ' There is some variation between the methods
used for evaluating the collision integrals in these calcula-
tions and also in details of the models considered, but the
results are generally consistent.

A. Model for evaluating the function I
In Eq. (26) the reduced distribution I is undetermined.

In the short mean-free-path limit, the problem is local and
I=ID, where Io ——4~fo is defined by a Maxwellian at the
local temperature. For long scattering lengths, the prob-
lem is nonlocal, and I must be obtained from a solution to
Eq. (17). In this section a simple model for evaluating I
nonlocally is developed that is based on the temperature
profile shown in Fig. 2. This profile is typical of the
penetration of a thermal front into cold material and is
representative of the models used in the numerical calcu-
lations.

In a quasisteady state, Eq. (17) (with a absorbed into I)
becomes

2Z D A,I =Ip-
A R) v

eE i)
( )

mv2 Bv

eE, A,,
kT

—4

which, if the pressure-gradient term is assumed small,
leads to (

—', 5)A—., /L=4 for the corresponding value of
the gradient parameter A,, /L. Since 5 typically ranges
from 0.4 to 1.4, the quasineutral field in a steep gradient
apparently never exceeds the critical value for electron
runaway even for A,, /L ) 1.

where the first quantity in large parentheses can be writ-
ten A,,rr/v. Since I~ID in the limit as A,,rr~O, J can be
evaluated approximately by its local streaming value
J=vIp to give

I =Ip 1—A,,rr BIo eE BIO
(31)

Ip Br mv 9v

eE 2I
mv

which according to Eqs. (6) and (29) reduces to I =Iota,
with

co= 1+ [(x'—4+5)+(1.5 —5)x —'] .
L

(32)

In Eq. (32) A,,rr has been replaced by A,eff(L, so that
AB/Br (Ld/r)r in accord with the form of the tempera-
ture profile in Fig. 2. In Eq. (31) the term —eEA, /mv
represents the change in velocity of an electron due to the
influence of the field over a distance A, .

If Eq. (32) is used to incorporate approximately the
nonlocal effects of the gradients and fields in the distribu-
tion I, Eq. (25) gives Di-~D where derivatives of co are
neglected. The particle current is then J =vIpco I D with
I =(coD cothcoD —1)(coD) . The distribution also must
be adjusted as described above to yield the half-isotropic
flux boundary condition, since this is the one upon which
the numerical models are based.

B. Results and comparison with other calculations

The correction factors given in Eq. (28) have been
evaluated numerically under the condition of quasineu-
trality with dP, /Br=0, and the results are given for the Z
values considered by Spitzer in Tables I—V. The quantity

g appearing in Eq. (30) corresponds to Spitzer's e5r. Also
given in the tables are the ratio of the heat flux to the
classical value, q!q„and the ratio of the heat flux to the
nominal streaming value, q/qo.

In Fig. 3 the results of Table V are seen to be in close
agreement with a discrete ordinate solution of Eq. (1) for
the Lorentz plasma. ' In Fig. 4, which is adapted from
Ref. 16, the results of Table III are compared to two solu-
tions based on Legendre polynomials' ' and on a Monte
Carlo calculation. ' The Monte Carlo results, curve A,
match the lower points on the dashed curves which are
the results from Ref. 16. (The correspondence between
the parameters used here and in Ref. 16 is
A, /LT 1.85K,, /L. ) The——lower points of the dashed curves
correspond to the hot side of the gradient region and the

1.0

Present Calculation—Ref. 15

X slow

qs

o-o o
1 .01 .001

FIG. 2. Temperature profile associated with a heat front
propagating into cold material, showing the relationship be-
tween L—:T(BT/Br) ' and A, in the model for I =I0~.

'AS/ L

FIG. 3. Comparison of the present calculation of heat flux in
steep gradients (0) with a numerical solution for a Lorentz
plasma ( Z~ oo ).
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TABLE I. Transport correction factors and heat fluxes for different temperature-gradient scale lengths L. q, is the classical heat
flux and qo the nominal streaming value. Z= 1 and Spitzer's t.5T ——0.094 34.

~s/L

0.0010
0.0032
0.010
0.032
0.10
0.32
1.00

0.5819
0.5812
0.5748
0.5469
0.4949
0.4254
0.3483

0.269 1

0.266 6
0.250 1

0.202 3
0.142 4
0.084 61
0.039 20

0.4655
0.4635
0.4492
0.4011
0.3309
0.2534
0.1820

0.223 5
0.219 1

0.196 1

0.144 2
0.092 92
0.051 47
0.023 94

0.094 32
0.091 56
0.078 78
0.055 18
0.035 77
0.021 23
0.011 65

q/q,

0.9998
0.9706
0.8351
0.5849
0.3792
0.2251
0.1235

q /qo

0.0030
0.0094
0.0251
0.0564
0.1142
0.2169
0.3718

TABLE II. Transport correction factors and heat fluxes for different temperature-gradient scale lengths L. q, is the classical heat
flux and qo the nominal streaming value. Z=2 and Spitzer's e5T ——0.1461.

~s/L

0.0010
0.0032
0.010
0.032
0.10
0.32
1.00

0.6856
0.6836
0.6700
0.6216
0.5398
0 AAA8

0.3446

0.412 1

0.404 5
0.366 7
0.275 2
0.172 3
0.087 32
0.027 17

0.5822
0.5770
0.5483
0.4687
0.3640
0.2640
0.1776

0.354 6
0.342 0
0.291 9
0.197 5

0.114 1

0.056 53
0.022 03

0.144 6
0.137 1

0.1118
0.073 00
0.044 40
0.025 43
0.013 63

q/q,

0.990 1

0.938 8
0.765 5
0.499 6
0.3040
0.174 1

0.093 28

q/qo

0.0046
0.0140
0.0357
Q.0746
0.1417
0.2598
0.435Q

TABLE III. Transport correction factors and heat fluxes for different temperature-gradient scale lengths L. q, is the classical
heat flux and qo the nominal streaming value. Z=4 and Spitzer's e5T ——0.2057.

~s /L

0.0010
0.0032
0.010
0.032
0.10
0.32
1.00

0.7841
0.7796
0.7551
0.6810
0.5668
0.4467
0.3239

0.573 2
0.555 3
0.483 7
0.334 6
0.182 3
0.072 49

—0.000050

0.7030
0.6917
0.6420
0.5249
0.3845
0.2641
0.1638

0.511 3
0.482 9
0.391 9
0.2440
0.125 6
0.054 30
0.014 55

0.202 9
0.187 2
0.145 2
0.089 32
0.051 39
0.028 58
0.014 56

q/q,

0.986 5

0.9103
0.705 7
0.434 2
0.249 8

0.1390
0.070 80

q /qo

0.0065
0.0191
0.0463
0.0912
0.1640
0.2920
0.4648

TABLE IV. Transport correction factors and heat fluxes for different temperature-gradient scale lengths L. q, is the classical
heat flux and qo the nominal streaming value. Z= 16 and Spitzer's e5T ——0.3130.

~s/L

0.0010
0.0032
0.010
0.032
0.10
0.32
1.00

0.9204
0.9091
0.8615
0.7423
0.5760
0.4225
0.2851

0.823 6
0.775 7
0.627 3
0.370 8
0.141 3
0.006 74

—0.058 42

0.8824
0.8554
0.7638
0.5845
0.3909
0.2461
0.1408

0.778 1

0.706 1

0.527 5
0.285 3
0.1154
0.032 10

—0.003 18

0.304 3
0.268 2
0.193 8
0.110 1

0.057 83
0.029 74
0.014 13

q/q,

0.972 2
0.856 7
0.619 3
0.351 8
0.184 8
0.095 02
0.045 14

q /qo

0.0097
0.0274
0.0619
0.1125
0.1846
0.3038
0.4510

TABLE V. Transport correction factors and heat fluxes for different temperature-gradient scale lengths L. q, is the classical heat
flux and qo the nominal streaming value. Z = oo and Spitzer's e5T ——0.400.

~s/L

0.0010
0.0032
0.010
0.032
0.10
0.32
1.00

0.9971
0.9784
0.9109
0.7603
0.5662
0.4018
0.2678

0.983 2
0.898 9
0.676 2
0.340 8
0.077 65

—0.049 93
—0.095 42

0.9919
0.9486
0.8229
0.6030
0.3830
0.2324
0.1316

0.970 2
0.847 9
0.588 5
0.2800
0.089 10
0.01079

—0.015 18

0.383 3
0.325 0
0.222 0
0.1178
0.057 58
0.028 12
0.012 96

q/q,

0.958 3
0.8124
0.554 9
0.294 5
0.144 0
0.070 30
0.032 40

q /qo

0.0122
0.0332
0.0708
0.1203
0.1838
0.2872
0.4136
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q/q

L/ X=160
1

0

q/q

~OO1
.001

.41 X/LT .1
.01 .1

s

.01
.001

I

.01

qo

FIG. 4. Comparison of the present calculation (0) with two
numerical solutions of the Fokker-Planck equations and a
Monte Carlo solution. Curve A was calculated in Ref. 18, the
dashed curves in Ref. 16 (curves labeled by slab thickness in
terms of A, ), and the points 0 in Ref. 14.

(b)
ill

VII. EFFECT OF STREAMING INSTABILITIES

The calculations presented in Tables I—V show a distri-
bution function that is classical for gentle gradients, but
as the gradient steepens, long mean-free-path particles be-

q/q
LQ

upper points to the cold side which is expected to be
under the influence of nonlocal streaming effects. The
calculations of Refs. 18 and 16 agree well with each other
and with the calculations presented here. The Monte Car-
lo results of Ref. 17 are also consistent with a limit of
0.3qo. The results of Ref. 14, however, are considerably
lower at 0.1qo.

In Fig. S the results of Ref. 16 are compared to the
present calculation for two sets of boundary conditions.
The half-isotropic boundary condition is appropriate for
the hot side of the gradient region and leads to heat fluxes
that match the lower points on the dashed curves. The
streaming boundary condition is more appropriate for the
cold side, as can be appreciated from Fig. 2. This is veri-
fied in Fig. 5 except for the curve labeled 0.6, which cor-
responds to a slab only 0.6A, thick. In this case the cold
side is still strongly under the influence of the hot
boundary and should correspond more to the half-
isotropic boundary condition.

X2

oCP

V

0
'0

FIG. 6. Effect of streaming instabilities. (a) Heat-flow values
computed with (o) and without ( ) quasilinear plateau. (b)
Distribution function for A,, /L=0. 1 showing the quasilinear
plateau. [Compare with Fig. 1(a).]

gin to stream through the region of the gradient, forming
a bump on the distribution for p values near one. A dis-
tribution of this form is unstable to the formation of plas-
ma waves which grow at the expense of the energy of par-
ticles in the bump. The evolution of the bump on tail in-
stability was studied computationally in Ref. 19.

The distribution in the streaming region is essentially
one dimensional, as shown in Fig. 1(a). From quasilinear
theory in one dimension, it is known that the bump will
flatten until df /dx (0, thus forming the "quasilinear pla-
teau. " This effect is particularly evident in Figs. 2 and 4
of Ref. 19. In order to see how much of an effect this in-
stability might have on thermal transport in steep gra-
dients, calculations have been performed with the distri-
bution function Eq. (26) modified as described in Ref. 20.
The transport results are shown in Fig. 6(a), with the dis-
tribution corresponding to A, /L=0. 1 sh, own in Fig. 6(b).
The heat fluxes are reduced by the streaming instability
by approximately a factor of 2.

VIII. SUMMARY AND CONCLUSIONS

~001
.001

01 X/LT
.01

Xs/L

FIG. 5. Comparison of the present calculation using half-
isotropic ( ) and streaming (0) boundary conditions with re-
sults presented in Ref. 16. Lower points on the dashed curves
correspond to the hot side of the gradient region and the upper
points to the cold side.

A solution to the Boltzmann equation has been found
that extends the first-order Chapman-Enskog approxima-
tion to large gradients and fields. The solution is strictly
correct in the limits of long and short scattering lengths.
In between these two limits the solution is subject to two
approximations: (1) The Fokker-Planck collision term is
represented by a relaxation form with a velocity-
dependent relaxation time defined in terms of the scatter-
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ing length and (2} the distribution function is separable
with the angular distribution represented by a slowly
varying function.

The transport solution has been used to calculate
correction factors for the classical transport coefficients in

a nonuniform plasma that depend on the temperature-
gradient scale length as a parameter. These factors lead to
heat-flow values in close agreement with Monte Carlo and
numerical Fokker-Planck calculations over a large range
of temperature gradients.

Since the transport solution properly accounts for both
diffusion and streaming components, it leads to transport
coefficients that are inherently flux limited. The correc-
tion factors derived on the basic of this solution allow the
simpler diffusion expressions to be used in numerical
computations without the need to invoke an ad hoc flux
limiter. The transport solution also provides a basis for
investigating analytically the physical principles involved

in more complex transport problems, notably the supra-
thermal component and its effect on the thermal flux
through the quasineutral field and the density gradient.

Neither the solution derived here nor the more elaborate
numerical solutions yields heat-flow values in steep gra-
dients as small as those inferred from laser plasma experi-
ments, f, -0.03—0.06. The results shown in Fig. 4 indi-
cate that factors other than the small gradient approxima-
tion in the classical calculation are responsible for the
discrepancy.
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